Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ontogeny of sensorimotor gating and immune impairment induced by prenatal immune challenge in rats: implications for the etiopathology of schizophrenia

Abstract

It has been hypothesized that the maternal immune response to infection may influence fetal brain development and lead to schizophrenia. Animal experimentation has supported this notion by demonstrating altered sensorimotor gating (prepulse inhibition, PPI) in adult rats prenatally exposed to an immune challenge. In the present study, pregnant rats were exposed to the bacterial endotoxin lipopolysaccharide (LPS) throughout gestation and the offspring were examined by evaluating the PPI, dopaminergic function, brain protein expression and cytokine serum levels from weaning to late adulthood. Prenatal LPS exposure induced a deficit in PPI that emerged at ‘puberty’ and that persisted throughout adult life. This prenatal insult caused age-specific changes in accumbal dopamine levels and in synaptophysin expression in the frontal cortex. Moreover, serum cytokine levels were altered in an age- and cytokine-dependent manner. Here we show that prenatal LPS administration throughout pregnancy causes maturation-dependent PPI deficits and age-dependent alterations in dopamine activity, as well as in synaptophysin expression and cytokine levels.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Lewis DA, Levitt P . Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 2002; 25: 409–432.

    Article  CAS  Google Scholar 

  2. Swerdlow NR, Talledo J, Sutherland AN, Nagy D, Shoemaker JM . Antipsychotic effects on prepulse inhibition in normal ‘low gating’ humans and rats. Neuropsychopharmacology 2006; 31: 2011–2021.

    Article  CAS  Google Scholar 

  3. Rapoport JL, Addington AM, Frangou S, Psych MR . The neurodevelopmental model of schizophrenia: update 2005. Mol Psychiatry 2005; 10: 434–449.

    Article  CAS  Google Scholar 

  4. Brown AS, Susser ES . In utero infection and adult schizophrenia. Ment Retard Dev Disabil Res Rev 2002; 8: 51–57.

    Article  Google Scholar 

  5. Brown AS, Hooton J, Schaefer CA, Zhang H, Petkova E, Babulas V et al. Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. Am J Psychiatry 2004; 161: 889–895.

    Article  Google Scholar 

  6. Pearce BD . Schizophrenia and viral infection during neurodevelopment: a focus on mechanisms. Mol Psychiatry 2001; 6: 634–646.

    Article  CAS  Google Scholar 

  7. Buka SL, Tsuang MT, Torrey EF, Klebanoff MA, Bernstein D, Yolken RH . Maternal infections and subsequent psychosis among offspring. Arch Gen Psychiatry 2001; 58: 1032–1037.

    Article  CAS  Google Scholar 

  8. Gilmore JH, Jarskog LF . Exposure to infection and brain development: cytokines in the pathogenesis of schizophrenia. Schizophr Res 1997; 24: 365–367.

    Article  CAS  Google Scholar 

  9. Curfs JH, Meis JF, Hoogkamp-Korstanje JA . A primer on cytokines: sources, receptors, effects, and inducers. Clin Microbiol Rev 1997; 10: 742–780.

    Article  CAS  Google Scholar 

  10. Yang L, Lindholm K, Konishi Y, Li R, Shen Y . Target depletion of distinct tumor necrosis factor receptor subtypes reveals hippocampal neuron death and survival through different signal transduction pathways. J Neurosci 2002; 22: 3025–3032.

    Article  CAS  Google Scholar 

  11. Jarskog LF, Xiao H, Wilkie MB, Lauder JM, Gilmore JH . Cytokine regulation of embryonic rat dopamine and serotonin neuronal survival in vitro. Int J Dev Neurosci 1997; 15: 711–716.

    Article  CAS  Google Scholar 

  12. Gilmore JH, Fredrik JL, Vadlamudi S, Lauder JM . Prenatal infection and risk for schizophrenia: IL-1beta, IL-6, and TNFalpha inhibit cortical neuron dendrite development. Neuropsychopharmacology 2004; 29: 1221–1229.

    Article  CAS  Google Scholar 

  13. Golan H, Levav T, Huleihel M . Distinct expression and distribution of vesicular proteins in the hippocampus of TNFa-deficient mice during development. Synapse 2004; 53: 6–10.

    Article  CAS  Google Scholar 

  14. Romero E, Ali C, Molina-Holgado E, Castellano B, Guaza C, Borrell J . Neurobehavioral and immunological consequences of prenatal immune activation in rats. Influence of antipsychotics. Neuropsychopharmacology 2007; 32: 1791–1804.

