Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The genetics of bipolar disorder: genome ‘hot regions,’ genes, new potential candidates and future directions

Abstract

Bipolar disorder (BP) is a complex disorder caused by a number of liability genes interacting with the environment. In recent years, a large number of linkage and association studies have been conducted producing an extremely large number of findings often not replicated or partially replicated. Further, results from linkage and association studies are not always easily comparable. Unfortunately, at present a comprehensive coverage of available evidence is still lacking. In the present paper, we summarized results obtained from both linkage and association studies in BP. Further, we indicated new potential interesting genes, located in genome ‘hot regions’ for BP and being expressed in the brain. We reviewed published studies on the subject till December 2007. We precisely localized regions where positive linkage has been found, by the NCBI Map viewer (http://www.ncbi.nlm.nih.gov/mapview/); further, we identified genes located in interesting areas and expressed in the brain, by the Entrez gene, Unigene databases (http://www.ncbi.nlm.nih.gov/entrez/) and Human Protein Reference Database (http://www.hprd.org); these genes could be of interest in future investigations. The review of association studies gave interesting results, as a number of genes seem to be definitively involved in BP, such as SLC6A4, TPH2, DRD4, SLC6A3, DAOA, DTNBP1, NRG1, DISC1 and BDNF. A number of promising genes, which received independent confirmations, and genes that have to be further investigated in BP, have been also systematically listed. In conclusion, the combination of linkage and association approaches provided a number of liability genes. Nevertheless, other approaches are required to disentangle conflicting findings, such as gene interaction analyses, interaction with psychosocial and environmental factors and, finally, endophenotype investigations.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1

References

  1. McGuffin P, Rijsdijk F, Andrew M, Sham P, Katz R, Cardno A . The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch Gen Psychiatry 2003; 60: 497–502.

    Article  PubMed  Google Scholar 

  2. Huntley GW, Benson DL, Jones EG, Isackson PJ . Developmental expression of brain derived neurotrophic factor mRNA by neurons of fetal and adult monkey prefrontal cortex. Brain Res Dev Brain Res 1992; 70: 53–63.

    Article  CAS  PubMed  Google Scholar 

  3. Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW . Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci USA 1996; 93: 3908–3913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 2002; 99: 13675–13680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kelsoe JR, Spence MA, Loetscher E, Foguet M, Sadovnick AD, Remick RA et al. A genome survey indicates a possible susceptibility locus for bipolar disorder on chromosome 22. Proc Natl Acad Sci USA 2001; 98: 585–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Curtis D, Kalsi G, Brynjolfsson J, McInnis M, O'Neill J, Smyth C et al. Genome scan of pedigrees multiply affected with bipolar disorder provides further support for the presence of a susceptibility locus on chromosome 12q23–q24, and suggests the presence of additional loci on 1p and 1q. Psychiatr Genet 2003; 13: 77–84.

    PubMed  Google Scholar 

  7. Cichon S, Schumacher J, Muller DJ, Hurter M, Windemuth C, Strauch K et al. A genome screen for genes predisposing to bipolar affective disorder detects a new susceptibility locus on 8q. Hum Mol Genet 2001; 10: 2933–2944.

    Article  CAS  PubMed  Google Scholar 

  8. Wellcome Trust CCC . Genome-wide association study of 14 000 cases of seven common diseases and 3000 shared controls. Nature 2007; 447: 661–678.

    Article  CAS  Google Scholar 

  9. Rice JP, Goate A, Williams JT, Bierut L, Dorr D, Wu W et al. Initial genome scan of the NIMH genetics initiative bipolar pedigrees: chromosomes 1, 6, 8, 10, and 12. Am J Med Genet 1997; 74: 247–253.

    Article  CAS  PubMed  Google Scholar 

  10. Ewald H, Flint T, Kruse TA, Mors O . A genome-wide scan shows significant linkage between bipolar disorder and chromosome 12q24.3 and suggestive linkage to chromosomes 1p22–21, 4p16, 6q14–22, 10q26 and 16p13.3. Mol Psychiatry 2002; 7: 734–744.

    Article  CAS  PubMed  Google Scholar 

  11. Fallin MD, Lasseter VK, Wolyniec PS, McGrath JA, Nestadt G, Valle D et al. Genomewide linkage scan for bipolar-disorder susceptibility loci among Ashkenazi Jewish families. Am J Hum Genet 2004; 75: 204–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Detera-Wadleigh SD, Badner JA, Berrettini WH, Yoshikawa T, Goldin LR, Turner G et al. A high-density genome scan detects evidence for a bipolar-disorder susceptibility locus on 13q32 and other potential loci on 1q32 and 18p11.2. Proc Natl Acad Sci USA 1999; 96: 5604–5609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ekholm JM, Kieseppa T, Hiekkalinna T, Partonen T, Paunio T, Perola M et al. Evidence of susceptibility loci on 4q32 and 16p12 for bipolar disorder. Hum Mol Genet 2003; 12: 1907–1915.

    Article  CAS  PubMed  Google Scholar 

  14. Shink E, Harvey M, Tremblay M, Gagne B, Belleau P, Raymond C et al. Analysis of microsatellite markers and single nucleotide polymorphisms in candidate genes for susceptibility to bipolar affective disorder in the chromosome 12Q24.31 region. Am J Med Genet B Neuropsychiatr Genet 2005; 135: 50–58.

    Article  Google Scholar 

  15. Macgregor S, Visscher PM, Knott SA, Thomson P, Porteous DJ, Millar JK et al. A genome scan and follow-up study identify a bipolar disorder susceptibility locus on chromosome 1q42. Mol Psychiatry 2004; 9: 1083–1090.

    Article  CAS  PubMed  Google Scholar 

  16. Hamshere ML, Bennett P, Williams N, Segurado R, Cardno A, Norton N et al. Genomewide linkage scan in schizoaffective disorder: significant evidence for linkage at 1q42 close to DISC1, and suggestive evidence at 22q11 and 19p13. Arch Gen Psychiatry 2005; 62: 1081–1088.

    Article  CAS  PubMed  Google Scholar 

  17. Zandi PP, Badner JA, Steele J, Willour VL, Miao K, MacKinnon DF et al. Genome-wide linkage scan of 98 bipolar pedigrees and analysis of clinical covariates. Mol Psychiatry 2007; 12: 630–639.

    Article  CAS  PubMed  Google Scholar 

  18. Pato CN, Pato MT, Kirby A, Petryshen TL, Medeiros H, Carvalho C et al. Genome-wide scan in Portuguese Island families implicates multiple loci in bipolar disorder: fine mapping adds support on chromosomes 6 and 11. Am J Med Genet B Neuropsychiatr Genet 2004; 127: 30–34.

    Article  Google Scholar 

  19. Stine OC, McMahon FJ, Chen L, Xu J, Meyers DA, MacKinnon DF et al. Initial genome screen for bipolar disorder in the NIMH genetics initiative pedigrees: chromosomes 2, 11, 13, 14, and X. Am J Med Genet 1997; 74: 263–269.

    Article  CAS  PubMed  Google Scholar 

  20. Etain B, Mathieu F, Rietschel M, Maier W, Albus M, McKeon P et al. Genome-wide scan for genes involved in bipolar affective disorder in 70 European families ascertained through a bipolar type I early-onset proband: supportive evidence for linkage at 3p14. Mol Psychiatry 2006; 11: 685–694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dick DM, Foroud T, Flury L, Bowman ES, Miller MJ, Rau NL et al. Genomewide linkage analyses of bipolar disorder: a new sample of 250 pedigrees from the National Institute of Mental Health Genetics initiative. Am J Hum Genet 2003; 73: 1.

    Article  Google Scholar 

  22. Cassidy F, Zhao C, Badger J, Claffey E, Dobrin S, Roche S et al. Genome-wide scan of bipolar disorder and investigation of population stratification effects on linkage: support for susceptibility loci at 4q21, 7q36, 9p21, 12q24, 14q24, and 16p13. Am J Med Genet B Neuropsychiatr Genet 2007; 144: 791–801.

    Article  CAS  Google Scholar 

  23. Bennett P, Segurado R, Jones I, Bort S, McCandless F, Lambert D et al. The Wellcome Trust UK––Irish bipolar affective disorder sibling-pair genome screen: first stage report. Mol Psychiatry 2002; 7: 189–200.

    Article  CAS  PubMed  Google Scholar 

  24. Lambert D, Middle F, Hamshere ML, Segurado R, Raybould R, Corvin A et al. Stage 2 of the Wellcome Trust UK––Irish bipolar affective disorder sibling-pair genome screen: evidence for linkage on chromosomes 6q16–q21, 4q12–q21, 9p21, 10p14–p12 and 18q22. Mol Psychiatry 2005; 10: 831–841.

    Article  CAS  PubMed  Google Scholar 

  25. Edenberg HJ, Foroud T, Conneally PM, Sorbel JJ, Carr K, Crose C et al. Initial genomic scan of the NIMH genetics initiative bipolar pedigrees: chromosomes 3, 5, 15, 16, 17, and 22. Am J Med Genet 1997; 74: 238–246.

    Article  CAS  PubMed  Google Scholar 

  26. Badenhop RF, Moses MJ, Scimone A, Mitchell PB, Ewen-White KR, Rosso A et al. A genome screen of 13 bipolar affective disorder pedigrees provides evidence for susceptibility loci on chromosome 3 as well as chromosomes 9, 13 and 19. Mol Psychiatry 2002; 7: 851–859.

    Article  CAS  PubMed  Google Scholar 

  27. Blackwood DH, He L, Morris SW, McLean A, Whitton C, Thomson M et al. A locus for bipolar affective disorder on chromosome 4p. Nat Genet 1996; 12: 427–430.

    Article  CAS  PubMed  Google Scholar 

  28. Detera-Wadleigh SD, Badner JA, Yoshikawa T, Sanders AR, Goldin LR, Turner G et al. Initial genome scan of the NIMH genetics initiative bipolar pedigrees: chromosomes 4, 7, 9, 18, 19, 20, and 21q. Am J Med Genet 1997; 74: 254–262.

    Article  CAS  PubMed  Google Scholar 

  29. Le Hellard S, Lee AJ, Underwood S, Thomson PA, Morris SW, Torrance HS et al. Haplotype analysis and a novel allele-sharing method refines a chromosome 4p locus linked to bipolar affective disorder. Biol Psychiatry 2007; 61: 797–805.

    Article  CAS  PubMed  Google Scholar 

  30. Radhakrishna U, Senol S, Herken H, Gucuyener K, Gehrig C, Blouin JL et al. An apparently dominant bipolar affective disorder (BPAD) locus on chromosome 20p11.2–q11.2 in a large Turkish pedigree. Eur J Hum Genet 2001; 9: 39–44.

    Article  CAS  PubMed  Google Scholar 

  31. Liu J, Juo SH, Dewan A, Grunn A, Tong X, Brito M et al. Evidence for a putative bipolar disorder locus on 2p13–16 and other potential loci on 4q31, 7q34, 8q13, 9q31, 10q21–24, 13q32, 14q21 and 17q11–12. Mol Psychiatry 2003; 8: 333–342.

    Article  CAS  PubMed  Google Scholar 

  32. Schumacher J, Kaneva R, Jamra RA, Diaz GO, Ohlraun S, Milanova V et al. Genomewide scan and fine-mapping linkage studies in four European samples with bipolar affective disorder suggest a new susceptibility locus on chromosome 1p35–p36 and provides further evidence of loci on chromosome 4q31 and 6q24. Am J Hum Genet 2005; 77: 1102–1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Adams LJ, Mitchell PB, Fielder SL, Rosso A, Donald JA, Schofield PR . A susceptibility locus for bipolar affective disorder on chromosome 4q35. Am J Hum Genet 1998; 62: 1084–1091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Willour VL, Zandi PP, Huo Y, Diggs TL, Chellis JL, MacKinnon DF et al. Genome scan of the fifty-six bipolar pedigrees from the NIMH genetics initiative replication sample: chromosomes 4, 7, 9, 18, 19, 20, and 21. Am J Med Genet B Neuropsychiatr Genet 2003; 121: 21–27.

    Article  Google Scholar 

  35. Badenhop RF, Moses MJ, Scimone A, Adams LJ, Kwok JB, Jones AM et al. Genetic refinement and physical mapping of a 2.3 Mb probable disease region associated with a bipolar affective disorder susceptibility locus on chromosome 4q35. Am J Med Genet B Neuropsychiatr Genet 2003; 117: 23–32.

    Article  Google Scholar 

  36. Cheng R, Juo SH, Loth JE, Nee J, Iossifov I, Blumenthal R et al. Genome-wide linkage scan in a large bipolar disorder sample from the National Institute of Mental Health genetics initiative suggests putative loci for bipolar disorder, psychosis, suicide, and panic disorder. Mol Psychiatry 2006; 11: 252–260.

    Article  CAS  PubMed  Google Scholar 

  37. Hong KS, McInnes LA, Service SK, Song T, Lucas J, Silva S et al. Genetic mapping using haplotype and model-free linkage analysis supports previous evidence for a locus predisposing to severe bipolar disorder at 5q31–33. Am J Med Genet B Neuropsychiatr Genet 2004; 125: 83–86.

    Article  Google Scholar 

  38. Garner C, McInnes LA, Service SK, Spesny M, Fournier E, Leon P et al. Linkage analysis of a complex pedigree with severe bipolar disorder, using a Markov chain Monte Carlo method. Am J Hum Genet 2001; 68: 1061–1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Park N, Juo SH, Cheng R, Liu J, Loth JE, Lilliston B et al. Linkage analysis of psychosis in bipolar pedigrees suggests novel putative loci for bipolar disorder and shared susceptibility with schizophrenia. Mol Psychiatry 2004; 9: 1091–1099.

