Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

Rett syndrome and other autism spectrum disorders—brain diseases of immune malfunction?

Abstract

Neuroimmunology was once referred to in terms of its pathological connotation only and was generally understood as covering the deleterious involvement of the immune system in various diseases and disorders of the central nervous system (CNS). However, our conception of the function of the immune system in the structure, function, and plasticity of the CNS has undergone a sea change after relevant discoveries over the past two decades, and continues to be challenged by more recent studies of neurodevelopment and cognition. This review summarizes the recent advances in understanding of immune-system participation in the development and functioning of the CNS under physiological conditions. Considering as an example Rett syndrome a devastating neurodevelopmental disease, we offer a hypothesis that might help to explain the part played by immune cells in its etiology, and hence suggests that the immune system might be a feasible therapeutic target for alleviation of some of the symptoms of this and other autism spectrum disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M . Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 1999; 5: 49–55.

    Article  CAS  PubMed  Google Scholar 

  2. Cohen IR, Schwartz M . Autoimmune maintenance and neuroprotection of the central nervous system. J Neuroimmunol 1999; 100: 111–114.

    Article  CAS  PubMed  Google Scholar 

  3. Schwartz M, Moalem G, Leibowitz-Amit R, Cohen IR . Innate and adaptive immune responses can be beneficial for CNS repair. Trends Neurosci 1999; 22: 295–299.

    Article  CAS  PubMed  Google Scholar 

  4. Serpe CJ, Tetzlaff JE, Coers S, Sanders VM, Jones KJ . Functional recovery after facial nerve crush is delayed in severe combined immunodeficient mice. Brain Behav Immun 2002; 16: 808–812.

    Article  PubMed  Google Scholar 

  5. Serpe CJ, Coers S, Sanders VM, Jones KJ . CD4+ T, but not CD8+ or B, lymphocytes mediate facial motoneuron survival after facial nerve transection. Brain Behav Immun 2003; 17: 393–402.

    Article  PubMed  Google Scholar 

  6. Byram SC, Carson MJ, DeBoy CA, Serpe CJ, Sanders VM, Jones KJ . CD4-positive T cell-mediated neuroprotection requires dual compartment antigen presentation. J Neurosci 2004; 24: 4333–4339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hofstetter HH, Sewell DL, Liu F, Sandor M, Forsthuber T, Lehmann PV et al. Autoreactive T cells promote post-traumatic healing in the central nervous system. J Neuroimmunol 2003; 134: 25–34.

    Article  CAS  PubMed  Google Scholar 

  8. Kipnis J, Schwartz M . Dual action of glatiramer acetate (Cop-1) in the treatment of CNS autoimmune and neurodegenerative disorders. Trends Mol Med 2002; 8: 319–323.

    Article  CAS  PubMed  Google Scholar 

  9. Karman J, Chu HH, Co DO, Seroogy CM, Sandor M, Fabry Z . Dendritic cells amplify T cell-mediated immune responses in the central nervous system. J Immunol 2006; 177: 7750–7760.

    Article  CAS  PubMed  Google Scholar 

  10. Frenkel D, Huang Z, Maron R, Koldzic DN, Moskowitz MA, Weiner HL . Neuroprotection by IL-10-producing MOG CD4+ T cells following ischemic stroke. J Neurol Sci 2005; 233: 125–132.

    Article  CAS  PubMed  Google Scholar 

  11. Butovsky O, Landa G, Kunis G, Ziv Y, Avidan H, Greenberg N et al. Induction and blockage of oligodendrogenesis by differently activated microglia in an animal model of multiple sclerosis. J Clin Invest 2006; 116: 905–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Persson M, Brantefjord M, Hansson E, Ronnback L . Lipopolysaccharide increases microglial GLT-1 expression and glutamate uptake capacity in vitro by a mechanism dependent on TNF-alpha. Glia 2005; 51: 111–120.

    Article  PubMed  Google Scholar 

  13. Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G et al. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 2009; 6: e1000113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hanisch UK, Kettenmann H . Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 2007; 10: 1387–1394.

    Article  CAS  PubMed  Google Scholar 

  15. Mantovani A, Sica A, Locati M . Macrophage polarization comes of age. Immunity 2005; 23: 344–346.

    Article  CAS  PubMed  Google Scholar 

  16. Michelucci A, Heurtaux T, Grandbarbe L, Morga E, Heuschling P . Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: effects of oligomeric and fibrillar amyloid-beta. J Neuroimmunol 2009; 210: 3–12.

