Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dysbindin-1 genotype effects on emotional working memory

Abstract

We combined functional imaging and genetics to investigate the behavioral and neural effects of a dysbindin-1 (DTNBP1) genotype associated with the expression level of this important synaptic protein, which has been implicated in schizophrenia. On a working memory (WM) task for emotional faces, participants with the genotype related to increased expression showed higher WM capacity for happy faces compared with the genotype related to lower expression. Activity in several task-related brain areas with known DTNBP1 expression was increased, including hippocampal, temporal and frontal cortex. Although these increases occurred across emotions, they were mostly observed in areas whose activity correlated with performance for happy faces. This suggests effects of variability in DTNBP1 on emotion-specific WM capacity and region-specific task-related brain activation in humans. Synaptic effects of DTNBP1 implicate that altered dopaminergic and/or glutamatergic neurotransmission may be related to the increased WM capacity. The combination of imaging and genetics thus allows us to bridge the gap between the cellular/molecular and systems/behavioral level and extend the cognitive neuroscience approach to a comprehensive biology of cognition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Blokland G, McMahon K, Hoffman J, Zhu G, Meredith M, Martin N et al. Quantifying the heritability of task-related brain activation and performance during the N-back working memory task: a twin fMRI study. Biol Psychol 2008; 79: 70–79.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ando J, Ono Y, Wright MJ . Genetic structure of spatial and verbal working memory. Behav Genet 2001; 31: 615–624.

    Article  CAS  PubMed  Google Scholar 

  3. Hariri A, Drabant E, Weinberger D . Imaging genetics: perspectives from studies of genetically driven variation in serotonin function and corticolimbic affective processing. Biol Psychiatry 2006; 59: 888–897.

    Article  CAS  PubMed  Google Scholar 

  4. Donohoe G, Morris D, Clarke S, McGhee K, Schwaiger S, Nangle J et al. Variance in neurocognitive performance is associated with dysbindin-1 in schizophrenia: a preliminary study. Neuropsychologia 2007; 45: 454–458.

    Article  PubMed  Google Scholar 

  5. Donohoe G, Morris D, De Sanctis P, Magno E, Montesi J, Garavan H et al. Early visual processing deficits in dysbindin-associated schizophrenia. Biol Psychiatry 2008; 63: 484–489.

    Article  PubMed  Google Scholar 

  6. Burdick K, Lencz T, Funke B, Finn C, Szeszko P, Kane J et al. Genetic variation in DTNBP1 influences general cognitive ability. Hum Mol Genet 2006; 15: 1563–1568.

    Article  CAS  PubMed  Google Scholar 

  7. Fallgatter A, Herrmann M, Hohoff C, Ehlis A, Jarczok T, Freitag C et al. DTNBP1 (dysbindin) gene variants modulate prefrontal brain function in healthy individuals. Neuropsychopharmacology 2006; 31: 2002–2010.

    Article  CAS  PubMed  Google Scholar 

  8. Bray N, Preece A, Williams N, Moskvina V, Buckland P, Owen M et al. Haplotypes at the dystrobrevin binding protein 1 (DTNBP1) gene locus mediate risk for schizophrenia through reduced DTNBP1 expression. Hum Mol Genet 2005; 14: 1947–1954.

    Article  CAS  PubMed  Google Scholar 

  9. Weickert C, Straub R, McClintock B, Matsumoto M, Hashimoto R, Hyde T et al. Human dysbindin (DTNBP1) gene expression in normal brain and in schizophrenic prefrontal cortex and midbrain. Arch Gen Psychiatry 2004; 61: 544–555.

    Article  CAS  PubMed  Google Scholar 

  10. Bray N, Buckland P, Owen M, O'Donovan M . Cis-acting variation in the expression of a high proportion of genes in human brain. Hum Genet 2003; 113: 149–153.

    PubMed  Google Scholar 

  11. Mattick J, Makunin I . Non-coding RNA. Hum Mol Genet 2006; 15 (Spec No 1): R17–R29.

    Article  CAS  PubMed  Google Scholar 

  12. Luciano M, Miyajima F, Lind PA, Bates TC, Horan M, Harris SE et al. Variation in the dysbindin gene and normal cognitive function in three independent population samples. Genes Brain Behav 2009; 8: 218–227.