    Article  CAS  PubMed  Google Scholar 

  40. McQueen MB, Devlin B, Faraone SV, Nimgaonkar VL, Sklar P, Smoller JW et al. Combined analysis from eleven linkage studies of bipolar disorder provides strong evidence of susceptibility loci on chromosomes 6q and 8q. Am J Hum Genet 2005; 77: 582–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Middleton FA, Pato MT, Gentile KL, Morley CP, Zhao X, Eisener AF et al. Genomewide linkage analysis of bipolar disorder by use of a high-density single-nucleotide-polymorphism (SNP) genotyping assay: a comparison with microsatellite marker assays and finding of significant linkage to chromosome 6q22. Am J Hum Genet 2004; 74: 886–897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Venken T, Alaerts M, Souery D, Goossens D, Sluijs S, Navon R et al. Chromosome 10q harbors a susceptibility locus for bipolar disorder in Ashkenazi Jewish families. Mol Psychiatry 2007 (in press).

  43. Walss-Bass C, Montero AP, Armas R, Dassori A, Contreras SA, Liu W et al. Linkage disequilibrium analyses in the Costa Rican population suggests discrete gene loci for schizophrenia at 8p23.1 and 8q13.3. Psychiatr Genet 2006; 16: 159–168.

    Article  PubMed  Google Scholar 

  44. Avramopoulos D, Willour VL, Zandi PP, Huo Y, MacKinnon DF, Potash JB et al. Linkage of bipolar affective disorder on chromosome 8q24: follow-up and parametric analysis. Mol Psychiatry 2004; 9: 191–196.

    Article  CAS  PubMed  Google Scholar 

  45. McInnis MG, Lan TH, Willour VL, McMahon FJ, Simpson SG, Addington AM et al. Genome-wide scan of bipolar disorder in 65 pedigrees: supportive evidence for linkage at 8q24, 18q22, 4q32, 2p12, and 13q12. Mol Psychiatry 2003; 8: 288–298.

    Article  CAS  PubMed  Google Scholar 

  46. Zandi PP, Avramopoulos D, Willour VL, Huo Y, Miao K, Mackinnon DF et al. SNP fine mapping of chromosome 8q24 in bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2007; 144: 625–630.

    Article  Google Scholar 

  47. Friddle C, Koskela R, Ranade K, Hebert J, Cargill M, Clark CD et al. Full-genome scan for linkage in 50 families segregating the bipolar affective disease phenotype. Am J Hum Genet 2000; 66: 205–215.

    Article  CAS  PubMed  Google Scholar 

  48. Segurado R, Detera-Wadleigh SD, Levinson DF, Lewis CM, Gill M, Nurnberger Jr JI et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part III: bipolar disorder. Am J Hum Genet 2003; 73: 34–48.

    Article  Google Scholar 

  49. Faraone SV, Lasky-Su J, Glatt SJ, Van Eerdewegh P, Tsuang MT . Early onset bipolar disorder: possible linkage to chromosome 9q34. Bipolar Disord 2006; 8: 144–151.

    Article  CAS  PubMed  Google Scholar 

  50. Foroud T, Castelluccio PF, Koller DL, Edenberg HJ, Miller M, Bowman E et al. Suggestive evidence of a locus on chromosome 10p using the NIMH genetics initiative bipolar affective disorder pedigrees. Am J Med Genet 2000; 96: 18–23.

    Article  CAS  PubMed  Google Scholar 

  51. Cichon S, Schmidt-Wolf G, Schumacher J, Muller DJ, Hurter M, Schulze TG et al. A possible susceptibility locus for bipolar affective disorder in chromosomal region 10q25–q26. Mol Psychiatry 2001; 6: 342–349.

    Article  CAS  PubMed  Google Scholar 

  52. McInnis MG, Dick DM, Willour VL, Avramopoulos D, MacKinnon DF, Simpson SG et al. Genome-wide scan and conditional analysis in bipolar disorder: evidence for genomic interaction in the National Institute of Mental Health genetics initiative bipolar pedigrees. Biol Psychiatry 2003; 54: 1265–1273.

    Article  CAS  PubMed  Google Scholar 

  53. Smyth C, Kalsi G, Brynjolfsson J, O'Neill J, Curtis D, Rifkin L et al. Further tests for linkage of bipolar affective disorder to the tyrosine hydroxylase gene locus on chromosome 11p15 in a new series of multiplex British affective disorder pedigrees. Am J Psychiatry 1996; 153: 271–274.

    Article  CAS  PubMed  Google Scholar 

  54. Malafosse A, Leboyer M, D'Amato T, Amadeo S, Abbar M, Campion D et al. Manic depressive illness and tyrosine hydroxylase gene: linkage heterogeneity and association. Neurobiol Dis 1997; 4: 337–349.

    Article  CAS  PubMed  Google Scholar 

  55. Serretti A, Macciardi F, Cusin C, Lattuada E, Souery D, Lipp O et al. Linkage of mood disorders with D2, D3, and TH genes: a multicenter study. J Affect Disord 2000; 58: 51–61.

    Article  CAS  PubMed  Google Scholar 

  56. Zandi PP, Willour VL, Huo Y, Chellis J, Potash JB, MacKinnon DF et al. Genome scan of a second wave of NIMH genetics initiative bipolar pedigrees: chromosomes 2, 11, 13, 14, and X. Am J Med Genet B Neuropsychiatr Genet 2003; 119: 69–76.

    Article  Google Scholar 

  57. Mitchell P, Waters B, Morrison N, Shine J, Donald J, Eisman J . Close linkage of bipolar disorder to chromosome 11 markers is excluded in two large Australian pedigrees. J Affect Disord 1991; 21: 23–32.

    Article  CAS  PubMed  Google Scholar 

  58. Mendlewicz J, Leboyer M, De Bruyn A, Malafosse A, Sevy S, Hirsch D et al. Absence of linkage between chromosome 11p15 markers and manic-depressive illness in a Belgian pedigree. Am J Psychiatry 1991; 148: 1683–1687.

    Article  CAS  PubMed  Google Scholar 

  59. Law A, Richard III CW, Cottingham Jr RW, Lathrop GM, Cox DR, Myers RM . Genetic linkage analysis of bipolar affective disorder in an Old Order Amish pedigree. Hum Genet 1992; 88: 562–568.

    Article  CAS  PubMed  Google Scholar 

  60. De bruyn A, Mendelbaum K, Sandkuijl LA, Delvenne V, Hirsch D, Staner L et al. Nonlinkage of bipolar illness to tyrosine hydroxylase, tyrosinase, and D2 and D4 dopamine receptor genes on chromosome 11. Am J Psychiatry 1994; 151: 102–106.

    Article  CAS  PubMed  Google Scholar 

  61. Sidenberg D, King N, Kennedy J . Analysis of new D4 dopamine receptor (DRD4) coding region variants and TH microsatellite in the Old Order Amish family (OOA110). Psychiatr Genet 1994; 4: 95–99.

    Article  CAS  PubMed  Google Scholar 

  62. Morissette J, Villeneuve A, Bordeleau L, Rochette D, Laberge C, Gagne B et al. Genome-wide search for linkage of bipolar affective disorders in a very large pedigree derived from a homogeneous population in Quebec points to a locus of major effect on chromosome 12q23–q24. Am J Med Genet 1999; 88: 567–587.

    Article  CAS  PubMed  Google Scholar 

  63. Bajestan SN, Sabouri AH, Nakamura M, Takashima H, Keikhaee MR, Behdani F et al. Association of AKT1 haplotype with the risk of schizophrenia in Iranian population. Am J Med Genet B Neuropsychiatr Genet 2006; 141: 383–386.

    Article  CAS  Google Scholar 

  64. Badner JA, Gershon ES . Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry 2002; 7: 405–411.

    Article  CAS  PubMed  Google Scholar 

  65. Ginns EI, Ott J, Egeland JA, Allen CR, Fann CSJ, Pauls DL et al. A genome-wide search for chromosomal loci linked to bipolar affective disorder in the Old Order Amish. Nat Genet 1996; 12: 431–435.

    Article  CAS  PubMed  Google Scholar 

  66. Shaw SH, Mroczkowski-Parker Z, Shekhtman T, Alexander M, Remick RA, Sadovnick AD et al. Linkage of a bipolar disorder susceptibility locus to human chromosome 13q32 in a new pedigree series. Mol Psychiatry 2003; 8: 558–564.

    Article  CAS  PubMed  Google Scholar 

  67. Liu C, Badner JA, Christian SL, Guroff JJ, Detera-Wadleigh SD, Gershon ES . Fine mapping supports previous linkage evidence for a bipolar disorder susceptibility locus on 13q32. Am J Med Genet 2001; 105: 375–380.

    Article  CAS  PubMed  Google Scholar 

  68. Kealey C, Roche S, Claffey E, McKeon P . Linkage and candidate gene analysis of 14q22–24 in bipolar disorder: support for GCHI as a novel susceptibility gene. Am J Med Genet B Neuropsychiatr Genet 2005; 136: 75–80.

    Article  Google Scholar 

  69. Faraone SV, Glatt SJ, Su J, Tsuang MT . Three potential susceptibility loci shown by a genome-wide scan for regions influencing the age at onset of mania. Am J Psychiatry 2004; 161: 625–630.

    Article  PubMed  Google Scholar 

  70. Vazza G, Bertolin C, Scudellaro E, Vettori A, Boaretto F, Rampinelli S et al. Genome-wide scan supports the existence of a susceptibility locus for schizophrenia and bipolar disorder on chromosome 15q26. Mol Psychiatry 2007; 12: 87–93.

    Article  CAS  PubMed  Google Scholar 

  71. Adams LJ, Salmon JA, Kwok JB, Vivero C, Donald JA, Mitchell PB et al. Exclusion of linkage between bipolar affective disorder and chromosome 16 in 12 Australian pedigrees. Am J Med Genet 1997; 74: 304–310.

    Article  CAS  PubMed  Google Scholar 

  72. Eiberg H, Ewald H, Mors O . Suggestion of linkage between manic-depressive illness and the enzyme phosphoglycolate phosphatase (PGP) on chromosome 16p. Clin Genet 1993; 44: 254–257.

    Article  CAS  PubMed  Google Scholar 

  73. Kelsoe J, Remick R, Sadovnick A, Kristbjarnarson H, Flodman P, Spence M et al. Genetic linkage study of bipolar disorder and the serotonin transporter. Am J Med Genet 1996; 67: 215–217.

    Article  CAS  PubMed  Google Scholar 

  74. Tomas C, Canellas F, Rodriguez V, Picornell A, Lafau O, Nadal M et al. Genetic linkage study for bipolar disorders on chromosomes 17 and 18 in families with a high expression of mental illness from the Balearic Islands. Psychiatr Genet 2006; 16: 145–151.

    Article  PubMed  Google Scholar 

  75. Murphy VE, Mynett-Johnson LA, Claffey E, Bergin P, McAuliffe M, Kealey C et al. Search for bipolar disorder susceptibility loci: the application of a modified genome scan concentrating on gene-rich regions. Am J Med Genet 2000; 96: 728–732.

    Article  CAS  PubMed  Google Scholar 

  76. Ewald H, Wikman FP, Teruel BM, Buttenschon HN, Torralba M, Als TD et al. A genome-wide search for risk genes using homozygosity mapping and microarrays with 1494 single-nucleotide polymorphisms in 22 eastern Cuban families with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2005; 133: 25–30.

    Article  Google Scholar 

  77. Mulle JG, Fallin MD, Lasseter VK, McGrath JA, Wolyniec PS, Pulver AE . Dense SNP association study for bipolar I disorder on chromosome 18p11 suggests two loci with excess paternal transmission. Mol Psychiatry 2007; 12: 367–375.

    Article  CAS  PubMed  Google Scholar 

  78. Coon H, Hoff M, Holik J, Hadley D, Fang N, Reimherr F et al. Analysis of chromosome 18 DNA markers in multiplex pedigrees with manic depression. Biol Psychiatry 1996; 39: 689–696.

    Article  CAS  PubMed  Google Scholar 

  79. Dorr DA, Rice JP, Armstrong C, Reich T, Blehar M . A meta-analysis of chromosome 18 linkage data for bipolar illness. Genet Epidemiol 1997; 14: 617–622.

    Article  CAS  PubMed  Google Scholar 

  80. Haghighi F, Li W, Fann CS . Affected-sib-pair analyses of bipolar disorder using data on chromosome 18. Genet Epidemiol 1997; 14: 641–646.

    Article  CAS  PubMed  Google Scholar 

  81. Schulze TG, Chen YS, Badner JA, McInnis MG, DePaulo Jr JR, McMahon FJ . Additional, physically ordered markers increase linkage signal for bipolar disorder on chromosome 18q22. Biol Psychiatry 2003; 53: 239–243.

    Article  CAS  PubMed  Google Scholar 

  82. Bowen T, Kirov G, Gill M, Spurlock G, Vallada HP, Murray RM et al. Linkage studies of bipolar disorder with chromosome 18 markers. Am J Med Genet 1999; 88: 503–509.

    Article  CAS  PubMed  Google Scholar 

  83. Freimer NB, Reus VI, Escamilla MA, McInnes A, Spesny M, Leon P et al. Genetic mapping using haplotype, association and linkage methods suggests a locus for severe bipolar disorder (BPI) at 18q22–q23. Nat Genet 1996; 12: 436–441.

    Article  CAS  PubMed  Google Scholar 

  84. Nothen MM, Cichon S, Rohleder H, Hemmer S, Franzek E, Fritze J et al. Evaluation of linkage of bipolar affective disorder to chromosome 18 in a sample of 57 German families. Mol Psychiatry 1999; 4: 76–84.

    Article  CAS  PubMed  Google Scholar 

  85. Liu J, Juo SH, Terwilliger JD, Grunn A, Tong X, Brito M et al. A follow-up linkage study supports evidence for a bipolar affective disorder locus on chromosome 21q22. Am J Med Genet 2001; 105: 189–194.

    Article  CAS  PubMed  Google Scholar 

  86. Aita VM, Liu J, Knowles JA, Terwilliger JD, Baltazar R, Grunn A et al. A comprehensive linkage analysis of chromosome 21q22 supports prior evidence for a putative bipolar affective disorder locus. Am J Hum Genet 1999; 64: 210–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kaneva RP, Chorbov VM, Milanova VK, Kostov CS, Nickolov KI, Chakarova CF et al. Linkage analysis in bipolar pedigrees adds support for a susceptibility locus on 21q22. Psychiatr Genet 2004; 14: 101–106.

