Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

SK2 potassium channel overexpression in basolateral amygdala reduces anxiety, stress-induced corticosterone secretion and dendritic arborization

Abstract

The basolateral amygdala is critical for generation of anxiety. In addition, exposure to both stress and glucocorticoids induces anxiety. Demonstrated ability of the amygdala to change in response to stress and glucocorticoids could thus be important therapeutic target for anxiety management. Several studies have reported a relationship between anxiety and dendritic arborization of the amygdaloid neurons. In this study we employed a gene therapeutic approach to reduce anxiety and dendritic arborization of the amygdala neurons. Specifically, we overexpressed SK2 potassium channel in the basolateral amygdala using a herpes simplex viral system. Our choice of therapeutic cargo was guided by the indications that activation of the amygdala might underlie anxiety and that SK2 could reduce neuronal activation by exerting inhibitory influence on action potentials. We report that SK2 overexpression reduced anxiety and stress-induced corticosterone secretion at a systemic level. SK2 overexpression also reduced dendritic arborization of the amygdala neurons. Hence, SK2 is a potential gene therapy candidate molecule that can be used against stress-related neuropsychiatric disorders such as anxiety.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Shelton CI . Diagnosis and management of anxiety disorders. J Am Osteopath Assoc 2004; 104 (3 Suppl 1): S2–S5.

    PubMed  Google Scholar 

  2. Shearer SL . Recent advances in the understanding and treatment of anxiety disorders. Prim Care 2007; 34: 475–504, v–vi.

    Article  PubMed  Google Scholar 

  3. WHO. The ICD-10 Classification of Mental and Behavioral Disorders-Diagnostic Criteria for Research. World Health Organization: Geneva, 1993.

  4. APA. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV). APA: Washington DC, 1994.

  5. LeDoux J . The emotional brain, fear, and the amygdala. Cell Mol Neurobiol 2003; 23: 727–738.

    Article  PubMed  Google Scholar 

  6. Quirk GJ . Fear research: implications for anxiety disorders. Bol Asoc Med P R 1998; 90: 27–29.

    CAS  PubMed  Google Scholar 

  7. Miller LA, Taber KH, Gabbard GO, Hurley RA . Neural underpinnings of fear and its modulation: implications for anxiety disorders. J Neuropsychiatry Clin Neurosci 2005; 17: 1–6.

    Article  PubMed  Google Scholar 

  8. Garakani A, Mathew SJ, Charney DS . Neurobiology of anxiety disorders and implications for treatment. Mt Sinai J Med 2006; 73: 941–949.

    PubMed  Google Scholar 

  9. Davis M, Rainnie D, Cassell M . Neurotransmission in the rat amygdala related to fear and anxiety. Trends Neurosci 1994; 17: 208–214.

    CAS  PubMed  Google Scholar 

  10. Mitra R, Vyas A, Chatterjee G, Chattarji S . Chronic-stress induced modulation of different states of anxiety-like behavior in female rats. Neurosci Lett 2005; 383: 278–283.

    Article  CAS  PubMed  Google Scholar 

  11. Mitra R, Sapolsky RM . Acute corticosterone treatment is sufficient to induce anxiety and amygdaloid dendritic hypertrophy. Proc Natl Acad Sci USA 2008; 105: 5573–5578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rainnie DG, Bergeron R, Sajdyk TJ, Patil M, Gehlert DR, Shekhar A . Corticotrophin releasing factor-induced synaptic plasticity in the amygdala translates stress into emotional disorders. J Neurosci 2004; 24: 3471–3479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S . Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 2002; 22: 6810–6818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mitra R, Jadhav S, McEwen BS, Vyas A, Chattarji S . Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc Natl Acad Sci USA 2005; 102: 9371–9376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Salm AK, Pavelko M, Krouse EM, Webster W, Kraszpulski M, Birkle DL . Lateral amygdaloid nucleus expansion in adult rats is associated with exposure to prenatal stress. Brain Res Dev Brain Res 2004; 148: 159–167.

    Article  CAS  PubMed  Google Scholar 

  16. Feldman S, Conforti N, Itzik A, Weidenfeld J . Differential effect of amygdaloid lesions on CRF-41, ACTH and corticosterone responses following neural stimuli. Brain Res 1994; 658: 21–26.

    Article  CAS  PubMed  Google Scholar 

  17. Feldman S, Weidenfeld J . The excitatory effects of the amygdala on hypothalamo–pituitary–adrenocortical responses are mediated by hypothalamic norepinephrine, serotonin, and CRF-41. Brain Res Bull 1998; 45: 389–393.

    Article  CAS  PubMed  Google Scholar 

  18. Shepard JD, Barron KW, Myers DA . Stereotaxic localization of corticosterone to the amygdala enhances hypothalamo–pituitary–adrenal responses to behavioral stress. Brain Res 2003; 963: 203–213.

    Article  CAS  PubMed  Google Scholar 

  19. Herman JP, Prewitt CM, Cullinan WE . Neuronal circuit regulation of the hypothalamo–pituitary–adrenocortical stress axis. Crit Rev Neurobiol 1996; 10: 371–394.