    Article  CAS  Google Scholar 

  15. Watanabe Y, Hashimoto S, Kakita A, Takahashi H, Ko J, Mizuno M et al. Neonatal impact of leukemia inhibitory factor on neurobehavioral development in rats. Neurosci Res 2004; 48: 345–353.

    Article  CAS  Google Scholar 

  16. Tohmi M, Tsuda N, Watanabe Y, Kakita A, Nawa H . Perinatal inflammatory cytokine challenge results in distinct neurobehavioral alterations in rats: implication in psychiatric disorders of developmental origin. Neurosci Res 2004; 50: 67–75.

    Article  CAS  Google Scholar 

  17. Meyer U, Feldon J, Schedlowski M, Yee BK . Towards an immuno-precipitated neurodevelopmental animal model of schizophrenia. Neurosci Biobehav Rev 2005; 29: 913–947.

    Article  CAS  Google Scholar 

  18. Shi L, Fatemi SH, Sidwell RW, Patterson PH . Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci 2003; 23: 297–302.

    Article  Google Scholar 

  19. Zuckerman L, Rehavi M, Nachman R, Weiner I . Immune activation during pregnancy in rats leads to a postpubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: a novel neurodevelopmental model of schizophrenia. Neuropsychopharmacology 2003; 28: 1778–1789.

    Article  CAS  Google Scholar 

  20. Borrell J, Vela JM, Arevalo-Martin A, Molina-Holgado E, Guaza C . Prenatal immune challenge disrupts sensorimotor gating in adult rats. Implications for the etiopathogenesis of schizophrenia. Neuropsychopharmacology 2002; 26: 204–215.

    CAS  Google Scholar 

  21. Fortier ME, Joober R, Luheshi GN, Boksa P . Maternal exposure to bacterial endotoxin during pregnancy enhances amphetamine-induced locomotion and startle responses in adult rat offspring. J Psychiatr Res 2004; 38: 335–345.

    Article  Google Scholar 

  22. Fagoaga OR, Nehlsen-Cannarella SL . Maternal modulation of neonatal immune system development. Dev Immunol 2002; 9: 9–17.

    Article  CAS  Google Scholar 

  23. Yamashita T, Freigang S, Eberle C, Pattison J, Gupta S, Napoli C et al. Maternal immunization programs postnatal immune responses and reduces atherosclerosis in offspring. Circ Res 2006; 99: e51–e64.

    Article  CAS  Google Scholar 

  24. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC . CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 1990; 249: 1431–1433.

    Article  CAS  Google Scholar 

  25. Quan N, Stern EL, Whiteside MB, Herkenham M . Induction of pro-inflammatory cytokine mRNAs in the brain after peripheral injection of subseptic doses of lipopolysaccharide in the rat. J Neuroimmunol 1999; 93: 72–80.

    Article  CAS  Google Scholar 

  26. Campeau S, Davis M . Prepulse inhibition of the acoustic startle reflex using visual and auditory prepulses: disruption by apomorphine. Psychopharmacology (Berl) 1995; 117: 267–274.

    Article  CAS  Google Scholar 

  27. Alder J, Kanki H, Valtorta F, Greengard P, Poo MM . Overexpression of synaptophysin enhances neurotransmitter secretion at Xenopus neuromuscular synapses. J Neurosci 1995; 15 (1 Part 2): 511–519.

    Article  CAS  Google Scholar 

  28. Benowitz LI, Routtenberg A . GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci 1997; 20: 84–91.

    Article  CAS  Google Scholar 

  29. Grimes CA, Jope RS . The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol 2001; 65: 391–426.

    Article  CAS  Google Scholar 

  30. Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L . Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 1978; 15: 339–343.

    Article  CAS  Google Scholar 

  31. Ornitz EM, Guthrie D, Sadeghpour M, Sugiyama T . Maturation of prestimulation-induced startle modulation in girls. Psychophysiology 1991; 28: 11–20.

    Article  CAS  Google Scholar 

  32. Ornitz EM, Guthrie D, Kaplan AR, Lane SJ, Norman RJ . Maturation of startle modulation. Psychophysiology 1986; 23: 624–634.

    Article  CAS  Google Scholar 

  33. Spear LP . The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 2000; 24: 417–463.

    Article  CAS  Google Scholar 

  34. Ozawa K, Hashimoto K, Kishimoto T, Shimizu E, Ishikura H, Iyo M . Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia. Biol Psychiatry 2006; 59: 546–554.