    Article  PubMed  Google Scholar 

  88. Lin PI, McInnis MG, Potash JB, Willour VL, Mackinnon DF, Miao K et al. Assessment of the effect of age at onset on linkage to bipolar disorder: evidence on chromosomes 18p and 21q. Am J Hum Genet 2005; 77: 545–555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kwok JB, Adams LJ, Salmon JA, Donald JA, Mitchell PB, Schofield PR . Nonparametric simulation-based statistical analyses for bipolar affective disorder locus on chromosome 21q22.3. Am J Med Genet 1999; 88: 99–102.

    Article  CAS  PubMed  Google Scholar 

  90. Straub RE, Lehner T, Luo Y, Loth JE, Shao W, Sharpe L et al. A possible vulnerability locus for bipolar affective disorder on chromosome 21q22.3. Nat Genet 1994; 8: 291–296.

    Article  CAS  PubMed  Google Scholar 

  91. Vallada H, Craddock N, Vasques L, Curtis D, Kirov G, Lauriano V et al. Linkage studies in bipolar affective disorder with markers on chromosome 21. J Affect Disord 1996; 41: 217–221.

    Article  CAS  PubMed  Google Scholar 

  92. Smyth C, Kalsi G, Curtis D, Brynjolfsson J, O'Neill J, Rifkin L et al. Two-locus admixture linkage analysis of bipolar and unipolar affective disorder supports the presence of susceptibility loci on chromosomes 11p15 and 21q22. Genomics 1997; 39: 271–278.

    Article  CAS  PubMed  Google Scholar 

  93. Ewald H, Kruse TA, Mors O . Genome wide scan using homozygosity mapping and linkage analyses of a single pedigree with affective disorder suggests oligogenic inheritance. Am J Med Genet B Neuropsychiatr Genet 2003; 120: 63–71.

    Article  Google Scholar 

  94. Liang SG, Sadovnick AD, Remick RA, Keck PE, McElroy SL, Kelsoe JR . A linkage disequilibrium study of bipolar disorder and microsatellite markers on 22q13. Psychiatr Genet 2002; 12: 231–235.

    Article  PubMed  Google Scholar 

  95. Potash JB, Chiu YF, MacKinnon DF, Miller EB, Simpson SG, McMahon FJ et al. Familial aggregation of psychotic symptoms in a replication set of 69 bipolar disorder pedigrees. Am J Med Genet 2003; 116B: 90–97.

    Article  PubMed  Google Scholar 

  96. Mujaheed M, Corbex M, Lichtenberg P, Levinson DF, Deleuze JF, Mallet J et al. Evidence for linkage by transmission disequilibrium test analysis of a chromosome 22 microsatellite marker D22S278 and bipolar disorder in a Palestinian Arab population. Am J Med Genet 2000; 96: 836–838.

    Article  CAS  PubMed  Google Scholar 

  97. Nievergelt CM, Kripke DF, Barrett TB, Burg E, Remick RA, Sadovnick AD et al. Suggestive evidence for association of the circadian genes PERIOD3 and ARNTL with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2006; 141: 234–241.

    Article  CAS  Google Scholar 

  98. Curtis D, Sherrington R, Brett P, Holmes DS, Kalsi G, Brynjolfsson J et al. Genetic linkage analysis of manic depression in Iceland. J R Soc Med 1993; 86: 506–510.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ekholm JM, Pekkarinen P, Pajukanta P, Kieseppa T, Partonen T, Paunio T et al. Bipolar disorder susceptibility region on Xq24–q27.1 in Finnish families. Mol Psychiatry 2002; 7: 453–459.

    Article  CAS  PubMed  Google Scholar 

  100. Pekkarinen P, Terwilliger J, Bredbacka PE, Lonnqvist J, Peltonen L . Evidence of a predisposing locus to bipolar disorder on Xq24–q27.1 in an extended Finnish pedigree. Genome Res 1995; 5: 105–115.

    Article  CAS  PubMed  Google Scholar 

  101. Mendelbaum K, Sevy S, Souery D, Papadimitriou GN, De Bruyn A, Raeymaekers P et al. Manic-depressive illness and linkage reanalysis in the Xq27–Xq28 region of chromosome X. Neuropsychobiology 1995; 31: 58–63.

    Article  CAS  PubMed  Google Scholar 

  102. Walther DJ, Peter JU, Bashammakh S, Hortnagl H, Voits M, Fink H et al. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 2003; 299: 76.

    Article  CAS  PubMed  Google Scholar 

  103. Walther DJ, Bader M . A unique central tryptophan hydroxylase isoform. Biochem Pharmacol 2003; 66: 1673–1680.

    Article  CAS  PubMed  Google Scholar 

  104. Ranade SS, Mansour H, Wood J, Chowdari KV, Brar LK, Kupfer DJ et al. Linkage and association between serotonin 2A receptor gene polymorphisms and bipolar I disorder. Am J Med Genet 2003; 121B: 28–34.

    Article  PubMed  Google Scholar 

  105. Mansour HA, Wood J, Logue T, Chowdari KV, Dayal M, Kupfer DJ et al. Association study of eight circadian genes with bipolar I disorder, schizoaffective disorder and schizophrenia. Genes Brain Behav 2006; 5: 150–157.

    Article  CAS  PubMed  Google Scholar 

  106. Kempisty B, Bober A, Luczak M, Czerski P, Szczepankiewicz A, Hauser J et al. Distribution of 1298A>C polymorphism of methylenetetrahydrofolate reductase gene in patients with bipolar disorder and schizophrenia. Eur Psychiatry 2007; 22: 39–43.

    Article  PubMed  Google Scholar 

  107. Zintzaras E . C677T and A1298C methylenetetrahydrofolate reductase gene polymorphisms in schizophrenia, bipolar disorder and depression: a meta-analysis of genetic association studies. Psychiatr Genet 2006; 16: 105–115.

    Article  PubMed  Google Scholar 

  108. Jonsson EG, Larsson K, Vares M, Hansen T, Wang AG, Djurovic S et al. Two methylenetetrahydrofolate reductase gene (MTHFR) polymorphisms, schizophrenia and bipolar disorder: an association study. Am J Med Genet B Neuropsychiatr Genet 2007 (in press).

  109. Cordeiro Q, Talkowski ME, Chowdari KV, Wood J, Nimgaonkar V, Vallada H . Association and linkage analysis of RGS4 polymorphisms with schizophrenia and bipolar disorder in Brazil. Genes Brain Behav 2005; 4: 45–50.

    Article  CAS  PubMed  Google Scholar 

  110. Fallin MD, Lasseter VK, Avramopoulos D, Nicodemus KK, Wolyniec PS, McGrath JA et al. Bipolar I disorder and schizophrenia: a 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case–parent trios. Am J Hum Genet 2005; 77: 918–936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Prata DP, Breen G, Munro J, Sinclair M, Osborne S, Li T et al. Bipolar 1 disorder is not associated with the RGS4, PRODH, COMT and GRK3 genes. Psychiatr Genet 2006; 16: 229–230.

    Article  PubMed  Google Scholar 

  112. Perlis RH, Purcell S, Fagerness J, Kirby A, Petryshen TL, Fan J et al. Family-based association study of lithium-related and other candidate genes in bipolar disorder. Arch Gen Psychiatry 2008; 65: 53–61.

    Article  PubMed  Google Scholar 

  113. Hodgkinson CA, Goldman D, Jaeger J, Persaud S, Kane JM, Lipsky RH et al. Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J Hum Genet 2004; 75: 5.

    Article  Google Scholar 

  114. Thomson PA, Wray NR, Millar JK, Evans KL, Hellard SL, Condie A et al. Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the Scottish population. Mol Psychiatry 2005; 10: 657–668.

    Article  CAS  PubMed  Google Scholar 

  115. Maeda K, Nwulia E, Chang J, Balkissoon R, Ishizuka K, Chen H et al. Differential expression of disrupted-in-schizophrenia (DISC1) in bipolar disorder. Biol Psychiatry 2006; 60: 929–935.

    Article  PubMed  Google Scholar 

  116. Devon RS, Anderson S, Teague PW, Burgess P, Kipari TM, Semple CA et al. Identification of polymorphisms within disrupted in schizophrenia 1 and disrupted in schizophrenia 2, and an investigation of their association with schizophrenia and bipolar affective disorder. Psychiatr Genet 2001; 11: 71–78.

    Article  CAS  PubMed  Google Scholar 

  117. Elvidge G, Jones I, McCandless F, Asherson P, Owen MJ, Craddock N . Allelic variation of a BalI polymorphism in the DRD3 gene does not influence susceptibility to bipolar disorder: results of analysis and meta-analysis. Am J Med Genet 2001; 105: 307–311.

    Article  CAS  PubMed  Google Scholar 

  118. Massat I, Souery D, Del-Favero J, Van Gestel S, Serretti A, Macciardi F et al. Positive association of dopamine D2 receptor polymorphism with bipolar affective disorder in a European multicenter association study of affective disorders. Am J Med Genet 2002; 114: 177–185.

    Article  PubMed  Google Scholar 

  119. Leszczynska-Rodziewicz A, Hauser J, Dmitrzak-Weglarz M, Skibinka M, Czerski P, Zakrzewska A et al. Lack of association between polymorphisms of dopamine receptors, type D2, and bipolar affective illness in a Polish population. Med Sci Monit 2005; 11: CR289–CR295.

    CAS  PubMed  Google Scholar 

  120. Van Den Bogaert A, Sleegers K, De Zutter S, Heyrman L, Norrback KF, Adolfsson R et al. No allelic association or interaction of three known functional polymorphisms with bipolar disorder in a northern Swedish isolated population. Psychiatr Genet 2006; 16: 209–212.

    Article  PubMed  Google Scholar 

  121. Szczepankiewicz A, Skibinska M, Hauser J, Slopien A, Leszczynska-Rodziewicz A, Kapelski P et al. Association analysis of the GSK-3beta T-50C gene polymorphism with schizophrenia and bipolar disorder. Neuropsychobiology 2006; 53: 51–56.

    Article  CAS  PubMed  Google Scholar 

  122. Lachman HM, Pedrosa E, Petruolo OA, Cockerham M, Papolos A, Novak T et al. Increase in GSK3beta gene copy number variation in bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2007; 144: 259–265.

    Article  CAS  Google Scholar 

  123. Benedetti F, Bernasconi A, Lorenzi C, Pontiggia A, Serretti A, Colombo C et al. A single nucleotide polymorphism in glycogen synthase kinase 3-beta promoter gene influences onset of illness in patients affected by bipolar disorder. Neurosci Lett 2004; 355: 37–40.

    Article  CAS  PubMed  Google Scholar 

  124. Lee KY, Ahn YM, Joo EJ, Jeong SH, Chang JS, Kim SC et al. No association of two common SNPs at position –1727 A/T, –50 C/T of GSK-3 beta polymorphisms with schizophrenia and bipolar disorder of Korean population. Neurosci Lett 2006; 395: 175–178.

    Article  CAS  PubMed  Google Scholar 

  125. Nishiguchi N, Breen G, Russ C, St Clair D, Collier D . Association analysis of the glycogen synthase kinase-3beta gene in bipolar disorder. Neurosci Lett 2006; 394: 243–245; e-pub ahead of print 14 November 2005).

    Article  CAS  PubMed  Google Scholar 

  126. Kawamoto T, Horikawa Y, Tanaka T, Kabe N, Takeda J, Mikuni M . Genetic variations in the WFS1 gene in Japanese with type 2 diabetes and bipolar disorder. Mol Genet Metab 2004; 82: 238–245.

    Article  CAS  PubMed  Google Scholar 

  127. Koido K, Koks S, Nikopensius T, Maron E, Altmae S, Heinaste E et al. Polymorphisms in wolframin (WFS1) gene are possibly related to increased risk for mood disorders. Int J Neuropsychopharmacol 2005; 8: 235–244.

    Article  CAS  PubMed  Google Scholar 

  128. Furlong RA, Ho LW, Rubinsztein JS, Michael A, Walsh C, Paykel ES et al. A rare coding variant within the wolframin gene in bipolar and unipolar affective disorder cases. Neurosci Lett 1999; 277: 123–126.

    Article  CAS  PubMed  Google Scholar 

  129. Middle F, Jones I, McCandless F, Barrett T, Khanim F, Owen MJ et al. Bipolar disorder and variation at a common polymorphism (A1832G) within exon 8 of the Wolfram gene. Am J Med Genet 2000; 96: 154–157.

    Article  CAS  PubMed  Google Scholar 

  130. Ohtsuki T, Ishiguro H, Yoshikawa T, Arinami T . WFS1 gene mutation search in depressive patients: detection of five missense polymorphisms but no association with depression or bipolar affective disorder. J Affect Disord 2000; 58: 11–17.

    Article  CAS  PubMed  Google Scholar 

  131. Evans KL, Lawson D, Meitinger T, Blackwood DH, Porteous DJ . Mutational analysis of the Wolfram syndrome gene in two families with chromosome 4p-linked bipolar affective disorder. Am J Med Genet 2000; 96: 158–160.

    Article  CAS  PubMed  Google Scholar 

  132. Torres R, Leroy E, Hu X, Katrivanou A, Gourzis P, Papachatzopoulou A et al. Mutation screening of the Wolfram syndrome gene in psychiatric patients. Mol Psychiatry 2001; 6: 39–43.

    Article  CAS  PubMed  Google Scholar 

  133. Serretti A, Cusin C, Cristina S, Lorenzi C, Lilli R, Lattuada E et al. Multicentre Italian family-based association study on tyrosine hydroxylase, catechol-O-methyl transferase and Wolfram syndrome 1 polymorphisms in mood disorders. Psychiatr Genet 2003; 13: 121–126.

    PubMed  Google Scholar 

  134. Kato T, Iwamoto K, Washizuka S, Mori K, Tajima O, Akiyama T et al. No association of mutations and mRNA expression of WFS1/wolframin with bipolar disorder in humans. Neurosci Lett 2003; 338: 21–24.

    Article  CAS  PubMed  Google Scholar 

  135. Waldman ID, Robinson BF, Feigon SA . Linkage disequilibrium between the dopamine transporter gene (DAT1) and bipolar disorder: extending the transmission disequilibrium test (TDT) to examine genetic heterogeneity. Genet Epidemiol 1997; 14: 699–704.