    Article  CAS  PubMed  Google Scholar 

  17. Ransohoff RM, Perry VH . Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 2009; 27: 119–145.

    Article  CAS  PubMed  Google Scholar 

  18. Kipnis J, Mizrahi T, Hauben E, Shaked I, Shevach E, Schwartz M . Neuroprotective autoimmunity: naturally occurring CD4+CD25+ regulatory T cells suppress the ability to withstand injury to the central nervous system. Proc Natl Acad Sci USA 2002; 99: 15620–15625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schwartz M, Kipnis J . Protective autoimmunity and neuroprotection in inflammatory and noninflammatory neurodegenerative diseases. J Neurol Sci 2005; 233: 163–166.

    Article  CAS  PubMed  Google Scholar 

  20. Yoles E, Hauben E, Palgi O, Agranov E, Gothilf A, Cohen A et al. Protective autoimmunity is a physiological response to CNS trauma. J Neurosci 2001; 21: 3740–3748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kipnis J, Cohen H, Cardon M, Ziv Y, Schwartz M . T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc Natl Acad Sci USA 2004; 101: 8180–8185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brynskikh A, Warren T, Zhu J, Kipnis J . Adaptive immunity affects learning behavior in mice. Brain Behav Immun 2008; 22: 861–869.

    Article  CAS  PubMed  Google Scholar 

  23. Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 2006; 9: 268–275.

    Article  CAS  PubMed  Google Scholar 

  24. Ransohoff RM, Kivisakk P, Kidd G . Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 2003; 3: 569–581.

    Article  CAS  PubMed  Google Scholar 

  25. Cserr HF, Knopf PM . Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: a new view. Immunol Today 1992; 13: 507–512.

    Article  CAS  PubMed  Google Scholar 

  26. Widner H, Moller G, Johansson BB . Immune response in deep cervical lymph nodes and spleen in the mouse after antigen deposition in different intracerebral sites. Scand J Immunol 1988; 28: 563–571.

    Article  CAS  PubMed  Google Scholar 

  27. McMenamin PG, Wealthall RJ, Deverall M, Cooper SJ, Griffin B . Macrophages and dendritic cells in the rat meninges and choroid plexus: three-dimensional localisation by environmental scanning electron microscopy and confocal microscopy. Cell Tissue Res 2003; 313: 259–269.

    Article  PubMed  Google Scholar 

  28. McMenamin PG . Distribution and phenotype of dendritic cells and resident tissue macrophages in the dura mater, leptomeninges, and choroid plexus of the rat brain as demonstrated in wholemount preparations. J Comp Neurol 1999; 405: 553–562.

    Article  CAS  PubMed  Google Scholar 

  29. Kivisakk P, Mahad DJ, Callahan MK, Trebst C, Tucky B, Wei T et al. Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci USA 2003; 100: 8389–8394.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Qing Z, Sewell D, Sandor M, Fabry Z . Antigen-specific T cell trafficking into the central nervous system. J Neuroimmunol 2000; 105: 169–178.

    Article  CAS  PubMed  Google Scholar 

  31. Tran PB, Miller RJ . Chemokine receptors: signposts to brain development and disease. Nat Rev Neurosci 2003; 4: 444–455.

    Article  CAS  PubMed  Google Scholar 

  32. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N et al. The classical complement cascade mediates CNS synapse elimination. Cell 2007; 131: 1164–1178.

    Article  CAS  PubMed  Google Scholar 

  33. Boulanger LM . Immune proteins in brain development and synaptic plasticity. Neuron 2009; 64: 93–109.

    Article  CAS  PubMed  Google Scholar 

  34. Corriveau RA, Huh GS, Shatz CJ . Regulation of class I MHC gene expression in the developing and mature CNS by neural activity. Neuron 1998; 21: 505–520.

    Article  CAS  PubMed  Google Scholar 

  35. Hawley SH, Wunnenberg-Stapleton K, Hashimoto C, Laurent MN, Watabe T, Blumberg BW et al. Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes Dev 1995; 9: 2923–2935.