    Article  CAS  Google Scholar 

  35. Ashdown H, Dumont Y, Ng M, Poole S, Boksa P, Luheshi GN . The role of cytokines in mediating effects of prenatal infection on the fetus: implications for schizophrenia. Mol Psychiatry 2006; 11: 47–55.

    Article  CAS  Google Scholar 

  36. Gilmore JH, Jarskog LF, Vadlamudi S . Maternal poly I:C exposure during pregnancy regulates TNF alpha, BDNF, and NGF expression in neonatal brain and the maternal-fetal unit of the rat. J Neuroimmunol 2005; 159: 106–112.

    Article  CAS  Google Scholar 

  37. Smith SE, Li J, Garbett K, Mirnics K, Patterson PH . Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci 2007; 27: 10695–10702.

    Article  CAS  Google Scholar 

  38. Kumari V, Aasen I, Sharma T . Sex differences in prepulse inhibition deficits in chronic schizophrenia. Schizophr Res 2004; 69: 219–235.

    Article  Google Scholar 

  39. Humby T, Wilkinson LS, Robbins TW, Geyer MA . Prepulses inhibit startle-induced reductions of extracellular dopamine in the nucleus accumbens of rat. J Neurosci 1996; 16: 2149–2156.

    Article  CAS  Google Scholar 

  40. Swerdlow NR, Braff DL, Geyer MA, Koob GF . Central dopamine hyperactivity in rats mimics abnormal acoustic startle response in schizophrenics. Biol Psychiatry 1986; 21: 23–33.

    Article  CAS  Google Scholar 

  41. Gelbard HA, Teicher MH, Baldessarini RJ, Gallitano A, Marsh ER, Zorc J et al. Dopamine D1 receptor development depends on endogenous dopamine. Brain Res Dev Brain Res 1990; 56: 137–140.

    Article  CAS  Google Scholar 

  42. Seeman P . The absolute density of neurotransmitter receptors in the brain. Example for dopamine receptors. J Pharmacol Methods 1987; 17: 347–360.

    Article  CAS  Google Scholar 

  43. Teicher MH, Andersen SL, Hostetter Jr JC . Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens. Brain Res Dev Brain Res 1995; 89: 167–172.

    Article  CAS  Google Scholar 

  44. Teicher MH, Dumont NL, Andersen SL . The developing prefrontal cortex: is there a transient interneuron that stimulates catecholamine terminals? Synapse 1998; 29: 89–91.

    Article  CAS  Google Scholar 

  45. Andersen SL, Thompson AT, Rutstein M, Hostetter JC, Teicher MH . Dopamine receptor pruning in prefrontal cortex during the periadolescent period in rats. Synapse 2000; 37: 167–169.

    Article  CAS  Google Scholar 

  46. Andersen SL, Rutstein M, Benzo JM, Hostetter JC, Teicher MH . Sex differences in dopamine receptor overproduction and elimination. Neuroreport 1997; 8: 1495–1498.

    Article  CAS  Google Scholar 

  47. Feinberg I . Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Psychiatr Res 1982; 17: 319–334.

    Article  Google Scholar 

  48. Mirnics K, Middleton FA, Lewis DA, Levitt P . Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci 2001; 24: 479–486.

    Article  CAS  Google Scholar 

  49. Wiedenmann B, Franke WW . Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38 000 characteristic of presynaptic vesicles. Cell 1985; 41: 1017–1028.

    Article  CAS  Google Scholar 

  50. Karson CN, Mrak RE, Schluterman KO, Sturner WQ, Sheng JG, Griffin WS . Alterations in synaptic proteins and their encoding mRNAs in prefrontal cortex in schizophrenia: a possible neurochemical basis for ‘hypofrontality’. Mol Psychiatry 1999; 4: 39–45.

    Article  CAS  Google Scholar 

  51. Eastwood SL . The synaptic pathology of schizophrenia: is aberrant neurodevelopment and plasticity to blame? Int Rev Neurobiol 2004; 59: 47–72.

    Article  CAS  Google Scholar 

  52. Mirnics K, Levitt P, Lewis DA . Critical appraisal of DNA microarrays in psychiatric genomics. Biol Psychiatry 2006; 60: 163–176.

    Article  CAS  Google Scholar 

  53. Rapoport JL, Giedd J, Kumra S, Jacobsen L, Smith A, Lee P et al. Childhood-onset schizophrenia. Progressive ventricular change during adolescence. Arch Gen Psychiatry 1997; 54: 897–903.