    Article  CAS  PubMed  Google Scholar 

  136. Greenwood TA, Alexander M, Keck PE, McElroy S, Sadovnick AD, Remick RA et al. Evidence for linkage disequilibrium between the dopamine transporter and bipolar disorder. Am J Med Genet 2001; 105: 145–151.

    Article  CAS  PubMed  Google Scholar 

  137. Keikhaee MR, Fadai F, Sargolzaee MR, Javanbakht A, Najmabadi H, Ohadi M . Association analysis of the dopamine transporter (DAT1)-67A/T polymorphism in bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2005; 135: 47–49.

    Article  Google Scholar 

  138. Greenwood TA, Schork NJ, Eskin E, Kelsoe JR . Identification of additional variants within the human dopamine transporter gene provides further evidence for an association with bipolar disorder in two independent samples. Mol Psychiatry 2006; 11: 125–133, 115.

    Article  CAS  PubMed  Google Scholar 

  139. Stober G, Sprandel J, Schmidt F, Faul T, Jabs B, Knapp M . Association study of 5′-UTR polymorphisms of the human dopamine transporter gene with manic depression. Bipolar Disord 2006; 8: 490–495.

    Article  PubMed  Google Scholar 

  140. Ohadi M, Keikhaee MR, Javanbakht A, Sargolzaee MR, Robabeh M, Najmabadi H . Gender dimorphism in the DAT1 –67 T-allele homozygosity and predisposition to bipolar disorder. Brain Res 2007 (in press).

  141. Souery D, Lipp O, Mahieu B, Mendelbaum K, De Martelaer V, Van Broeckhoven C et al. Association study of bipolar disorder with candidate genes involved in catecholamine neurotransmission: DRD2, DRD3, DAT1, and TH genes. Am J Med Genet 1996; 67: 551–555.

    Article  CAS  PubMed  Google Scholar 

  142. Gomez-Casero E, Perez de Castro I, Saiz-Ruiz J, Llinares C, Fernandez-Piqueras J . No association between particular DRD3 and DAT gene polymorphisms and manic-depressive illness in a Spanish sample. Psychiatr Genet 1996; 6: 209–212.

    Article  CAS  PubMed  Google Scholar 

  143. Bocchetta A, Piccardi MP, Palmas MA, Chillotti C, Oi A, Del Zompo M . Family-based association study between bipolar disorder and DRD2, DRD4, DAT, and SERT in Sardinia. Am J Med Genet 1999; 88: 522–526.

    Article  CAS  PubMed  Google Scholar 

  144. Heiden A, Schussler P, Itzlinger U, Leisch F, Scharfetter J, Gebhardt C et al. Association studies of candidate genes in bipolar disorders. Neuropsychobiology 2000; 42 (Suppl 1): 18–21.

    Article  CAS  PubMed  Google Scholar 

  145. Georgieva L, Dimitrova A, Nikolov I, Koleva S, Tsvetkova R, Owen MJ et al. Dopamine transporter gene (DAT1) VNTR polymorphism in major psychiatric disorders: family-based association study in the Bulgarian population. Acta Psychiatr Scand 2002; 105: 396–399.

    Article  CAS  PubMed  Google Scholar 

  146. Vincent JB, Masellis M, Lawrence J, Choi V, Gurling HM, Parikh SV et al. Genetic association analysis of serotonin system genes in bipolar affective disorder. Am J Psychiatry 1999; 156: 136–138.

    Article  CAS  PubMed  Google Scholar 

  147. Lin YM, Yang HC, Lai TJ, Fann CS, Sun HS . Receptor mediated effect of serotonergic transmission in patients with bipolar affective disorder. J Med Genet 2003; 40: 781–786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Erdmann J, Shimron-Abarbanell D, Cichon S, Albus M, Maier W, Lichtermann D et al. Systematic screening for mutations in the promoter and the coding region of the 5-HT1A gene. Am J Med Genet 1995; 60: 393–399.

    Article  CAS  PubMed  Google Scholar 

  149. Horiuchi Y, Nakayama J, Ishiguro H, Ohtsuki T, Detera-Wadleigh SD, Toyota T et al. Possible association between a haplotype of the GABA-A receptor alpha 1 subunit gene (GABRA1) and mood disorders. Biol Psychiatry 2004; 55: 40–45.

    Article  CAS  PubMed  Google Scholar 

  150. Coon H, Hicks A, Bailey M, Hoff M, Holik J, Harvey R et al. Analysis of GABAA receptor subunit genes in multiplex pedigrees with manic depression. Psychiatr Genet 1994; 4: 185–191.

    Article  CAS  PubMed  Google Scholar 

  151. Severino G, Congiu D, Serreli C, De Lisa R, Chillotti C, Del Zompo M et al. A48G polymorphism in the D1 receptor genes associated with bipolar I disorder. Am J Med Genet B Neuropsychiatr Genet 2005; 134: 37–38.

    Article  Google Scholar 

  152. Dmitrzak-Weglarz M, Rybakowski JK, Slopien A, Czerski PM, Leszczynska-Rodziewicz A, Kapelski P et al. Dopamine receptor D1 gene –48A/G polymorphism is associated with bipolar illness but not with schizophrenia in a Polish population. Neuropsychobiology 2006; 53: 46–50.

    Article  CAS  PubMed  Google Scholar 

  153. Ni X, Trakalo JM, Mundo E, Macciardi FM, Parikh S, Lee L et al. Linkage disequilibrium between dopamine D1 receptor gene (DRD1) and bipolar disorder. Biol Psychiatry 2002; 52: 1144–1150.

    Article  CAS  PubMed  Google Scholar 

  154. Jensen S, Plaetke R, Holik J, Hoff M, O'Connell P, Reimherr F et al. Linkage analysis of the D1 dopamine receptor gene and manic depression in six families. Hum Hered 1992; 42: 269–275.

    Article  CAS  PubMed  Google Scholar 

  155. Nöthen M, Erdmann J, Körner J, Lanczik M, Fritze J, Fimmers R et al. Lack of association between dopamine D1 and D2 receptor genes and bipolar affective disorder. Am J Psychiatry 1992; 149: 199–201.

    Article  PubMed  Google Scholar 

  156. Mitchell P, Selbie L, Waters B, Donald J, Vivero C, Tully M et al. Exclusion of close linkage of bipolar disorder to the dopamine D1 and D2 receptor gene markers. J Affect Disord 1992; 25: 1–12.

    Article  CAS  PubMed  Google Scholar 

  157. Savoye C, Laurent C, Amadeo S, Gheysen F, Leboyer M, Lejeune J et al. No association between dopamine D1, D2, and D3 receptor genes and manic-depressive illness. Biol Psychiatry 1998; 44: 644–647.

    Article  CAS  PubMed  Google Scholar 

  158. Cichon S, Nothen MM, Erdmann J, Propping P . Detection of four polymorphic sites in the human dopamine D1 receptor gene (DRD1). Hum Mol Genet 1994; 3: 209.

    Article  CAS  PubMed  Google Scholar 

  159. Cichon S, Nothen MM, Stober G, Schroers R, Albus M, Maier W et al. Systematic screening for mutations in the 5′-regulatory region of the human dopamine D1 receptor (DRD1) gene in patients with schizophrenia and bipolar affective disorder. Am J Med Genet 1996; 67: 424–428.

    Article  CAS  PubMed  Google Scholar 

  160. Pae CU, Chae JH, Bahk WM, Han H, Jun TY, Kim KS et al. Tumor necrosis factor-alpha gene polymorphism at position –308 and schizophrenia in the Korean population. Psychiatry Clin Neurosci 2003; 57: 399–403.

    Article  CAS  PubMed  Google Scholar 

  161. Middle F, Jones I, Robertson E, Lendon C, Craddock N . Tumour necrosis factor alpha and bipolar affective puerperal psychosis. Psychiatr Genet 2000; 10: 195–198.

    Article  CAS  PubMed  Google Scholar 

  162. Meira-Lima IV, Pereira AC, Mota GF, Floriano M, Araujo F, Mansur AJ et al. Analysis of a polymorphism in the promoter region of the tumor necrosis factor alpha gene in schizophrenia and bipolar disorder: further support for an association with schizophrenia. Mol Psychiatry 2003; 8: 718–720.

    Article  CAS  PubMed  Google Scholar 

  163. Raybould R, Green EK, MacGregor S, Gordon-Smith K, Heron J, Hyde S et al. Bipolar disorder and polymorphisms in the dysbindin gene (DTNBP1). Biol Psychiatry 2005; 57: 696–701.

    Article  CAS  PubMed  Google Scholar 

  164. Breen G, Prata D, Osborne S, Munro J, Sinclair M, Li T et al. Association of the dysbindin gene with bipolar affective disorder. Am J Psychiatry 2006; 163: 1636–1638.

    Article  PubMed  Google Scholar 

  165. Pae CU, Serretti A, Mandelli L, Yu HS, Patkar AA, Lee CU et al. Effect of 5-haplotype of dysbindin gene (DTNBP1) polymorphisms for the susceptibility to bipolar I disorder. Am J Med Genet B Neuropsychiatr Genet 2007; 144: 701–703.

    Article  CAS  Google Scholar 

  166. Joo EJ, Lee KY, Jeong SH, Chang JS, Ahn YM, Koo YJ et al. Dysbindin gene variants are associated with bipolar I disorder in a Korean population. Neurosci Lett 2007; 418: 272–275.

    Article  CAS  PubMed  Google Scholar 

  167. Pae CU, Serretti A, Mandelli L, Yu HS, Patkar AA, Lee CU et al. Effect of 5-haplotype of dysbindin gene (DTNBP1) polymorphisms for the susceptibility to bipolar I disorder. Am J Med Genet B Neuropsychiatr Genet 2007; 144: 701–703.

    Article  CAS  Google Scholar 

  168. Borglum AD, Bruun TG, Kjeldsen TE, Ewald H, Mors O, Kirov G et al. Two novel variants in the DOPA decarboxylase gene: association with bipolar affective disorder. Mol Psychiatry 1999; 4: 545–551.

    Article  CAS  PubMed  Google Scholar 

  169. Ewald H, Mors O, Eiberg H, Flint T, Kruse TA . No evidence of linkage between manic depressive illness and the dopa decarboxylase gene or nearby region on chromosome 7p. Psychiatr Genet 1995; 5: 161–169.

    Article  CAS  PubMed  Google Scholar 

  170. Speight G, Turic D, Austin J, Hoogendoorn B, Cardno AG, Jones L et al. Comparative sequencing and association studies of aromatic L-amino acid decarboxylase in schizophrenia and bipolar disorder. Mol Psychiatry 2000; 5: 327–331.

    Article  CAS  PubMed  Google Scholar 

  171. Jahnes E, Muller DJ, Schulze TG, Windemuth C, Cichon S, Ohlraun S et al. Association study between two variants in the DOPA decarboxylase gene in bipolar and unipolar affective disorder. Am J Med Genet 2002; 114: 519–522.

    Article  PubMed  Google Scholar 

  172. Borglum AD, Kirov G, Craddock N, Mors O, Muir W, Murray V et al. Possible parent-of-origin effect of dopa decarboxylase in susceptibility to bipolar affective disorder. Am J Med Genet B Neuropsychiatr Genet 2003; 117: 18–22.

    Article  Google Scholar 

  173. Walss-Bass C, Raventos H, Montero AP, Armas R, Dassori A, Contreras S et al. Association analyses of the neuregulin 1 gene with schizophrenia and manic psychosis in a Hispanic population. Acta Psychiatr Scand 2006; 113: 314–321.

    Article  CAS  PubMed  Google Scholar 

  174. Green EK, Raybould R, Macgregor S, Gordon-Smith K, Heron J, Hyde S et al. Operation of the schizophrenia susceptibility gene, neuregulin 1, across traditional diagnostic boundaries to increase risk for bipolar disorder. Arch Gen Psychiatry 2005; 62: 642–648.

    Article  CAS  PubMed  Google Scholar 

  175. Thomson PA, Christoforou A, Morris SW, Adie E, Pickard BS, Porteous DJ et al. Association of neuregulin 1 with schizophrenia and bipolar disorder in a second cohort from the Scottish population. Mol Psychiatry 2007; 12: 94–104.

    Article  CAS  PubMed  Google Scholar 

  176. Erdmann J, Nothen MM, Shimron-Abarbanell D, Rietschel M, Albus M, Borrmann M et al. The human serotonin 7 (5-HT7) receptor gene: genomic organization and systematic mutation screening in schizophrenia and bipolar affective disorder. Mol Psychiatry 1996; 1: 392–397.

    CAS  PubMed  Google Scholar 

  177. Lopez Leon S, Croes EA, Sayed-Tabatabaei FA, Claes S, Van Broeckhoven C, van Duijn CM . The dopamine D4 receptor gene 48-base-pair-repeat polymorphism and mood disorders: a meta-analysis. Biol Psychiatry 2005; 57: 999–1003.

    Article  CAS  PubMed  Google Scholar 

  178. Muglia P, Petronis A, Mundo E, Lander S, Cate T, Kennedy JL . Dopamine D4 receptor and tyrosine hydroxylase genes in bipolar disorder: evidence for a role of DRD4. Mol Psychiatry 2002; 7: 860–866.

    Article  CAS  PubMed  Google Scholar 

  179. Turecki G, Rouleau GA, Mari J, Joober R, Morgan K . Lack of association between bipolar disorder and tyrosine hydroxylase: a meta-analysis. Am J Med Genet 1997; 74: 348–352.

    Article  CAS  PubMed  Google Scholar 

  180. Furlong RA, Rubinsztein JS, Ho L, Walsh C, Coleman TA, Muir WJ et al. Analysis and metaanalysis of two polymorphisms within the tyrosine hydroxylase gene in bipolar and unipolar affective disorders. Am J Med Genet 1999; 88: 88–94.

    Article  CAS  PubMed  Google Scholar 

  181. Souery D, Lipp O, Rivelli SK, Massat A, Serretti A, Cavallini C et al. Tyrosine hydroxylase polymorphism and phenotypic heterogeneity in bipolar affective disorder: a multicenter association study. Am J Med Genet 1999; 88: 527–532.