    Article  CAS  PubMed  Google Scholar 

  20. Bhatnagar S, Vining C, Denski K . Regulation of chronic stress-induced changes in hypothalamic—pituitary–adrenal activity by the basolateral amygdala. Ann NY Acad Sci 2004; 1032: 315–319.

    Article  CAS  PubMed  Google Scholar 

  21. Greaves-Lord K, Ferdinand RF, Oldehinkel AJ, Sondeijker FE, Ormel J, Verhulst FC . Higher cortisol awakening response in young adolescents with persistent anxiety problems. Acta Psychiatr Scand 2007; 116: 137–144.

    Article  CAS  PubMed  Google Scholar 

  22. Mantella RC, Butters MA, Amico JA, Mazumdar S, Rollman BL, Begley AE et al. Salivary cortisol is associated with diagnosis and severity of late-life generalized anxiety disorder. Psychoneuroendocrinology 2008; 33: 773–781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC et al. Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo–pituitary–adrenocortical responsiveness. Front Neuroendocrinol 2003; 24: 151–180.

    Article  CAS  PubMed  Google Scholar 

  24. McLaughlin J, Roozendaal B, Dumas T, Gupta A, Ajilore O, Hsieh J et al. Sparing of neuronal function postseizure with gene therapy. Proc Natl Acad Sci USA 2000; 97: 12804–12809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shimazaki K, Urabe M, Monahan J, Ozawa K, Kawai N . Adeno-associated virus vector-mediated bcl-2 gene transfer into post-ischemic gerbil brain in vivo: prospects for gene therapy of ischemia-induced neuronal death. Gene Therapy 2000; 7: 1244–1249.

    Article  CAS  PubMed  Google Scholar 

  26. Roy M, Hom JJ, Sapolsky RM . HSV-mediated delivery of virally derived anti-apoptotic genes protects the rat hippocampus from damage following excitotoxicity, but not metabolic disruption. Gene Therapy 2002; 9: 214–219.

    Article  CAS  PubMed  Google Scholar 

  27. Lee AL, Dumas TC, Tarapore PE, Webster BR, Ho DY, Kaufer D et al. Potassium channel gene therapy can prevent neuron death resulting from necrotic and apoptotic insults. J Neurochem 2003; 86: 1079–1088.

    Article  CAS  PubMed  Google Scholar 

  28. Madison DV, Nicoll RA . Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro. J Physiol 1984; 354: 319–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ferguson D, Sapolsky R . Overexpression of mineralocorticoid and transdominant glucocorticoid receptor blocks the impairing effects of glucocorticoids on memory. Hippocampus 2008; 18: 1103–1111.

    Article  PubMed  Google Scholar 

  30. Stein-Behrens B, Mattson MP, Chang I, Yeh M, Sapolsky R . Stress exacerbates neuron loss and cytoskeletal pathology in the hippocampus. J Neurosci 1994; 14: 5373–5380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mechiel Korte S, De Boer SF . A robust animal model of state anxiety: fear-potentiated behaviour in the elevated plus-maze. Eur J Pharmacol 2003; 463: 163–175.

    Article  CAS  PubMed  Google Scholar 

  32. Fluttert M, Dalm S, Oitzl MS . A refined method for sequential blood sampling by tail incision in rats. Lab Anim 2000; 34: 372–378.

    Article  CAS  PubMed  Google Scholar 

  33. Kang W, Wilson SP, Wilson MA . Overexpression of proenkephalin in the amygdala potentiates the anxiolytic effects of benzodiazepines. Neuropsychopharmacology 2000; 22: 77–88.

    Article  CAS  PubMed  Google Scholar 

  34. Kang W, Wilson MA, Bender MA, Glorioso JC, Wilson SP . Herpes virus-mediated preproenkephalin gene transfer to the amygdala is antinociceptive. Brain Res 1998; 792: 133–135.

    Article  CAS  PubMed  Google Scholar 

  35. Rumpel S, LeDoux J, Zador A, Malinow R . Postsynaptic receptor trafficking underlying a form of associative learning. Science 2005; 308: 83–88.

    Article  CAS  PubMed  Google Scholar 

  36. Adamec RE, Burton P, Shallow T, Budgell J . Unilateral block of NMDA receptors in the amygdala prevents predator stress-induced lasting increases in anxiety-like behavior and unconditioned startle—effective hemisphere depends on the behavior. Physiol Behav 1999; 65: 739–751.

    Article  CAS  PubMed  Google Scholar 

  37. Sanders SK, Morzorati SL, Shekhar A . Priming of experimental anxiety by repeated subthreshold GABA blockade in the rat amygdala. Brain Res 1995; 699: 250–259.

    Article  CAS  PubMed  Google Scholar 

  38. Kalin NH, Shelton SE, Davidson RJ . The role of the central nucleus of the amygdala in mediating fear and anxiety in the primate. J Neurosci 2004; 24: 5506–5515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stein MB, Simmons AN, Feinstein JS, Paulus MP . Increased amygdala and insula activation during emotion processing in anxiety-prone subjects. Am J Psychiatry 2007; 164: 318–327.