    Article  CAS  PubMed  Google Scholar 

  13. Talbot K, Eidem W, Tinsley C, Benson M, Thompson E, Smith R et al. Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J Clin Invest 2004; 113: 1353–1363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weickert C, Rothmond D, Hyde T, Kleinman J, Straub R . Reduced DTNBP1 (dysbindin-1) mRNA in the hippocampal formation of schizophrenia patients. Schizophr Res 2008; 98: 105–110.

    Article  PubMed  Google Scholar 

  15. Dégenètais E, Thierry A, Glowinski J, Gioanni Y . Synaptic influence of hippocampus on pyramidal cells of the rat prefrontal cortex: an in vivo intracellular recording study. Cereb Cortex 2003; 13: 782–792.

    Article  PubMed  Google Scholar 

  16. Wall P, Messier C . The hippocampal formation—orbitomedial prefrontal cortex circuit in the attentional control of active memory. Behav Brain Res 2001; 127: 99–117.

    Article  CAS  PubMed  Google Scholar 

  17. Guo AY, Sun J, Riley BP, Thiselton DL, Kendler KS, Zhao Z . The dystrobrevin-binding protein 1 gene: features and networks. Mol Psychiatry 2009; 14: 18–29.

    Article  CAS  PubMed  Google Scholar 

  18. Talbot K, Cho D, Ong W, Benson M, Han L, Kazi H et al. Dysbindin-1 is a synaptic and microtubular protein that binds brain snapin. Hum Mol Genet 2006; 15: 3041–3054.

    Article  CAS  PubMed  Google Scholar 

  19. Allen NC, Bagade S, McQueen MB, Ioannidis JP, Kavvoura FK, Khoury MJ et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 2008; 40: 827–834.

    Article  CAS  PubMed  Google Scholar 

  20. Ghiani CA, Starcevic M, Rodriguez-Fernandez IA, Nazarian R, Cheli VT, Chan LN et al. The dysbindin-containing complex (BLOC-1) in brain: developmental regulation, interaction with SNARE proteins and role in neurite outgrowth. Mol Psychiatry 2009; advance online publication, 23 June 2009; doi: 10.1038/mp.2009.58.

  21. Numakawa T, Yagasaki Y, Ishimoto T, Okada T, Suzuki T, Iwata N et al. Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. Hum Mol Genet 2004; 13: 2699–2708.

    Article  CAS  PubMed  Google Scholar 

  22. Thiselton DL, Vladimirov VI, Kuo PH, McClay J, Wormley B, Fanous A et al. AKT1 is associated with schizophrenia across multiple symptom dimensions in the Irish study of high density schizophrenia families. Biol Psychiatry 2008; 63: 449–457.

    Article  CAS  PubMed  Google Scholar 

  23. Tan HY, Nicodemus KK, Chen Q, Li Z, Brooke JK, Honea R et al. Genetic variation in AKT1 is linked to dopamine-associated prefrontal cortical structure and function in humans. J Clin Invest 2008; 118: 2200–2208.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Li W, Zhang Q, Oiso N, Novak EK, Gautam R, O'Brien EP et al. Hermansky-Pudlak syndrome type 7 (HPS-7) results from mutant dysbindin, a member of the biogenesis of lysosome-related organelles complex 1 (BLOC-1). Nat Genet 2003; 35: 84–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen XW, Feng YQ, Hao CJ, Guo XL, He X, Zhou ZY et al. DTNBP1, a schizophrenia susceptibility gene, affects kinetics of transmitter release. J Cell Biol 2008; 181: 791–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jentsch JD, Trantham-Davidson H, Jairl C, Tinsley M, Cannon TD, Lavin A . Dysbindin modulates prefrontal cortical glutamatergic circuits and working memory function in mice. Neuropsychopharmacology 2009; 34: 2601–2608.

    Article  CAS  PubMed  Google Scholar 

  27. Kubota K, Kumamoto N, Matsuzaki S, Hashimoto R, Hattori T, Okuda H et al. Dysbindin engages in c-Jun N-terminal kinase activity and cytoskeletal organization. Biochem Biophys Res Commun 2008; 379: 191–195.