    Article  CAS  PubMed  Google Scholar 

  182. Burgert E, Crocq MA, Bausch E, Macher JP, Morris-Rosendahl DJ . No association between the tyrosine hydroxylase microsatellite marker HUMTH01 and schizophrenia or bipolar I disorder. Psychiatr Genet 1998; 8: 45–48.

    Article  CAS  PubMed  Google Scholar 

  183. McQuillin A, Lawrence J, Curtis D, Kalsi G, Smyth C, Hannesdottir S et al. Adjacent genetic markers on chromosome 11p15.5 at or near the tyrosine hydroxylase locus that show population linkage disequilibrium with each other do not show allelic association with bipolar affective disorder. Psychol Med 1999; 29: 1449–1454.

    Article  CAS  PubMed  Google Scholar 

  184. Bellivier F, Leboyer M, Courtet P, Buresi C, Beaufils B, Samolyk D et al. Association between the tryptophan hydroxylase gene and manic-depressive illness. Arch Gen Psychiatry 1998; 55: 33–37.

    Article  CAS  PubMed  Google Scholar 

  185. Furlong RA, Ho L, Rubinsztein JS, Walsh C, Paykel ES, Rubinsztein DC . No association of the tryptophan hydroxylase gene with bipolar affective disorder, unipolar affective disorder, or suicidal behaviour in major affective disorder. Am J Med Genet 1998; 81: 245–247.

    Article  CAS  PubMed  Google Scholar 

  186. McQuillin A, Lawrence J, Kalsi G, Gurling H, Curtis D . No allelic association between bipolar affective disorder and the tryptophan hydroxylase gene. Arch Gen Psychiatry 1999; 56: 99–100.

    Article  CAS  PubMed  Google Scholar 

  187. Kirov G, Owen MJ, Jones I, McCandless F, Craddock N . Tryptophan hydroxylase gene and manic-depressive illness. Arch Gen Psychiatry 1999; 56: 98–99.

    Article  CAS  PubMed  Google Scholar 

  188. Kunugi H, Ishida S, Kato T, Sakai T, Tatsumi M, Hirose T et al. No evidence for an association of polymorphisms of the tryptophan hydroxylase gene with affective disorders or attempted suicide among Japanese patients. Am J Psychiatry 1999; 156: 774–776.

    CAS  PubMed  Google Scholar 

  189. Rietschel M, Schorr A, Albus M, Franzek E, Kreiner R, Held T et al. Association study of the tryptophan hydroxylase gene and bipolar affective disorder using family-based internal controls. Am J Med Genet 2000; 96: 310–311.

    Article  CAS  PubMed  Google Scholar 

  190. Souery D, Van Gestel S, Massat I, Blairy S, Adolfsson R, Blackwood D et al. Tryptophan hydroxylase polymorphism and suicidality in unipolar and bipolar affective disorders: a multicenter association study. Biol Psychiatry 2001; 49: 405–409.

    Article  CAS  PubMed  Google Scholar 

  191. Serretti A, Lilli R, Lorenzi C, Lattuada E, Cusin C, Smeraldi E . Tryptophan hydroxylase gene and major psychoses. Psychiatr Res 2001; 103: 79–86.

    Article  CAS  Google Scholar 

  192. Serretti A, Cristina S, Lilli R, Cusin C, Lattuada E, Lorenzi C et al. Family-based association study of 5-HTTLPR, TPH, MAO-A, and DRD4 polymorphisms in mood disorders. Am J Med Genet 2002; 114: 361–369.

    Article  PubMed  Google Scholar 

  193. Chotai J, Serretti A, Lorenzi C . Interaction between the tryptophan hydroxylase gene and the serotonin transporter gene in schizophrenia but not in bipolar or unipolar affective disorders. Neuropsychobiology 2005; 51: 3–9.

    Article  CAS  PubMed  Google Scholar 

  194. Lai TJ, Wu CY, Tsai HW, Lin YM, Sun HS . Polymorphism screening and haplotype analysis of the tryptophan hydroxylase gene (TPH1) and association with bipolar affective disorder in Taiwan. BMC Med Genet 2005; 6: 14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Neves-Pereira M, Mundo E, Muglia P, King N, Macciardi F, Kennedy JL . The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: evidence from a family-based association study. Am J Hum Genet 2002; 71: 651–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Sklar P, Gabriel SB, McInnis MG, Bennett P, Lim YM, Tsan G et al. Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. Brain-derived neutrophic factor. Mol Psychiatry 2002; 7: 579–593.

    Article  CAS  PubMed  Google Scholar 

  197. Geller B, Badner JA, Tillman R, Christian SL, Bolhofner K, Cook Jr EH . Linkage disequilibrium of the brain-derived neurotrophic factor Val66Met polymorphism in children with a prepubertal and early adolescent bipolar disorder phenotype. Am J Psychiatry 2004; 161: 1698–1700.

    Article  PubMed  Google Scholar 

  198. Strauss J, Barr CL, George CJ, King N, Shaikh S, Devlin B et al. Association study of brain-derived neurotrophic factor in adults with a history of childhood onset mood disorder. Am J Med Genet B Neuropsychiatr Genet 2004; 131: 16–19.

    Article  Google Scholar 

  199. Lohoff FW, Sander T, Ferraro TN, Dahl JP, Gallinat J, Berrettini WH . Confirmation of association between the Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) gene and bipolar I disorder. Am J Med Genet B Neuropsychiatr Genet 2005; 139: 51–53.

    Article  CAS  Google Scholar 

  200. Schumacher J, Jamra RA, Becker T, Ohlraun S, Klopp N, Binder EB et al. Evidence for a relationship between genetic variants at the brain-derived neurotrophic factor (BDNF) locus and major depression. Biol Psychiatry 2005; 58: 307–314.

    Article  CAS  PubMed  Google Scholar 

  201. Green EK, Raybould R, Macgregor S, Hyde S, Young AH, O'Donovan MC et al. Genetic variation of brain-derived neurotrophic factor (BDNF) in bipolar disorder: case–control study of over 3000 individuals from the UK. Br J Psychiatry 2006; 188: 21–25.

    Article  PubMed  Google Scholar 

  202. Okada T, Hashimoto R, Numakawa T, Iijima Y, Kosuga A, Tatsumi M et al. A complex polymorphic region in the brain-derived neurotrophic factor (BDNF) gene confers susceptibility to bipolar disorder and affects transcriptional activity. Mol Psychiatry 2006; 11: 695–703.

    Article  CAS  PubMed  Google Scholar 

  203. Kremeyer B, Herzberg I, Garcia J, Kerr E, Duque C, Parra V et al. Transmission distortion of BDNF variants to bipolar disorder type I patients from a south American population isolate(,). Am J Med Genet B Neuropsychiatr Genet 2006; 141: 435–439.

    Article  CAS  Google Scholar 

  204. Muller DJ, de Luca V, Sicard T, King N, Strauss J, Kennedy JL . Brain-derived neurotrophic factor (BDNF) gene and rapid-cycling bipolar disorder: family-based association study. Br J Psychiatry 2006; 189: 317–323.

    Article  PubMed  Google Scholar 

  205. Hong CJ, Yu YW, Lin CH, Tsai SJ . An association study of a brain-derived neurotrophic factor Val66Met polymorphism and clozapine response of schizophrenic patients. Neurosci Lett 2003; 349: 206–208.

    Article  CAS  PubMed  Google Scholar 

  206. Nakata K, Ujike H, Sakai A, Uchida N, Nomura A, Imamura T et al. Association study of the brain-derived neurotrophic factor (BDNF) gene with bipolar disorder. Neurosci Lett 2003; 337: 17–20.

    Article  CAS  PubMed  Google Scholar 

  207. Oswald P, Souery D, Mendlewicz J . Molecular genetics of affective disorders. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28: 865–877.

    Article  CAS  PubMed  Google Scholar 

  208. Kunugi H, Iijima Y, Tatsumi M, Yoshida M, Hashimoto R, Kato T et al. No association between the Val66Met polymorphism of the brain-derived neurotrophic factor gene and bipolar disorder in a Japanese population: a multicenter study. Biol Psychiatry 2004; 56: 376–378.

    Article  CAS  PubMed  Google Scholar 

  209. Skibinska M, Hauser J, Czerski PM, Leszczynska-Rodziewicz A, Kosmowska M, Kapelski P et al. Association analysis of brain-derived neurotrophic factor (BDNF) gene Val66Met polymorphism in schizophrenia and bipolar affective disorder. World J Biol Psychiatry 2004; 5: 215–220.

    Article  PubMed  Google Scholar 

  210. Neves-Pereira M, Cheung JK, Pasdar A, Zhang F, Breen G, Yates P et al. BDNF gene is a risk factor for schizophrenia in a Scottish population. Mol Psychiatry 2005; 10: 208–212.

    Article  CAS  PubMed  Google Scholar 

  211. Kanazawa T, Glatt SJ, Kia-Keating B, Yoneda H, Tsuang MT . Meta-analysis reveals no association of the Val66Met polymorphism of brain-derived neurotrophic factor with either schizophrenia or bipolar disorder. Psychiatr Genet 2007; 17: 165–170.

    Article  PubMed  Google Scholar 

  212. Arai M, Itokawa M, Yamada K, Toyota T, Haga S, Ujike H et al. Association of neural cell adhesion molecule 1 gene polymorphisms with bipolar affective disorder in Japanese individuals. Biol Psychiatry 2004; 55: 804–810.

    Article  CAS  PubMed  Google Scholar 

  213. Atz ME, Rollins B, Vawter MP . NCAM1 association study of bipolar disorder and schizophrenia: polymorphisms and alternatively spliced isoforms lead to similarities and differences. Psychiatr Genet 2007; 17: 55–67.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Li T, Liu XH, Sham PC, Aitchison KJ, Cai GQ, Arranz MJ et al. Association analysis between dopamine receptor genes and bipolar affective disorder. Psychiatr Res 1999; 86: 193–201.

    Article  CAS  Google Scholar 

  215. Furlong RA, Coleman TA, Ho L, Rubinsztein JS, Walsh C, Paykel ES et al. No association of a functional polymorphism in the dopamine D2 receptor promoter region with bipolar or unipolar affective disorders. Am J Med Genet 1998; 81: 385–387.

    Article  CAS  PubMed  Google Scholar 

  216. Stober G, Jatzke S, Heils A, Jungkunz G, Knapp M, Mossner R et al. Insertion/deletion variant (–141C Ins/Del) in the 5′ regulatory region of the dopamine D2 receptor gene: lack of association with schizophrenia and bipolar affective disorder. Short communication. J Neural Transm 1998; 105: 101–109.

    Article  CAS  PubMed  Google Scholar 

  217. Serretti A, Lilli R, Lorenzi C, Smeraldi E . Further evidence supporting the association between the dopamine receptor D2 Ser/Cys311 variant and disorganized symptomatology of schizophrenia. Schizophr Res 2000; 43: 161–162.

    CAS  PubMed  Google Scholar 

  218. Craddock N, Roberts Q, Williams N, McGuffin P, Owen MJ . Association study of bipolar disorder using a functional polymorphism (Ser311 → Cys) in the dopamine D2 receptor gene. Psychiatr Genet 1995; 5: 63–65.

    Article  CAS  PubMed  Google Scholar 

  219. Sasaki T, Macciardi FM, Badri F, Verga M, Meltzer HY, Lieberman J et al. No evidence for association of dopamine D2 receptor variant (Ser311/Cys311) with major psychosis. Am J Med Genet 1996; 67: 415–417.

    Article  CAS  PubMed  Google Scholar 

  220. Manki H, Kanba S, Muramatsu T, Higuchi S, Suzuki E, Matsushita S et al. Dopamine D2, D3 and D4 receptor and transporter gene polymorphisms and mood disorders. J Affect Disord 1996; 40: 7–13.

    Article  CAS  PubMed  Google Scholar 

  221. Martucci L, Wong AH, De Luca V, Likhodi O, Wong GW, King N et al. N-Methyl-D-aspartate receptor NR2B subunit gene GRIN2B in schizophrenia and bipolar disorder: polymorphisms and mRNA levels. Schizophr Res 2006; 84: 214–221.

    Article  PubMed  Google Scholar 

  222. Harvey M, Shink E, Tremblay M, Gagne B, Raymond C, Labbe M et al. Support for the involvement of TPH2 gene in affective disorders. Mol Psychiatry 2004; 9: 980–981.

    Article  CAS  PubMed  Google Scholar 

  223. Lopez VA, Detera-Wadleigh S, Cardona I, Kassem L, McMahon FJ . Nested association between genetic variation in tryptophan hydroxylase II, bipolar affective disorder, and suicide attempts. Biol Psychiatry 2007; 61: 181–186.

    Article  CAS  PubMed  Google Scholar 

  224. Van Den Bogaert A, Sleegers K, De Zutter S, Heyrman L, Norrback KF, Adolfsson R et al. Association of brain-specific tryptophan hydroxylase, TPH2, with unipolar and bipolar disorder in a Northern Swedish, isolated population. Arch Gen Psychiatry 2006; 63: 1103–1110.

    Article  CAS  PubMed  Google Scholar 

  225. Harvey M, Gagne B, Labbe M, Barden N . Polymorphisms in the neuronal isoform of tryptophan hydroxylase 2 are associated with bipolar disorder in French Canadian pedigrees. Psychiatr Genet 2007; 17: 17–22.

    Article  PubMed  Google Scholar 

  226. Cichon S, Winge I, Mattheisen M, Georgi A, Karpushova A, Freudenberg J et al. Brain-specific tryptophan hydroxylase 2 (TPH2): a functional Pro206Ser substitution and variation in the 5′-region are associated with bipolar affective disorder. Hum Mol Genet 2008; 17: 87–97.

    Article  CAS  PubMed  Google Scholar 

  227. De Luca V, Mueller DJ, Tharmalingam S, King N, Kennedy JL . Analysis of the novel TPH2 gene in bipolar disorder and suicidality. Mol Psychiatry 2004; 9: 896–897.