    Article  PubMed  Google Scholar 

  40. Bishop SJ, Duncan J, Lawrence AD . State anxiety modulation of the amygdala response to unattended threat-related stimuli. J Neurosci 2004; 24: 10364–10368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Somerville LH, Kim H, Johnstone T, Alexander AL, Whalen PJ . Human amygdala responses during presentation of happy and neutral faces: correlations with state anxiety. Biol Psychiatry 2004; 55: 897–903.

    Article  PubMed  Google Scholar 

  42. Anand A, Shekhar A . Brain imaging studies in mood and anxiety disorders: special emphasis on the amygdala. Ann NY Acad Sci 2003; 985: 370–388.

    Article  PubMed  Google Scholar 

  43. Amaral DG, Corbett BA . The amygdala, autism and anxiety. Novartis Found Symp 2003; 251: 177–187; discussion 187–97, 281–97.

    PubMed  Google Scholar 

  44. Phan KL, Fitzgerald DA, Nathan PJ, Tancer ME . Association between amygdala hyperactivity to harsh faces and severity of social anxiety in generalized social phobia. Biol Psychiatry 2006; 59: 424–429.

    Article  PubMed  Google Scholar 

  45. Rauch SL, Shin LM, Wright CI . Neuroimaging studies of amygdala function in anxiety disorders. Ann NY Acad Sci 2003; 985: 389–410.

    Article  PubMed  Google Scholar 

  46. De Bellis MD, Casey BJ, Dahl RE, Birmaher B, Williamson DE, Thomas KM et al. A pilot study of amygdala volumes in pediatric generalized anxiety disorder. Biol Psychiatry 2000; 48: 51–57.

    Article  CAS  PubMed  Google Scholar 

  47. Dumas TC, Sapolsky RM . Gene therapy against neurological insults: sparing neurons versus sparing function. Trends Neurosci 2001; 24: 695–700.

    Article  CAS  PubMed  Google Scholar 

  48. McEwen BS . Plasticity of the hippocampus: adaptation to chronic stress and allostatic load. Ann NY Acad Sci 2001; 933: 265–277.

    Article  CAS  PubMed  Google Scholar 

  49. Rall W . Cable properties of neurons with complex dendritic trees. In: Segev I, Rinzel J, Shepherd GM (eds). The Theoretical Foundation of Dendritic Function. MIT Press: Cambridge, MA, 1995, pp 25–104.

    Google Scholar 

  50. Rall W . Branching dendritic trees and motoneuron membrane resistivity. Exp Neurol 1959; 1: 491–527.

    Article  CAS  PubMed  Google Scholar 

  51. Rajan I, Witte S, Cline HT . NMDA receptor activity stabilizes presynaptic retinotectal axons and postsynaptic optic tectal cell dendrites in vivo. J Neurobiol 1999; 38: 357–368.

    Article  CAS  PubMed  Google Scholar 

  52. Inglis FM, Crockett R, Korada S, Abraham WC, Hollmann M, Kalb RG . The AMPA receptor subunit GluR1 regulates dendritic architecture of motor neurons. J Neurosci 2002; 22: 8042–8051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Roman E, Gustafsson L, Berg M, Nylander I . Behavioral profiles and stress-induced corticosteroid secretion in male Wistar rats subjected to short and prolonged periods of maternal separation. Horm Behav 2006; 50: 736–747.

    Article  CAS  PubMed  Google Scholar 

  54. Spencer RL, Miller AH, Moday H, Stein M, McEwen BS . Diurnal differences in basal and acute stress levels of type I and type II adrenal steroid receptor activation in neural and immune tissues. Endocrinology 1993; 133: 1941–1950.

    Article  CAS  PubMed  Google Scholar 

  55. Karssen AM, Meijer OC, Berry A, Sanjuan Pinol R, de Kloet ER . Low doses of dexamethasone can produce a hypocorticosteroid state in the brain. Endocrinology 2005; 146: 5587–5595.

    Article  CAS  PubMed  Google Scholar 

  56. Magarinos AM, McEwen BS . Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 1995; 69: 89–98.

    Article  CAS  PubMed  Google Scholar 

  57. Mikkelsen JD, Soderman A, Kiss A, Mirza N . Effects of benzodiazepines receptor agonists on the hypothalamic–pituitary–adrenocortical axis. Eur J Pharmacol 2005; 519: 223–230.

    Article  CAS  PubMed  Google Scholar 

  58. Newman MB, Nazian SJ, Sanberg PR, Diamond DM, Shytle RD . Corticosterone-attenuating and anxiolytic properties of mecamylamine in the rat. Prog Neuropsychopharmacol Biol Psychiatry 2001; 25: 609–620.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by RO1 AGO20633 (NIH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Mitra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitra, R., Ferguson, D. & Sapolsky, R. SK2 potassium channel overexpression in basolateral amygdala reduces anxiety, stress-induced corticosterone secretion and dendritic arborization. Mol Psychiatry 14, 847–855 (2009). https://doi.org/10.1038/mp.2009.9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2009.9

Keywords

This article is cited by

Search

Quick links