    Article  CAS  PubMed  Google Scholar 

  36. Bachiller D, Klingensmith J, Kemp C, Belo JA, Anderson RM, May SR et al. The organizer factors Chordin and Noggin are required for mouse forebrain development. Nature 2000; 403: 658–661.

    Article  CAS  PubMed  Google Scholar 

  37. Deverman BE, Patterson PH . Cytokines and CNS development. Neuron 2009; 64: 61–78.

    Article  CAS  PubMed  Google Scholar 

  38. Ohtani T, Ishihara K, Atsumi T, Nishida K, Kaneko Y, Miyata T et al. Dissection of signaling cascades through gp130 in vivo: reciprocal roles for STAT3- and SHP2-mediated signals in immune responses. Immunity 2000; 12: 95–105.

    Article  CAS  PubMed  Google Scholar 

  39. Mehler MF, Kessler JA . Hematolymphopoietic and inflammatory cytokines in neural development. Trends Neurosci 1997; 20: 357–365.

    Article  CAS  PubMed  Google Scholar 

  40. Lovett-Racke AE, Smith ME, Arredondo LR, Bittner PS, Ratts RB, Shive CL et al. Developmentally regulated gene expression of Th2 cytokines in the brain. Brain Res 2000; 870: 27–35.

    Article  CAS  PubMed  Google Scholar 

  41. Dziegielewska KM, Moller JE, Potter AM, Ek J, Lane MA, Saunders NR . Acute-phase cytokines IL-1beta and TNF-alpha in brain development. Cell Tissue Res 2000; 299: 335–345.

    CAS  PubMed  Google Scholar 

  42. Gillard SE, Lu M, Mastracci RM, Miller RJ . Expression of functional chemokine receptors by rat cerebellar neurons. J Neuroimmunol 2002; 124: 16–28.

    Article  CAS  PubMed  Google Scholar 

  43. Oberlin E, Amara A, Bachelerie F, Bessia C, Virelizier JL, Arenzana-Seisdedos F et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 1996; 382: 833–835.

    Article  CAS  PubMed  Google Scholar 

  44. Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA 1998; 95: 9448–9453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bagri A, Gurney T, He X, Zou YR, Littman DR, Tessier-Lavigne M et al. The chemokine SDF1 regulates migration of dentate granule cells. Development 2002; 129: 4249–4260.

    CAS  PubMed  Google Scholar 

  46. Borrell V, Marin O . Meninges control tangential migration of hem-derived Cajal-Retzius cells via CXCL12/CXCR4 signaling. Nat Neurosci 2006; 9: 1284–1293.

    Article  CAS  PubMed  Google Scholar 

  47. Zhu Y, Yu T, Zhang XC, Nagasawa T, Wu JY, Rao Y . Role of the chemokine SDF-1 as the meningeal attractant for embryonic cerebellar neurons. Nat Neurosci 2002; 5: 719–720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Reiss K, Mentlein R, Sievers J, Hartmann D . Stromal cell-derived factor 1 is secreted by meningeal cells and acts as chemotactic factor on neuronal stem cells of the cerebellar external granular layer. Neuroscience 2002; 115: 295–305.

    Article  CAS  PubMed  Google Scholar 

  49. Chalasani SH, Sabol A, Xu H, Gyda MA, Rasband K, Granato M et al. Stromal cell-derived factor-1 antagonizes slit/robo signaling in vivo. J Neurosci 2007; 27: 973–980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chalasani SH, Sabelko KA, Sunshine MJ, Littman DR, Raper JA . A chemokine, SDF-1, reduces the effectiveness of multiple axonal repellents and is required for normal axon pathfinding. J Neurosci 2003; 23: 1360–1371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lieberam I, Agalliu D, Nagasawa T, Ericson J, Jessell TM . A Cxcl12-CXCR4 chemokine signaling pathway defines the initial trajectory of mammalian motor axons. Neuron 2005; 47: 667–679.

    Article  CAS  PubMed  Google Scholar 

  52. Pettigrew HD, Teuber SS, Gershwin ME . Clinical significance of complement deficiencies. Ann N Y Acad Sci 2009; 1173: 108–123.