    Article  CAS  PubMed  Google Scholar 

  228. Mann JJ, Currier D, Murphy L, Huang YY, Galfalvy H, Brent D et al. No association between a TPH2 promoter polymorphism and mood disorders or monoamine turnover. J Affect Disord 2007 (in press).

  229. Prata D, Breen G, Osborne S, Munro J, St Clair D, Collier D . Association of DAO and G72(DAOA)/G30 genes with bipolar affective disorder. Am J Med Genet B Neuropsychiatr Genet 2007 (in press).

  230. Schumacher J, Jamra RA, Freudenberg J, Becker T, Ohlraun S, Otte AC et al. Examination of G72 and D-amino-acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder. Mol Psychiatry 2004; 9: 203–207.

    Article  CAS  PubMed  Google Scholar 

  231. Arranz MJ, Erdmann J, Kirov G, Rietschel M, Sodhi M, Albus M et al. 5-HT2A receptor and bipolar affective disorder: association studies in affected patients. Neurosci Lett 1997; 224: 95–98.

    Article  CAS  PubMed  Google Scholar 

  232. Chee IS, Lee SW, Kim JL, Wang SK, Shin YO, Shin SC et al. 5-HT2A receptor gene promoter polymorphism –1438A/G and bipolar disorder. Psychiatr Genet 2001; 11: 111–114.

    Article  CAS  PubMed  Google Scholar 

  233. Bonnier B, Gorwood P, Hamon M, Sarfati Y, Boni C, Hardy-Bayle MC . Association of 5-HT(2A) receptor gene polymorphism with major affective disorders: the case of a subgroup of bipolar disorder with low suicide risk. Biol Psychiatry 2002; 51: 762–765.

    Article  CAS  PubMed  Google Scholar 

  234. Ohara K, Nagai M, Tani K, Tsukamoto T, Suzuki Y . Polymorphism in the promoter region of the alpha 2A adrenergic receptor gene and mood disorders. Neuroreport 1998; 9: 1291–1294.

    Article  CAS  PubMed  Google Scholar 

  235. Gutierrez B, Bertranpetit J, Collier D, Arranz MJ, Valles V, Guillamat R et al. Genetic variation of the 5-HT2A receptor gene and bipolar affective disorder. Hum Genet 1997; 100: 582–584.

    Article  CAS  PubMed  Google Scholar 

  236. Anguelova M, Benkelfat C, Turecki G . A systematic review of association studies investigating genes coding for serotonin receptors and the serotonin transporter: I. affective disorders. Mol Psychiatry 2003; 8: 592–610.

    Article  CAS  Google Scholar 

  237. Etain B, Rousseva A, Roy I, Henry C, Malafosse A, Buresi C et al. Lack of association between 5HT2A receptor gene haplotype, bipolar disorder and its clinical subtypes in a West European sample. Am J Med Genet B Neuropsychiatr Genet 2004; 129: 29–33.

    Article  Google Scholar 

  238. Ni X, Trakalo JM, Mundo E, Lee L, Parikh S, Kennedy JL . Family-based association study of the serotonin-2A receptor gene (5-HT2A) and bipolar disorder. Neuromolecular Med 2002; 2: 251–259.

    Article  CAS  PubMed  Google Scholar 

  239. Williams NM, Green EK, Macgregor S, Dwyer S, Norton N, Williams H et al. Variation at the DAOA/G30 locus influences susceptibility to major mood episodes but not psychosis in schizophrenia and bipolar disorder. Arch Gen Psychiatry 2006; 63: 366–373.

    Article  CAS  PubMed  Google Scholar 

  240. Hattori E, Liu C, Badner JA, Bonner TI, Christian SL, Maheshwari M et al. Polymorphisms at the G72/G30 gene locus, on 13q33, are associated with bipolar disorder in two independent pedigree series. Am J Hum Genet 2003; 72: 1131–1140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Chen YS, Akula N, Detera-Wadleigh SD, Schulze TG, Thomas J, Potash JB et al. Findings in an independent sample support an association between bipolar affective disorder and the G72/G30 locus on chromosome 13q33. Mol Psychiatry 2004; 9: 87–92; image 5.

    Article  CAS  PubMed  Google Scholar 

  242. Shi J, Badner JA, Gershon ES, Liu C . Allelic association of G72/G30 with schizophrenia and bipolar disorder: a comprehensive meta-analysis. Schizophr Res 2008; 98: 89–97.

    Article  PubMed  Google Scholar 

  243. Papadimitriou GN, Dikeos DG, Karadima G, Avramopoulos D, Daskalopoulou EG, Vassilopoulos D et al. Association between the GABA(A) receptor alpha5 subunit gene locus (GABRA5) and bipolar affective disorder. Am J Med Genet 1998; 81: 73–80.

    Article  CAS  PubMed  Google Scholar 

  244. Otani K, Ujike H, Tanaka Y, Morita Y, Katsu T, Nomura A et al. The GABA type A receptor alpha5 subunit gene is associated with bipolar I disorder. Neurosci Lett 2005; 381: 108–113.

    Article  CAS  PubMed  Google Scholar 

  245. Hong CJ, Lai IC, Liou LL, Tsai SJ . Association study of the human partially duplicated alpha7 nicotinic acetylcholine receptor genetic variant with bipolar disorder. Neurosci Lett 2004; 355: 69–72.

    Article  CAS  PubMed  Google Scholar 

  246. Shi J, Hattori E, Zou H, Badner JA, Christian SL, Gershon ES et al. No evidence for association between 19 cholinergic genes and bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2007; 144: 715–723.

    Article  CAS  Google Scholar 

  247. Flomen RH, Collier DA, Osborne S, Munro J, Breen G, St Clair D et al. Association study of CHRFAM7A copy number and 2bp deletion polymorphisms with schizophrenia and bipolar affective disorder. Am J Med Genet B Neuropsychiatr Genet 2006; 141: 571–575.

    Article  CAS  Google Scholar 

  248. Furlong RA, Ho L, Walsh C, Rubinsztein JS, Jain S, Paykel ES et al. Analysis and meta-analysis of two serotonin transporter gene polymorphisms in bipolar and unipolar affective disorders. Am J Med Genet 1998; 81: 58–63.

    Article  CAS  PubMed  Google Scholar 

  249. Cho HJ, Meira-Lima I, Cordeiro Q, Michelon L, Sham P, Vallada H et al. Population-based and family-based studies on the serotonin transporter gene polymorphisms and bipolar disorder: a systematic review and meta-analysis. Mol Psychiatry 2005; 12: 12.

    Google Scholar 

  250. Lasky-Su JA, Faraone SV, Glatt SJ, Tsuang MT . Meta-analysis of the association between two polymorphisms in the serotonin transporter gene and affective disorders. Am J Med Genet B Neuropsychiatr Genet 2005; 133: 110–115.

    Article  Google Scholar 

  251. Neves FS, Silveira G, Romano-Silva MA, Malloy-Diniz L, Ferreira AA, De Marco L et al. Is the 5-HTTLPR polymorphism associated with bipolar disorder or with suicidal behavior of bipolar disorder patients? Am J Med Genet B Neuropsychiatr Genet 2008; 147: 114–116.

    Article  Google Scholar 

  252. Arinami T, Li L, Mitsushio H, Itokawa M, Hamaguchi H, Toru M . An insertion/deletion polymorphism in the angiotensin converting enzyme gene is associated with both brain substance P contents and affective disorders. Biol Psychiatry 1996; 40: 1122–1127.

    Article  CAS  PubMed  Google Scholar 

  253. Pauls J, Bandelow B, Ruther E, Kornhuber J . Polymorphism of the gene of angiotensin converting enzyme: lack of association with mood disorder. J Neural Transm 2000; 107: 1361–1366.

    Article  CAS  PubMed  Google Scholar 

  254. Furlong RA, Keramatipour M, Ho LW, Rubinsztein JS, Michael A, Walsh C et al. No association of an insertion/deletion polymorphism in the angiotensin I converting enzyme gene with bipolar or unipolar affective disorders. Am J Med Genet 2000; 96: 733–735.

    Article  CAS  PubMed  Google Scholar 

  255. Meira-Lima IV, Pereira AC, Mota GF, Krieger JE, Vallada H . Angiotensinogen and angiotensin converting enzyme gene polymorphisms and the risk of bipolar affective disorder in humans. Neurosci Lett 2000; 293: 103–106.

    Article  CAS  PubMed  Google Scholar 

  256. Konuk N, Atik L, Simsekyilmaz O, Dursun A, Acikgoz S . Association of angiotensin converting enzyme gene polymorphism and affective disorders in Turkish patients. Aust NZ J Psychiatry 2006; 40: 717–718.

    Article  Google Scholar 

  257. Sjoholt G, Ebstein RP, Lie RT, Berle J, Mallet J, Deleuze JF et al. Examination of IMPA1 and IMPA2 genes in manic-depressive patients: association between IMPA2 promoter polymorphisms and bipolar disorder. Mol Psychiatry 2004; 9: 621–629.

    Article  CAS  PubMed  Google Scholar 

  258. Ohnishi T, Yamada K, Ohba H, Iwayama Y, Toyota T, Hattori E et al. A promoter haplotype of the inositol monophosphatase 2 gene (IMPA2) at 18p11.2 confers a possible risk for bipolar disorder by enhancing transcription. Neuropsychopharmacology 2007; 32: 1727–1737.

    Article  CAS  PubMed  Google Scholar 

  259. Dimitrova A, Milanova V, Krastev S, Nikolov I, Toncheva D, Owen MJ et al. Association study of myo-inositol monophosphatase 2 (IMPA2) polymorphisms with bipolar affective disorder and response to lithium treatment. Pharmacogenomics J 2005; 5: 35–41.

    Article  CAS  PubMed  Google Scholar 

  260. Del-Favero J, Gestel SV, Borglum AD, Muir W, Ewald H, Mors O et al. European combined analysis of the CTG18.1 and the ERDA1 CAG/CTG repeats in bipolar disorder. Eur J Hum Genet 2002; 10: 276–280.

    Article  CAS  PubMed  Google Scholar 

  261. Vincent JB, Petronis A, Strong E, Parikh SV, Meltzer HY, Lieberman J et al. Analysis of genome-wide CAG/CTG repeats, and at SEF2-1B and ERDA1 in schizophrenia and bipolar affective disorder. Mol Psychiatry 1999; 4: 229–234.

    Article  PubMed  Google Scholar 

  262. Guy CA, Bowen T, Jones I, McCandless F, Owen MJ, Craddock N et al. CTG18.1 and ERDA-1 CAG/CTG repeat size in bipolar disorder. Neurobiol Dis 1999; 6: 302–307.

    Article  CAS  PubMed  Google Scholar 

  263. Turecki G, Grof P, Cavazzoni P, Duffy A, Grof E, Ahrens B et al. Evidence for a role of phospholipase C-gamma1 in the pathogenesis of bipolar disorder. Mol Psychiatry 1998; 3: 534–538.

    Article  CAS  PubMed  Google Scholar 

  264. Lovlie R, Berle JO, Stordal E, Steen VM . The phospholipase C-gamma1 gene (PLCG1) and lithium-responsive bipolar disorder: re-examination of an intronic dinucleotide repeat polymorphism. Psychiatr Genet 2001; 11: 41–43.

    Article  CAS  PubMed  Google Scholar 

  265. Xu C, Macciardi F, Li PP, Yoon IS, Cooke RG, Hughes B et al. Association of the putative susceptibility gene, transient receptor potential protein melastatin type 2, with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2006; 141: 36–43.

    Article  CAS  Google Scholar 

  266. McQuillin A, Bass NJ, Kalsi G, Lawrence J, Puri V, Choudhury K et al. Fine mapping of a susceptibility locus for bipolar and genetically related unipolar affective disorders, to a region containing the C21ORF29 and TRPM2 genes on chromosome 21q22.3. Mol Psychiatry 2006; 11: 134–142.

    Article  CAS  PubMed  Google Scholar 

  267. Kostyrko A, Hauser J, Rybakowski JK, Trzeciak WH . Screening of chromosomal region 21q22.3 for mutations in genes associated with neuronal Ca(2+) signalling in bipolar affective disorder. Acta Biochim Pol 2006; 53: 317–320.

    CAS  PubMed  Google Scholar 

  268. Li T, Vallada H, Curtis D, Arranz M, Xu K, Cai G et al. Catechol-O-methyltransferase Val158Met polymorphism: frequency analysis in Han Chinese subjects and allelic association of the low activity allele with bipolar affective disorder. Pharmacogenetics 1997; 7: 349–353.

    Article  CAS  PubMed  Google Scholar 

  269. Mynett-Johnson LA, Murphy VE, Claffey E, Shields DC, McKeon P . Preliminary evidence of an association between bipolar disorder in females and the catechol-O-methyltransferase gene. Psychiatr Genet 1998; 8: 221–225.

    Article  CAS  PubMed  Google Scholar 

  270. Rotondo A, Mazzanti C, Dell'Osso L, Rucci P, Sullivan P, Bouanani S et al. Catechol o-methyltransferase, serotonin transporter, and tryptophan hydroxylase gene polymorphisms in bipolar disorder patients with and without comorbid panic disorder. Am J Psychiatry 2002; 159: 23–29.

    Article  PubMed  Google Scholar 

  271. Shifman S, Bronstein M, Sternfeld M, Pisante A, Weizman A, Reznik I et al. COMT: a common susceptibility gene in bipolar disorder and schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2004; 128: 61–64.

    Article  Google Scholar 

  272. Funke B, Malhotra AK, Finn CT, Plocik AM, Lake SL, Lencz T et al. COMT genetic variation confers risk for psychotic and affective disorders: a case control study. Behav Brain Funct 2005; 1: 19.

    Article  PubMed  PubMed Central  Google Scholar 

  273. Burdick KE, Funke B, Goldberg JF, Bates JA, Jaeger J, Kucherlapati R et al. COMT genotype increases risk for bipolar I disorder and influences neurocognitive performance. Bipolar Disord 2007; 9: 370–376.