    Article  PubMed  Google Scholar 

  28. Murotani T, Ishizuka T, Hattori S, Hashimoto R, Matsuzaki S, Yamatodani A . High dopamine turnover in the brains of Sandy mice. Neurosci Lett 2007; 421: 47–51.

    Article  CAS  PubMed  Google Scholar 

  29. Dolan RJ . Emotion, cognition, and behavior. Science 2002; 298: 1191–1194.

    Article  CAS  PubMed  Google Scholar 

  30. Gur R, Nimgaonkar V, Almasy L, Calkins M, Ragland J, Pogue-Geile M et al. Neurocognitive endophenotypes in a multiplex multigenerational family study of schizophrenia. Am J Psychiatry 2007; 164: 813–819.

    Article  PubMed  Google Scholar 

  31. Langeslag SJ, Morgan HM, Jackson MC, Linden DE, Van Strien JW . Electrophysiological correlates of improved short-term memory for emotional faces. Neuropsychologia 2009; 47: 887–896.

    Article  PubMed  Google Scholar 

  32. Jackson MC, Wolf C, Johnston SJ, Raymond JE, Linden DE . Neural correlates of enhanced visual short-term memory for angry faces: an FMRI study. PLoS ONE 2008; 3: e3536.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jackson MC, Wu CY, Linden DE, Raymond JE . Enhanced visual short-term memory for angry faces. J Exp Psychol Hum Percept Perform 2009; 35: 363–374.

    Article  PubMed  Google Scholar 

  34. Kumamoto N, Matsuzaki S, Inoue K, Hattori T, Shimizu S, Hashimoto R et al. Hyperactivation of midbrain dopaminergic system in schizophrenia could be attributed to the down-regulation of dysbindin. Biochem Biophys Res Commun 2006; 345: 904–909.

    Article  CAS  PubMed  Google Scholar 

  35. Iizuka Y, Sei Y, Weinberger D, Straub R . Evidence that the BLOC-1 protein dysbindin modulates dopamine D2 receptor internalization and signaling but not D1 internalization. J Neurosci 2007; 27: 12390–12395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC . Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn Reson Med 1995; 33: 636–647.

    Article  CAS  PubMed  Google Scholar 

  37. Goebel R, Esposito F, Formisano E . Analysis of functional image analysis contest (FIAC) data with brainvoyager QX: from single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Hum Brain Mapp 2006; 27: 392–401.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Peelen MV, Downing PE . Within-subject reproducibility of category-specific visual activation with functional MRI. Hum Brain Mapp 2005; 25: 402–408.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Williams M, McGlone F, Abbott D, Mattingley J . Stimulus-driven and strategic neural responses to fearful and happy facial expressions in humans. Eur J Neurosci 2008; 27: 3074–3082.

    Article  PubMed  Google Scholar 

  40. Sambataro F, Dimalta S, Di Giorgio A, Taurisano P, Blasi G, Scarabino T et al. Preferential responses in amygdala and insula during presentation of facial contempt and disgust. Eur J Neurosci 2006; 24: 2355–2362.

    Article  PubMed  Google Scholar 

  41. Rissman J, Gazzaley A, D′Esposito M . Dynamic adjustments in prefrontal, hippocampal, and inferior temporal interactions with increasing visual working memory load. Cereb Cortex 2008; 18: 1618–1629.

    Article  PubMed  Google Scholar 

  42. LoPresti M, Schon K, Tricarico M, Swisher J, Celone K, Stern C . Working memory for social cues recruits orbitofrontal cortex and amygdala: a functional magnetic resonance imaging study of delayed matching to sample for emotional expressions. J Neurosci 2008; 28: 3718–3728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rolls E . The representation of information about faces in the temporal and frontal lobes. Neuropsychologia 2007; 45: 124–143.