    Article  CAS  PubMed  Google Scholar 

  53. Huh GS, Boulanger LM, Du H, Riquelme PA, Brotz TM, Shatz CJ . Functional requirement for class I MHC in CNS development and plasticity. Science 2000; 290: 2155–2159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McConnell MJ, Huang YH, Datwani A, Shatz CJ . H2-K(b) and H2-D(b) regulate cerebellar long-term depression and limit motor learning. Proc Natl Acad Sci USA 2009; 106: 6784–6789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Laurvick CL, Msall ME, Silburn S, Bower C, de Klerk N, Leonard H . Physical and mental health of mothers caring for a child with Rett syndrome. Pediatrics 2006; 118: e1152–e1164.

    Article  PubMed  Google Scholar 

  56. Moog U, Smeets EE, van Roozendaal KE, Schoenmakers S, Herbergs J, Schoonbrood-Lenssen AM et al. Neurodevelopmental disorders in males related to the gene causing Rett syndrome in females (MECP2). Eur J Paediatr Neurol 2003; 7: 5–12.

    Article  PubMed  Google Scholar 

  57. Shetty AK, Chatters R, Tilton AH, Lacassie Y . Syndrome of microcephaly, mental retardation, and tracheoesophageal fistula associated with features of Rett syndrome. J Child Neurol 2000; 15: 61–63.

    Article  CAS  PubMed  Google Scholar 

  58. Armstrong DD . Neuropathology of Rett syndrome. J Child Neurol 2005; 20: 747–753.

    Article  PubMed  Google Scholar 

  59. Horska A, Farage L, Bibat G, Nagae LM, Kaufmann WE, Barker PB et al. Brain metabolism in Rett syndrome: age, clinical, and genotype correlations. Ann Neurol 2009; 65: 90–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY . Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999; 23: 185–188.

    Article  CAS  PubMed  Google Scholar 

  61. Bao X, Jiang S, Song F, Pan H, Li M, Wu X . X chromosome inactivation in Rett syndrome and its correlations with MECP2 mutations and phenotype. J Child Neurol 2008; 23: 22–25.

    Article  Google Scholar 

  62. Tong Y, Aune T, Boothby M . T-bet antagonizes mSin3a recruitment and transactivates a fully methylated IFN-gamma promoter via a conserved T-box half-site. Proc Natl Acad Sci USA 2005; 102: 2034–2039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lal G, Zhang N, van der Touw W, Ding Y, Ju W, Bottinger EP et al. Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol 2009; 182: 259–273.

    Article  CAS  PubMed  Google Scholar 

  64. Balmer D, Arredondo J, Samaco RC, LaSalle JM . MECP2 mutations in Rett syndrome adversely affect lymphocyte growth, but do not affect imprinted gene expression in blood or brain. Hum Genet 2002; 110: 545–552.

    Article  CAS  PubMed  Google Scholar 

  65. Webb R, Wren JD, Jeffries M, Kelly JA, Kaufman KM, Tang Y et al. Variants within MECP2, a key transcription regulator, are associated with increased susceptibility to lupus and differential gene expression in patients with systemic lupus erythematosus. Arthritis Rheum 2009; 60: 1076–1084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Delgado IJ, Kim DS, Thatcher KN, LaSalle JM, Van den Veyver IB . Expression profiling of clonal lymphocyte cell cultures from Rett syndrome patients. BMC Med Genet 2006; 7: 61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH . A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000; 100: 655–669.

    Article  CAS  PubMed  Google Scholar 

  68. Tanioka T, Hattori A, Mizutani S, Tsujimoto M . Regulation of the human leukocyte-derived arginine aminopeptidase/endoplasmic reticulum-aminopeptidase 2 gene by interferon-gamma. FEBS J 2005; 272: 916–928.

    Article  CAS  PubMed  Google Scholar 

  69. Plioplys AV, Greaves A, Kazemi K, Silverman E . Lymphocyte function in autism and Rett syndrome. Neuropsychobiology 1994; 29: 12–16.

    Article  CAS  PubMed  Google Scholar 

  70. Fiumara A, Sciotto A, Barone R, D’Asero G, Munda S, Parano E et al. Peripheral lymphocyte subsets and other immune aspects in Rett syndrome. Pediatr Neurol 1999; 21: 619–621.