    Article  CAS  PubMed  Google Scholar 

  274. Gutierrez B, Bertranpetit J, Guillamat R, Valles V, Arranz MJ, Kerwin R et al. Association analysis of the catechol O-methyltransferase gene and bipolar affective disorder. Am J Psychiatry 1997; 154: 113–115.

    Article  CAS  PubMed  Google Scholar 

  275. BEBCG. No association between bipolar disorder and alleles at a functional polymorphism in the COMT gene. Biomed European Bipolar Collaborative Group. Br J Psychiatry 1997; 170: 526–528.

    Article  Google Scholar 

  276. Lachman HM, Kelsoe J, Moreno L, Katz S, Papolos DF . Lack of association of catechol-O-methyltransferase (COMT) functional polymorphism in bipolar affective disorder. Psychiatr Genet 1997; 7: 13–17.

    Article  CAS  PubMed  Google Scholar 

  277. Kunugi H, Vallada HP, Hoda F, Kirov G, Gill M, Aitchison KJ et al. No evidence for an association of affective disorders with high- or low-activity allele of catechol-o-methyltransferase gene. Biol Psychiatry 1997; 42: 282–285.

    Article  CAS  PubMed  Google Scholar 

  278. Serretti A, Rotondo A, Lorenzi C, Smeraldi E, Cassano GB . Catechol-O-methyltransferase gene variants in mood disorders in the Italian population. Psychiatr Genet 2006; 16: 181–182.

    Article  PubMed  Google Scholar 

  279. Kakiuchi C, Iwamoto K, Ishiwata M, Bundo M, Kasahara T, Kusumi I et al. Impaired feedback regulation of XBP1 as a genetic risk factor for bipolar disorder. Nat Genet 2003; 35: 171–175.

    Article  CAS  PubMed  Google Scholar 

  280. Hou SJ, Yen FC, Cheng CY, Tsai SJ, Hong CJ . X-box binding protein 1 (XBP1) C-116G polymorphisms in bipolar disorders and age of onset. Neurosci Lett 2004; 367: 232–234.

    Article  CAS  PubMed  Google Scholar 

  281. Cichon S, Buervenich S, Kirov G, Akula N, Dimitrova A, Green E et al. Lack of support for a genetic association of the XBP1 promoter polymorphism with bipolar disorder in probands of European origin. Nat Genet 2004; 36: 783–784; author reply 784–785.

    Article  CAS  PubMed  Google Scholar 

  282. Furlong RA, Ho L, Rubinsztein JS, Walsh C, Paykel ES, Rubinsztein DC . Analysis of the monoamine oxidase A (MAOA) gene in bipolar affective disorder by association studies, meta-analyses, and sequencing of the promotor. Am J Med Genet 1999; 88: 398–406.

    Article  CAS  PubMed  Google Scholar 

  283. Preisig M, Bellivier F, Fenton BT, Baud P, Berney A, Courtet P et al. Association between bipolar disorder and monoamine oxidase A gene polymorphisms: results of a multicenter study. Am J Psychiatry 2000; 157: 948–955.

    Article  CAS  PubMed  Google Scholar 

  284. Lin SC, Jiang SD, Wu XD, Qian YP, Wang DX, Tang GM et al. Association analysis between mood disorder and monoamine oxidase gene. Am J Med Genet 2000; 96: 12–14.

    Article  CAS  PubMed  Google Scholar 

  285. Muller DJ, Serretti A, Sicard T, Tharmalingam S, King N, Artioli P et al. Further evidence of MAO-A gene variants associated with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2007; 144: 37–40.

    Article  CAS  Google Scholar 

  286. Syagailo YV, Stober G, Grassle M, Reimer E, Knapp M, Jungkunz G et al. Association analysis of the functional monoamine oxidase A gene promoter polymorphism in psychiatric disorders. Am J Med Genet 2001; 105: 168–171.

    Article  CAS  PubMed  Google Scholar 

  287. Gutierrez B, Arias B, Gasto C, Catalan R, Papiol S, Pintor L et al. Association analysis between a functional polymorphism in the monoamine oxidase A gene promoter and severe mood disorders. Psychiatr Genet 2004; 14: 203–208.

    Article  PubMed  Google Scholar 

  288. Kunugi H, Ishida S, Kato T, Tatsumi M, Sakai T, Hattori M et al. A functional polymorphism in the promoter region of monoamine oxidase-A gene and mood disorders. Mol Psychiatry 1999; 4: 393–395.

    Article  CAS  PubMed  Google Scholar 

  289. Lerer B, Macciardi F, Segman RH, Adolfsson R, Blackwood D, Blairy S et al. Variability of 5-HT2C receptor cys23ser polymorphism among European populations and vulnerability to affective disorder. Mol Psychiatry 2001; 6: 579–585.

    Article  CAS  PubMed  Google Scholar 

  290. Gutierrez B, Arias B, Papiol S, Rosa A, Fananas L . Association study between novel promoter variants at the 5-HT2C receptor gene and human patients with bipolar affective disorder. Neurosci Lett 2001; 309: 135–137.

    Article  CAS  PubMed  Google Scholar 

  291. Meyer J, Saam W, Mossner R, Cangir O, Ortega GR, Tatschner T et al. Evolutionary conserved microsatellites in the promoter region of the 5-hydroxytryptamine receptor 2C gene (HTR2C) are not associated with bipolar disorder in females. J Neural Transm 2002; 109: 939–946.

    Article  CAS  PubMed  Google Scholar 

  292. Massat I, Souery D, Del-Favero J, Oruc L, Noethen MM, Blackwood D et al. Excess of allele1 for alpha3 subunit GABA receptor gene (GABRA3) in bipolar patients: a multicentric association study. Mol Psychiatry 2002; 7: 201–207.

    Article  CAS  PubMed  Google Scholar 

  293. Puertollano R, Visedo G, Saiz-Ruiz J, Llinares C, Fernandez-Piqueras J . Lack of association between manic-depressive illness and a highly polymorphic marker from GABRA3 gene. Am J Med Genet 1995; 60: 434–435.

    Article  CAS  PubMed  Google Scholar 

  294. Duffy A, Turecki G, Grof P, Cavazzoni P, Grof E, Joober R et al. Association and linkage studies of candidate genes involved in GABAergic neurotransmission in lithium-responsive bipolar disorder. J Psychiatry Neurosci 2000; 25: 353–358.

    CAS  PubMed  PubMed Central  Google Scholar 

  295. Saito T, Parsia S, Papolos DF, Lachman HM . Analysis of the pseudoautosomal X-linked gene SYBL1in bipolar affective disorder: description of a new candidate allele for psychiatric disorders. Am J Med Genet 2000; 96: 317–323.

    Article  CAS  PubMed  Google Scholar 

  296. Muller DJ, Schulze TG, Jahnes E, Cichon S, Krauss H, Kesper K et al. Association between a polymorphism in the pseudoautosomal X-linked gene SYBL1 and bipolar affective disorder. Am J Med Genet 2002; 114: 74–78.

    Article  PubMed  Google Scholar 

  297. Vogt IR, Shimron-Abarbanell D, Neidt H, Erdmann J, Cichon S, Schulze TG et al. Investigation of the human serotonin 6 [5-HT6] receptor gene in bipolar affective disorder and schizophrenia. Am J Med Genet 2000; 96: 217–221.

    Article  CAS  PubMed  Google Scholar 

  298. Hong CJ, Tsai SJ, Cheng CY, Liao WY, Song HL, Lai HC . Association analysis of the 5-HT(6) receptor polymorphism (C267T) in mood disorders. Am J Med Genet 1999; 88: 601–602.

    Article  CAS  PubMed  Google Scholar 

  299. Baum AE, Akula N, Cabanero M, Cardona I, Corona W, Klemens B et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry 2008; 13: 197–207.

    Article  CAS  PubMed  Google Scholar 

  300. Kempisty B, Sikora J, Lianeri M, Szczepankiewicz A, Czerski P, Hauser J et al. MTHFD 1958G>A and MTR 2756A>G polymorphisms are associated with bipolar disorder and schizophrenia. Psychiatr Genet 2007; 17: 177–181.

    Article  PubMed  Google Scholar 

  301. Papiol S, Rosa A, Gutierrez B, Martin B, Salgado P, Catalan R et al. Interleukin-1 cluster is associated with genetic risk for schizophrenia and bipolar disorder. J Med Genet 2004; 41: 219–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Lundorf MD, Buttenschon HN, Foldager L, Blackwood DH, Muir WJ, Murray V et al. Mutational screening and association study of glutamate decarboxylase 1 as a candidate susceptibility gene for bipolar affective disorder and schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2005; 135: 94–101.

    Article  Google Scholar 

  303. Nakatani N, Hattori E, Ohnishi T, Dean B, Iwayama Y, Matsumoto I et al. Genome-wide expression analysis detects eight genes with robust alterations specific to bipolar I disorder: relevance to neuronal network perturbation. Hum Mol Genet 2006; 15: 1949–1962.

    Article  CAS  PubMed  Google Scholar 

  304. Borsotto M, Cavarec L, Bouillot M, Romey G, Macciardi F, Delaye A et al. PP2A-Bgamma subunit and KCNQ2 K(+) channels in bipolar disorder. Pharmacogenomics J 2007; 7 (2): 23–32.

    Article  CAS  Google Scholar 

  305. Kato T, Iwayama Y, Kakiuchi C, Iwamoto K, Yamada K, Minabe Y et al. Gene expression and association analyses of LIM (PDLIM5) in bipolar disorder and schizophrenia. Mol Psychiatry 2005; 10: 1045–1055.

    Article  CAS  PubMed  Google Scholar 

  306. Blair IP, Chetcuti AF, Badenhop RF, Scimone A, Moses MJ, Adams LJ et al. Positional cloning, association analysis and expression studies provide convergent evidence that the cadherin gene FAT contains a bipolar disorder susceptibility allele. Mol Psychiatry 2006; 11: 372–383.

    Article  CAS  PubMed  Google Scholar 

  307. Ohtsuki T, Ishiguro H, Detera-Wadleigh SD, Toyota T, Shimizu H, Yamada K et al. Association between serotonin 4 receptor gene polymorphisms and bipolar disorder in Japanese case–control samples and the NIMH Genetics Initiative Bipolar Pedigrees. Mol Psychiatry 2002; 7: 954–961.

    Article  CAS  PubMed  Google Scholar 

  308. Willour VL, Chen H, Toolan J, Belmonte P, Cutler DJ, Goes FS et al. Family-based association of FKBP5 in bipolar disorder. Mol Psychiatry 2008 (in press).

  309. Pae CU, Yu HS, Amann D, Kim JJ, Lee CU, Lee SJ et al. Association of the trace amine associated receptor 6 (TAAR6) gene with schizophrenia and bipolar disorder in a Korean case control sample. J Psychiatr Res 2008; 35–40.

    Article  PubMed  Google Scholar 

  310. Liu C, Shi J, Badner JA, Zou H, Qian Y, Gershon ES . No association of trace amine receptor genes with bipolar disorder. Mol Psychiatry 2007; 12: 979–981.

    Article  CAS  PubMed  Google Scholar 

  311. Turgut G, Kurt E, Sengul C, Alatas G, Kursunluoglu R, Oral T et al. Association of MDR1 C3435T polymorphism with bipolar disorder in patients treated with valproic acid. Mol Biol Rep 2007 (in press).

  312. Mundo E, Tharmalingham S, Neves-Pereira M, Dalton EJ, Macciardi F, Parikh SV et al. Evidence that the N-methyl-D-aspartate subunit 1 receptor gene (GRIN1) confers susceptibility to bipolar disorder. Mol Psychiatry 2003; 8: 241–245.

    Article  CAS  PubMed  Google Scholar 

  313. Georgi A, Jamra RA, Schumacher J, Becker T, Schmael C, Deschner M et al. No association between genetic variants at the GRIN1 gene and bipolar disorder in a German sample. Psychiatr Genet 2006; 16: 183–184.

    Article  PubMed  Google Scholar 

  314. Stopkova P, Saito T, Fann CS, Papolos DF, Vevera J, Paclt I et al. Polymorphism screening of PIP5K2A: a candidate gene for chromosome 10p-linked psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2003; 123: 50–58.

    Article  Google Scholar 

  315. Jamra RA, Klein K, Villela AW, Becker T, Schulze TG, Schmael C et al. Association study between genetic variants at the PIP5K2A gene locus and schizophrenia and bipolar affective disorder. Am J Med Genet B Neuropsychiatr Genet 2006; 141: 663–665.

    Article  CAS  Google Scholar 

  316. Gutierrez B, Rosa A, Papiol S, Arrufat FJ, Catalan R, Salgado P et al. Identification of two risk haplotypes for schizophrenia and bipolar disorder in the synaptic vesicle monoamine transporter gene (SVMT). Am J Med Genet B Neuropsychiatr Genet 2007; 144: 502–507.

    Article  CAS  Google Scholar 

  317. Pickard BS, Malloy MP, Christoforou A, Thomson PA, Evans KL, Morris SW et al. Cytogenetic and genetic evidence supports a role for the kainate-type glutamate receptor gene, GRIK4, in schizophrenia and bipolar disorder. Mol Psychiatry 2006; 11: 847–857.

    Article  CAS  PubMed  Google Scholar 

  318. Frank B, Niesler B, Nothen MM, Neidt H, Propping P, Bondy B et al. Investigation of the human serotonin receptor gene HTR3B in bipolar affective and schizophrenic patients. Am J Med Genet B Neuropsychiatr Genet 2004; 131: 1–5.

    Article  Google Scholar 

  319. Niesler B, Weiss B, Fischer C, Nothen MM, Propping P, Bondy B et al. Serotonin receptor gene HTR3A variants in schizophrenic and bipolar affective patients. Pharmacogenetics 2001; 11: 21–27.

    Article  CAS  PubMed  Google Scholar 

  320. Lyons-Warren A, Chang JJ, Balkissoon R, Kamiya A, Garant M, Nurnberger J et al. Evidence of association between bipolar disorder and Citron on chromosome 12q24. Mol Psychiatry 2005; 10: 807–809.

    Article  CAS  PubMed  Google Scholar 

  321. Glaser B, Kirov G, Bray NJ, Green E, O'Donovan MC, Craddock N et al. Identification of a potential bipolar risk haplotype in the gene encoding the winged-helix transcription factor RFX4. Mol Psychiatry 2005; 10: 920–927.