    Article  CAS  Google Scholar 

  54. DeLisi LE, Sakuma M, Ge S, Kushner M . Association of brain structural change with the heterogeneous course of schizophrenia from early childhood through five years subsequent to a first hospitalization. Psychiatry Res 1998; 84: 75–88.

    Article  CAS  Google Scholar 

  55. Giedd JN, Jeffries NO, Blumenthal J, Castellanos FX, Vaituzis AC, Fernandez T et al. Childhood-onset schizophrenia: progressive brain changes during adolescence. Biol Psychiatry 1999; 46: 892–898.

    Article  CAS  Google Scholar 

  56. Mathalon DH, Sullivan EV, Lim KO, Pfefferbaum A . Progressive brain volume changes and the clinical course of schizophrenia in men: a longitudinal magnetic resonance imaging study. Arch Gen Psychiatry 2001; 58: 148–157.

    Article  CAS  Google Scholar 

  57. Sowell ER, Thompson PM, Holmes CJ, Jernigan TL, Toga AW . In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nat Neurosci 1999; 2: 859–861.

    Article  CAS  Google Scholar 

  58. Thompson PM, Vidal C, Giedd JN, Gochman P, Blumenthal J, Nicolson R et al. Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc Natl Acad Sci USA 2001; 98: 11650–11655.

    Article  CAS  Google Scholar 

  59. Tcherepanov AA, Sokolov BP . Age-related abnormalities in expression of mRNAs encoding synapsin 1A, synapsin 1B, and synaptophysin in the temporal cortex of schizophrenics. J Neurosci Res 1997; 49: 639–644.

    Article  CAS  Google Scholar 

  60. Eastwood SL, Cairns NJ, Harrison PJ . Synaptophysin gene expression in schizophrenia. Investigation of synaptic pathology in the cerebral cortex. Br J Psychiatry 2000; 176: 236–242.

    Article  CAS  Google Scholar 

  61. Kozlovsky N, Belmaker RH, Agam G . Low GSK-3beta immunoreactivity in postmortem frontal cortex of schizophrenic patients. Am J Psychiatry 2000; 157: 831–833.

    Article  CAS  Google Scholar 

  62. Kozlovsky N, Belmaker RH, Agam G . Low GSK-3 activity in frontal cortex of schizophrenic patients. Schizophr Res 2001; 52: 101–105.

    Article  CAS  Google Scholar 

  63. Kozlovsky N, Nadri C, Agam G . Low GSK-3beta in schizophrenia as a consequence of neurodevelopmental insult. Eur Neuropsychopharmacol 2005; 15: 1–11.

    Article  CAS  Google Scholar 

  64. Kozlovsky N, Shanon-Weickert C, Tomaskovic-Crook E, Kleinman JE, Belmaker RH, Agam G . Reduced GSK-3beta mRNA levels in postmortem dorsolateral prefrontal cortex of schizophrenic patients. J Neural Transm 2004; 111: 1583–1592.

    Article  CAS  Google Scholar 

  65. Nadri C, Dean B, Scarr E, Agam G . GSK-3 parameters in postmortem frontal cortex and hippocampus of schizophrenic patients. Schizophr Res 2004; 71: 377–382.

    Article  Google Scholar 

  66. Beasley C, Cotter D, Khan N, Pollard C, Sheppard P, Varndell I et al. Glycogen synthase kinase-3beta immunoreactivity is reduced in the prefrontal cortex in schizophrenia. Neurosci Lett 2001; 302: 117–120.

    Article  CAS  Google Scholar 

  67. Beasley C, Cotter D, Everall I . An investigation of the Wnt-signalling pathway in the prefrontal cortex in schizophrenia, bipolar disorder and major depressive disorder. Schizophr Res 2002; 58: 63–67.

    Article  Google Scholar 

  68. Monteleone P, Fabrazzo M, Tortorella A, Maj M . Plasma levels of interleukin-6 and tumor necrosis factor alpha in chronic schizophrenia: effects of clozapine treatment. Psychiatry Res 1997; 71: 11–17.

    Article  CAS  Google Scholar 

  69. Gaughran F . Immunity and schizophrenia: autoimmunity, cytokines, and immune responses. Int Rev Neurobiol 2002; 52: 275–302.

    Article  CAS  Google Scholar 

  70. Pae CU, Yoon CH, Kim TS, Kim JJ, Park SH, Lee CU et al. Antipsychotic treatment may alter T-helper (TH) 2 arm cytokines. Int Immunopharmacol 2006; 6: 666–671.