    Article  CAS  PubMed  Google Scholar 

  71. Arman M, Aguilera-Montilla N, Mas V, Puig-Kroger A, Pignatelli M, Guigo R et al. The human CD6 gene is transcriptionally regulated by RUNX and Ets transcription factors in T cells. Mol Immunol 2009; 46: 2226–2235.

    Article  CAS  PubMed  Google Scholar 

  72. Komine O, Hayashi K, Natsume W, Watanabe T, Seki Y, Seki N et al. The Runx1 transcription factor inhibits the differentiation of naive CD4+ T cells into the Th2 lineage by repressing GATA3 expression. J Exp Med 2003; 198: 51–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cayrol R, Wosik K, Berard JL, Dodelet-Devillers A, Ifergan I, Kebir H et al. Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nat Immunol 2008; 9: 137–145.

    Article  CAS  PubMed  Google Scholar 

  74. Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG . Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 2009; 4: 47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Holling TM, van der Stoep N, Quinten E, van den Elsen PJ . Activated human T cells accomplish MHC class II expression through T cell-specific occupation of class II transactivator promoter III. J Immunol 2002; 168: 763–770.

    Article  CAS  PubMed  Google Scholar 

  76. Latham KA, Whittington KB, Zhou R, Qian Z, Rosloniec EF . Ex vivo characterization of the autoimmune T cell response in the HLA-DR1 mouse model of collagen-induced arthritis reveals long-term activation of type II collagen-specific cells and their presence in arthritic joints. J Immunol 2005; 174: 3978–3985.

    Article  CAS  PubMed  Google Scholar 

  77. Maezawa I, Swanberg S, Harvey D, LaSalle JM, Jin LW . Rett syndrome astrocytes are abnormal and spread MeCP2 deficiency through gap junctions. J Neurosci 2009; 29: 5051–5061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ballas N, Lioy DT, Grunseich C, Mandel G . Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat Neurosci 2009; 12: 311–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Alvarez-Saavedra M, Saez MA, Kang D, Zoghbi HY, Young JI . Cell-specific expression of wild-type MeCP2 in mouse models of Rett syndrome yields insight about pathogenesis. Hum Mol Genet 2007; 16: 2315–2325.

    Article  CAS  PubMed  Google Scholar 

  80. Guy J, Gan J, Selfridge J, Cobb S, Bird A . Reversal of neurological defects in a mouse model of Rett syndrome. Science 2007; 315: 1143–1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen WG, Chang Q, Lin Y, Meissner A, West AE, Griffith EC et al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 2003; 302: 885–889.

    Article  CAS  PubMed  Google Scholar 

  82. Kerschensteiner M, Gallmeier E, Behrens L, Leal VV, Misgeld T, Klinkert WE et al. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 1999; 189: 865–870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Engelhardt B, Ransohoff RM . The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol 2005; 26: 485–495.

    Article  CAS  PubMed  Google Scholar 

  84. Allen NJ, Barres BA . Neuroscience: Glia—more than just brain glue. Nature 2009; 457: 675–677.

    Article  CAS  PubMed  Google Scholar 

  85. Ullian EM, Christopherson KS, Barres BA . Role for glia in synaptogenesis. Glia 2004; 47: 209–216.

    Article  PubMed  Google Scholar 

  86. Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 2005; 120: 421–433.

    Article  CAS  PubMed  Google Scholar 

  87. Chung IY, Benveniste EN . Tumor necrosis factor-alpha production by astrocytes. Induction by lipopolysaccharide, IFN-gamma, and IL-1 beta. J Immunol 1990; 144: 2999–3007.

    CAS  PubMed  Google Scholar 

  88. Chao CC, Hu S, Sheng WS, Bu D, Bukrinsky MI, Peterson PK . Cytokine-stimulated astrocytes damage human neurons via a nitric oxide mechanism. Glia 1996; 16: 276–284.

    Article  CAS  PubMed  Google Scholar 

  89. Garg SK, Banerjee R, Kipnis J . Neuroprotective immunity: T cell-derived glutamate endows astrocytes with a neuroprotective phenotype. J Immunol 2008; 180: 3866–3873.

    Article  CAS  PubMed  Google Scholar 

  90. Garg SK, Kipnis J, Banerjee R . IFN-gamma and IL-4 differentially shape metabolic responses and neuroprotective phenotype of astrocytes*. J Neurochem 2009; 108: 1155–1166.