    Article  PubMed  Google Scholar 

  44. Blasi G, Mattay V, Bertolino A, Elvevåg B, Callicott J, Das S et al. Effect of catechol-O-methyltransferase val158met genotype on attentional control. J Neurosci 2005; 25: 5038–5045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Canli T, Omura K, Haas B, Fallgatter A, Constable R, Lesch K . Beyond affect: a role for genetic variation of the serotonin transporter in neural activation during a cognitive attention task. Proc Natl Acad Sci USA 2005; 102: 12224–12229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schott B, Seidenbecher C, Fenker D, Lauer C, Bunzeck N, Bernstein H et al. The dopaminergic midbrain participates in human episodic memory formation: evidence from genetic imaging. J Neurosci 2006; 26: 1407–1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Williams N, Preece A, Morris D, Spurlock G, Bray N, Stephens M et al. Identification in 2 independent samples of a novel schizophrenia risk haplotype of the dystrobrevin binding protein gene (DTNBP1). Arch Gen Psychiatry 2004; 61: 336–344.

    Article  CAS  PubMed  Google Scholar 

  48. Sachs G, Steger-Wuchse D, Kryspin-Exner I, Gur R, Katschnig H . Facial recognition deficits and cognition in schizophrenia. Schizophr Res 2004; 68: 27–35.

    Article  PubMed  Google Scholar 

  49. Tsoi D, Lee K, Khokhar W, Mir N, Swalli J, Gee K et al. Is facial emotion recognition impairment in schizophrenia identical for different emotions? A signal detection analysis. Schizophr Res 2008; 99: 263–269.

    Article  PubMed  Google Scholar 

  50. Roberts A, Tomic D, Parkinson C, Roeling T, Cutter D, Robbins T et al. Forebrain connectivity of the prefrontal cortex in the marmoset monkey (Callithrix jacchus): an anterograde and retrograde tract-tracing study. J Comp Neurol 2007; 502: 86–112.

    Article  PubMed  Google Scholar 

  51. Kalkman H . The role of the phosphatidylinositide 3-kinase-protein kinase B pathway in schizophrenia. Pharmacol Ther 2006; 110: 117–134.

    Article  CAS  PubMed  Google Scholar 

  52. Egan M, Kojima M, Callicott J, Goldberg T, Kolachana B, Bertolino A et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 2003; 112: 257–269.

    CAS  PubMed  Google Scholar 

  53. Canli T, Lesch K . Long story short: the serotonin transporter in emotion regulation and social cognition. Nat Neurosci 2007; 10: 1103–1109.

    Article  CAS  PubMed  Google Scholar 

  54. Butcher L, Davis O, Craig I, Plomin R . Genome-wide quantitative trait locus association scan of general cognitive ability using pooled DNA and 500K single nucleotide polymorphism microarrays. Genes Brain Behav 2008; 7: 435–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tsankova N, Renthal W, Kumar A, Nestler E . Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 2007; 8: 355–367.

    Article  CAS  PubMed  Google Scholar 

  56. Fish E, Shahrokh D, Bagot R, Caldji C, Bredy T, Szyf M et al. Epigenetic programming of stress responses through variations in maternal care. Ann NY Acad Sci 2004; 1036: 167–180.

    Article  PubMed  Google Scholar 

  57. Klein M, Lioy D, Ma L, Impey S, Mandel G, Goodman R . Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat Neurosci 2007; 10: 1513–1514.

    Article  CAS  PubMed  Google Scholar 

  58. Schratt G, Tuebing F, Nigh E, Kane C, Sabatini M, Kiebler M et al. A brain-specific microRNA regulates dendritic spine development. Nature 2006; 439: 283–289.

    Article  CAS  PubMed  Google Scholar 

  59. Wayman G, Davare M, Ando H, Fortin D, Varlamova O, Cheng H et al. An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci USA 2008; 105: 9093–9098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Wellcome Trust, Grant no. 077185/05Z, the Wales Institute of Cognitive Neuroscience (WICN) and the North West Wales NHS Trust. We thank Tony Bedson and the radiography team at Ysbyty Gwynedd, Bangor for the acquisition of the imaging data, Tony Bedson and Stefanie Linden for taking of blood samples, Robert Walters, head of laboratory services at Ysbyty Gwynedd, for help with the blood sample logistics, Chris Whitaker for expert advice on statistics, John Parkinson for helpful comments on the paper and all our participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D E J Linden.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, C., Jackson, M., Kissling, C. et al. Dysbindin-1 genotype effects on emotional working memory. Mol Psychiatry 16, 145–155 (2011). https://doi.org/10.1038/mp.2009.129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2009.129

Keywords

This article is cited by

Search

Quick links