    Article  CAS  PubMed  Google Scholar 

  322. Buttenschon HN, Mors O, Ewald H, McQuillin A, Kalsi G, Lawrence J et al. No association between a neuronal nitric oxide synthase (NOS1) gene polymorphism on chromosome 12q24 and bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2004; 124: 73–75.

    Article  Google Scholar 

  323. Barden N, Harvey M, Gagne B, Shink E, Tremblay M, Raymond C et al. Analysis of single nucleotide polymorphisms in genes in the chromosome 12Q24.31 region points to P2RX7 as a susceptibility gene to bipolar affective disorder. Am J Med Genet B Neuropsychiatr Genet 2006; 141: 374–382.

    Article  CAS  Google Scholar 

  324. Kalsi G, McQuillin A, Degn B, Lundorf MD, Bass NJ, Lawrence J et al. Identification of the Slynar gene (AY070435) and related brain expressed sequences as a candidate gene for susceptibility to affective disorders through allelic and haplotypic association with bipolar disorder on chromosome 12q24. Am J Psychiatry 2006; 163: 1767–1776.

    Article  PubMed  Google Scholar 

  325. Sabunciyan S, Yolken R, Ragan CM, Potash JB, Nimgaonkar VL, Dickerson F et al. Polymorphisms in the homeobox gene OTX2 may be a risk factor for bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2007; 144: 1083–1086.

    Article  CAS  Google Scholar 

  326. Toyota T, Yamada K, Detera-Wadleigh SD, Yoshikawa T . Analysis of a cluster of polymorphisms in AKT1 gene in bipolar pedigrees: a family-based association study. Neurosci Lett 2003; 339: 5–8.

    Article  CAS  PubMed  Google Scholar 

  327. Meyer J, Johannssen K, Freitag CM, Schraut K, Teuber I, Hahner A et al. Rare variants of the gene encoding the potassium chloride co-transporter 3 are associated with bipolar disorder. Int J Neuropsychopharmacol 2005; 8: 495–504.

    Article  CAS  PubMed  Google Scholar 

  328. Nyegaard M, Borglum AD, Bruun TG, Collier DA, Russ C, Mors O et al. Novel polymorphisms in the somatostatin receptor 5 (SSTR5) gene associated with bipolar affective disorder. Mol Psychiatry 2002; 7: 745–754.

    Article  CAS  PubMed  Google Scholar 

  329. Toyota T, Yamada K, Saito K, Detera-Wadleigh SD, Yoshikawa T . Association analysis of adenylate cyclase type 9 gene using pedigree disequilibrium test in bipolar disorder. Mol Psychiatry 2002; 7: 450–452.

    Article  CAS  PubMed  Google Scholar 

  330. Itokawa M, Yamada K, Iwayama-Shigeno Y, Ishitsuka Y, Detera-Wadleigh S, Yoshikawa T . Genetic analysis of a functional GRIN2A promoter (GT)n repeat in bipolar disorder pedigrees in humans. Neurosci Lett 2003; 345: 53–56.

    Article  CAS  PubMed  Google Scholar 

  331. Fridman C, Ojopi EP, Gregorio SP, Ikenaga EH, Moreno DH, Demetrio FN et al. Association of a new polymorphism in ALOX12 gene with bipolar disorder. Eur Arch Psychiatry Clin Neurosci 2003; 253: 40–43.

    Article  PubMed  Google Scholar 

  332. McNabb LD, Moore KW, Scena JE, Buono RJ, Berrettini WH . Association analysis of CHMP1.5 genetic variation and bipolar disorder. Psychiatr Genet 2005; 15: 211–214.

    Article  PubMed  Google Scholar 

  333. Weller AE, Dahl JP, Lohoff FW, Ferraro TN, Berrettini WH . Analysis of variations in the NAPG gene on chromosome 18p11 in bipolar disorder. Psychiatr Genet 2006; 16: 3–8.

    Article  PubMed  Google Scholar 

  334. Washizuka S, Iwamoto K, Kazuno AA, Kakiuchi C, Mori K, Kametani M et al. Association of mitochondrial complex I subunit gene NDUFV2 at 18p11 with bipolar disorder in Japanese and the National Institute of Mental Health pedigrees. Biol Psychiatry 2004; 56: 483–489.

    Article  CAS  PubMed  Google Scholar 

  335. Stopkova P, Saito T, Papolos DF, Vevera J, Paclt I, Zukov I et al. Identification of PIK3C3 promoter variant associated with bipolar disorder and schizophrenia. Biol Psychiatry 2004; 55: 981–988.

    Article  CAS  PubMed  Google Scholar 

  336. Mynett-Johnson L, Murphy V, McCormack J, Shields DC, Claffey E, Manley P et al. Evidence for an allelic association between bipolar disorder and a Na+, K+ adenosine triphosphatase alpha subunit gene (ATP1A3). Biol Psychiatry 1998; 44: 47–51.

    Article  CAS  PubMed  Google Scholar 

  337. Philibert RA, Cheung D, Welsh N, Damschroder-Williams P, Thiel B, Ginns EI et al. Absence of a significant linkage between Na(+),K(+)-ATPase subunit (ATP1A3 and ATP1B3) genotypes and bipolar affective disorder in the Old-Order Amish. Am J Med Genet 2001; 105: 291–294.

    Article  CAS  PubMed  Google Scholar 

  338. Roche S, Cassidy F, Zhao C, Badger J, Claffey E, Mooney L et al. Candidate gene analysis of 21q22: support for S100B as a susceptibility gene for bipolar affective disorder with psychosis. Am J Med Genet B Neuropsychiatr Genet 2007; 144: 1094–1096.

    Article  CAS  Google Scholar 

  339. Hashimoto R, Okada T, Kato T, Kosuga A, Tatsumi M, Kamijima K et al. The breakpoint cluster region gene on chromosome 22q11 is associated with bipolar disorder. Biol Psychiatry 2005; 57: 1097–1102.

    Article  CAS  PubMed  Google Scholar 

  340. Saito T, Stopkova P, Diaz L, Papolos DF, Boussemart L, Lachman HM . Polymorphism screening of PIK4CA: possible candidate gene for chromosome 22q11-linked psychiatric disorders. Am J Med Genet 2003; 116: 77–83.

    Article  Google Scholar 

  341. Barrett TB, Hauger RL, Kennedy JL, Sadovnick AD, Remick RA, Keck PE et al. Evidence that a single nucleotide polymorphism in the promoter of the G protein receptor kinase 3 gene is associated with bipolar disorder. Mol Psychiatry 2003; 8: 546–557.

    Article  CAS  PubMed  Google Scholar 

  342. Lachman HM, Stopkova P, Papolos DF, Pedrosa E, Margolis B, Aghalar MR et al. Analysis of synapsin III-196 promoter mutation in schizophrenia and bipolar disorder. Neuropsychobiology 2006; 53: 57–62.

    Article  CAS  PubMed  Google Scholar 

  343. Potash JB, Buervenich S, Cox NJ, Zandi PP, Akula N, Steele J et al. Gene-based SNP mapping of a psychotic bipolar affective disorder linkage region on 22q12.3: association with HMG2L1 and TOM1. Am J Med Genet B Neuropsychiatr Genet 2008; 147: 59–67.

    Article  CAS  Google Scholar 

  344. Verma R, Kubendran S, Das SK, Jain S, Brahmachari SK . SYNGR1 is associated with schizophrenia and bipolar disorder in southern India. J Hum Genet 2005; 50: 635–640.

    Article  CAS  PubMed  Google Scholar 

  345. Severinsen JE, Als TD, Binderup H, Kruse TA, Wang AG, Vang M et al. Association analyses suggest GPR24 as a shared susceptibility gene for bipolar affective disorder and schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2006; 141: 524–533.

    Article  CAS  Google Scholar 

  346. Verma R, Mukerji M, Grover D, B-Rao C, Das SK, Kubendran S et al. MLC1 gene is associated with schizophrenia and bipolar disorder in Southern India. Biol Psychiatry 2005; 58: 16–22.

    Article  CAS  PubMed  Google Scholar 

  347. Severinsen JE, Bjarkam CR, Kiaer-Larsen S, Olsen IM, Nielsen MM, Blechingberg J et al. Evidence implicating BRD1 with brain development and susceptibility to both schizophrenia and bipolar affective disorder. Mol Psychiatry 2006; 11: 1126–1138.

    Article  CAS  PubMed  Google Scholar 

  348. Thomson PA, Wray NR, Thomson AM, Dunbar DR, Grassie MA, Condie A et al. Sex-specific association between bipolar affective disorder in women and GPR50, an X-linked orphan G protein-coupled receptor. Mol Psychiatry 2005; 10: 470–478.

    Article  CAS  PubMed  Google Scholar 

  349. Alaerts M, Venken T, Lenaerts AS, De Zutter S, Norrback KF, Adolfsson R et al. Lack of association of an insertion/deletion polymorphism in the G protein-coupled receptor 50 with bipolar disorder in a Northern Swedish population. Psychiatr Genet 2006; 16: 235–236.

    Article  PubMed  Google Scholar 

  350. Hawi Z, Mynett-Johnson L, Gill M, Murphy V, Straubl RE, Kendler KS et al. Pseudoautosomal gene: possible association with bipolar males but not with schizophrenia. Psychiatr Genet 1999; 9: 129–134.

    Article  CAS  PubMed  Google Scholar 

  351. Wingrove P, Hadingham K, Wafford K, Kemp JA, Ragan CI, Whiting P . Cloning and expression of a cDNA encoding the human GABA-A receptor alpha 5 subunit. Biochem Soc Trans 1992; 20: 18S.

    Article  CAS  PubMed  Google Scholar 

  352. Freedman R, Leonard S, Gault JM, Hopkins J, Cloninger CR, Kaufmann CA et al. Linkage disequilibrium for schizophrenia at the chromosome 15q13–14 locus of the alpha7-nicotinic acetylcholine receptor subunit gene (CHRNA7). Am J Med Genet 2001; 105: 20–22.

    Article  CAS  PubMed  Google Scholar 

  353. Hess SD, Daggett LP, Crona J, Deal C, Lu CC, Urrutia A et al. Cloning and functional characterization of human heteromeric N-methyl-D-aspartate receptors. J Pharmacol Exp Ther 1996; 278: 808–816.

    CAS  PubMed  Google Scholar 

  354. Talbot K, Eidem WL, Tinsley CL, Benson MA, Thompson EW, Smith RJ et al. Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J Clin Invest 2004; 113: 1353–1363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Nagamine K, Kudoh J, Minoshima S, Kawasaki K, Asakawa S, Ito F et al. Molecular cloning of a novel putative Ca2+ channel protein (TRPC7) highly expressed in brain. Genomics 1998; 54: 124–131.

    Article  CAS  PubMed  Google Scholar 

  356. Plyte SE, Hughes K, Nikolakaki E, Pulverer BJ, Woodgett JR . Glycogen synthase kinase-3: functions in oncogenesis and development. Biochim Biophys Acta 1992; 1114: 147–162.

    CAS  PubMed  Google Scholar 

  357. Jones KR, Reichardt LF . Molecular cloning of a human gene that is a member of the nerve growth factor family. Proc Natl Acad Sci USA 1990; 87: 8060–8064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002; 71: 4.

    Article  Google Scholar 

  359. Meyer D, Yamaai T, Garratt A, Riethmacher-Sonnenberg E, Kane D, Theill LE et al. Isoform-specific expression and function of neuregulin. Development 1997; 124: 3575–3586.

    CAS  PubMed  Google Scholar 

  360. Ozaki M, Sasner M, Yano R, Lu HS, Buonanno A . Neuregulin-beta induces expression of an NMDA-receptor subunit. Nature 1997; 390: 691–694.

    Article  CAS  PubMed  Google Scholar 

  361. Cannella B, Hoban CJ, Gao YL, Garcia-Arenas R, Lawson D, Marchionni M et al. The neuregulin, glial growth factor 2, diminishes autoimmune demyelination and enhances remyelination in a chronic relapsing model for multiple sclerosis. Proc Natl Acad Sci USA 1998; 95: 10100–10105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Zylka MJ, Shearman LP, Weaver DR, Reppert SM . Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 1998; 20: 1103–1110.

    Article  CAS  PubMed  Google Scholar 

  363. Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science 1998; 280: 1564–1569.

    Article  CAS  PubMed  Google Scholar 

  364. Drago A, Ronchi DD, Serretti A . 5-HT1A gene variants and psychiatric disorders: a review of current literature and selection of SNPs for future studies. Int J Neuropsychopharmacol 2007 (in press).

  365. Hayden EP, Nurnberger Jr JI . Molecular genetics of bipolar disorder. Genes Brain Behav 2006; 5: 85–95.

    Article  CAS  PubMed  Google Scholar 

  366. Mortensen PB, Pedersen CB, Melbye M, Mors O, Ewald H . Individual and familial risk factors for bipolar affective disorders in Denmark. Arch Gen Psychiatry 2003; 60: 1209–1215.

    Article  PubMed  Google Scholar 

  367. Ambelas A . Psychologically stressful events in the precipitation of manic episodes. Br J Psychiatry 1979; 135: 15–21.

    Article  CAS  PubMed  Google Scholar 

  368. Hasler G, Drevets WC, Gould TD, Gottesman II, Manji HK . Toward constructing an endophenotype strategy for bipolar disorders. Biol Psychiatry 2006; 60: 93–105.

    Article  PubMed  Google Scholar 

  369. Serretti A, Calati R, Mandelli L, De Ronchi D . Serotonin transporter gene variants and behaviour: a comprehensive review. Curr Drug Targets 2006; 7: 1659–1669.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Serretti.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Serretti, A., Mandelli, L. The genetics of bipolar disorder: genome ‘hot regions,’ genes, new potential candidates and future directions. Mol Psychiatry 13, 742–771 (2008). https://doi.org/10.1038/mp.2008.29

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2008.29

Keywords

  • bipolar disorder
  • linkage
  • association studies
  • gene
  • polymorphisms

This article is cited by

Search

Quick links