    Article  CAS  PubMed  Google Scholar 

  91. Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S et al. Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci 2006; 31: 149–160.

    Article  CAS  PubMed  Google Scholar 

  92. Schwartz M, Butovsky O, Bruck W, Hanisch UK . Microglial phenotype: is the commitment reversible? Trends Neurosci 2006; 29: 68–74.

    Article  CAS  PubMed  Google Scholar 

  93. Zhao W, Xie W, Xiao Q, Beers DR, Appel SH . Protective effects of an anti-inflammatory cytokine, interleukin-4, on motoneuron toxicity induced by activated microglia. J Neurochem 2006; 99: 1176–1187.

    Article  CAS  PubMed  Google Scholar 

  94. Beers DR, Henkel JS, Zhao W, Wang J, Appel SH . CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS. Proc Natl Acad Sci USA 2008; 105: 15558–15563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Baracskay KL, Kidd GJ, Miller RH, Trapp BD . NG2-positive cells generate A2B5-positive oligodendrocyte precursor cells. Glia 2007; 55: 1001–1010.

    Article  PubMed  Google Scholar 

  96. Pan JW, Lane JB, Hetherington H, Percy AK . Rett syndrome: 1H spectroscopic imaging at 4.1 Tesla. J Child Neurol 1999; 14: 524–528.

    Article  CAS  PubMed  Google Scholar 

  97. Teitelbaum D, Arnon R, Sela M . Copolymer 1: from basic research to clinical application. Cell Mol Life Sci 1997; 53: 24–28.

    Article  CAS  PubMed  Google Scholar 

  98. Teitelbaum D, Fridkis-Hareli M, Arnon R, Sela M . Copolymer 1 inhibits chronic relapsing experimental allergic encephalomyelitis induced by proteolipid protein (PLP) peptides in mice and interferes with PLP-specific T cell responses. J Neuroimmunol 1996; 64: 209–217.

    Article  CAS  PubMed  Google Scholar 

  99. Weber MS, Hohlfeld R, Zamvil SS . Mechanism of action of glatiramer acetate in treatment of multiple sclerosis. Neurotherapeutics 2007; 4: 647–653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Weber MS, Prod’homme T, Youssef S, Dunn SE, Rundle CD, Lee L et al. Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nat Med 2007; 13: 935–943.

    Article  CAS  PubMed  Google Scholar 

  101. Frenkel D, Maron R, Burt DS, Weiner HL . Nasal vaccination with a proteosome-based adjuvant and glatiramer acetate clears beta-amyloid in a mouse model of Alzheimer disease. J Clin Invest 2005; 115: 2423–2433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Benner EJ, Mosley RL, Destache CJ, Lewis TB, Jackson-Lewis V, Gorantla S et al. Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson's disease. Proc Natl Acad Sci USA 2004; 101: 9435–9440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kipnis J, Yoles E, Porat Z, Cohen A, Mor F, Sela M et al. T cell immunity to copolymer 1 confers neuroprotection on the damaged optic nerve: possible therapy for optic neuropathies. Proc Natl Acad Sci USA 2000; 97: 7446–7451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Liu J, Johnson TV, Lin J, Ramirez SH, Bronich TK, Caplan S et al. T cell independent mechanism for copolymer-1-induced neuroprotection. Eur J Immunol 2007; 37: 3143–3154.

    Article  CAS  PubMed  Google Scholar 

  105. Wolf SA, Steiner B, Akpinarli A, Kammertoens T, Nassenstein C, Braun A et al. CD4-positive T lymphocytes provide a neuroimmunological link in the control of adult hippocampal neurogenesis. J Immunol 2009; 182: 3979–3984.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Amber Cardani for her critical reading and discussion of the manuscript and Shirley Smith for editing the manuscript. This work was supported in part by NICHD (R21HD056293) and NINDS (R01NS061973) awards to JK, by Training in Neurobiology and Behavioral Development (T32HD007323) award to NCD, and by Medical Scientist Training Program (T32GM007267) award to EP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Kipnis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derecki, N., Privman, E. & Kipnis, J. Rett syndrome and other autism spectrum disorders—brain diseases of immune malfunction?. Mol Psychiatry 15, 355–363 (2010). https://doi.org/10.1038/mp.2010.21

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2010.21

Keywords

This article is cited by

Search

Quick links