    Article  CAS  Google Scholar 

  71. Lin A, Kenis G, Bignotti S, Tura GJ, De Jong R, Bosmans E et al. The inflammatory response system in treatment-resistant schizophrenia: increased serum interleukin-6. Schizophr Res 1998; 32: 9–15.

    Article  CAS  Google Scholar 

  72. Maes M, Bosmans E, Calabrese J, Smith R, Meltzer HY . Interleukin-2 and interleukin-6 in schizophrenia and mania: effects of neuroleptics and mood stabilizers. J Psychiatr Res 1995; 29: 141–152.

    Article  CAS  Google Scholar 

  73. Ganguli R, Yang Z, Shurin G, Chengappa KN, Brar JS, Gubbi AV et al. Serum interleukin-6 concentration in schizophrenia: elevation associated with duration of illness. Psychiatry Res 1994; 51: 1–10.

    Article  CAS  Google Scholar 

  74. Muller N, Riedel M, Ackenheil M, Schwarz MJ . The role of immune function in schizophrenia: an overview. Eur Arch Psychiatry Clin Neurosci 1999; 249 (Suppl 4): 62–68.

    Article  Google Scholar 

  75. Banks WA, Kastin AJ, Gutierrez EG . Penetration of interleukin-6 across the murine blood-brain barrier. Neurosci Lett 1994; 179: 53–56.

    Article  CAS  Google Scholar 

  76. Gutierrez EG, Banks WA, Kastin AJ . Murine tumor necrosis factor alpha is transported from blood to brain in the mouse. J Neuroimmunol 1993; 47: 169–176.

    Article  CAS  Google Scholar 

  77. Waguespack PJ, Banks WA, Kastin AJ . Interleukin-2 does not cross the blood-brain barrier by a saturable transport system. Brain Res Bull 1994; 34: 103–109.

    Article  CAS  Google Scholar 

  78. Brebner K, Hayley S, Zacharko R, Merali Z, Anisman H . Synergistic effects of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha: central monoamine, corticosterone, and behavioral variations. Neuropsychopharmacology 2000; 22: 566–580.

    Article  CAS  Google Scholar 

  79. Brett FM, Mizisin AP, Powell HC, Campbell IL . Evolution of neuropathologic abnormalities associated with blood-brain barrier breakdown in transgenic mice expressing interleukin-6 in astrocytes. J Neuropathol Exp Neurol 1995; 54: 766–775.

    Article  CAS  Google Scholar 

  80. Swerdlow NR, Geyer MA . Using an animal model of deficient sensorimotor gating to study the pathophysiology and new treatments of schizophrenia. Schizophr Bull 1998; 24: 285–301.

    Article  CAS  Google Scholar 

  81. Meyer U, Murray PJ, Urwyler A, Yee BK, Schedlowski M, Feldon J . Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated anti-inflammatory signaling. Mol Psychiatry 2007; 13: 208–221.

    Article  Google Scholar 

  82. Saetre P, Emilsson L, Axelsson E, Kreuger J, Lindholm E, Jazin E . Inflammation-related genes up-regulated in schizophrenia brains. BMC Psychiatry 2007; 7: 46.

    Article  Google Scholar 

  83. Petitto JM, Huang Z, Hartemink DA, Beck Jr R . IL-2/15 receptor-beta gene deletion alters neurobehavioral performance. Brain Res 2002; 929: 218–225.

    Article  CAS  Google Scholar 

  84. Skurkovich SV, Aleksandrovsky YA, Chekhonin VP, Ryabukhin IA, Chakhava KO, Skurkovich B . Improvement in negative symptoms of schizophrenia with antibodies to tumor necrosis factor-alpha and to interferon-gamma: a case report. J Clin Psychiatry 2003; 64: 734–735.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Rufino Fernández for his excellent technical assistance during the course of this research and María González for generating the HPLC data. This work was supported by the Fondo de Investigación Sanitaria (FIS, grant number 01/1138), Fundació La Marató de TV3 (grant number 014931) and the Comunidad de Madrid (grant number 08.5/0020/2001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Borrell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romero, E., Guaza, C., Castellano, B. et al. Ontogeny of sensorimotor gating and immune impairment induced by prenatal immune challenge in rats: implications for the etiopathology of schizophrenia. Mol Psychiatry 15, 372–383 (2010). https://doi.org/10.1038/mp.2008.44

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2008.44

Keywords

This article is cited by

Search

Quick links