Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genome-wide association study of recurrent major depressive disorder in two European case–control cohorts

Abstract

Major depressive disorder (MDD) is a highly prevalent disorder with substantial heritability. Heritability has been shown to be substantial and higher in the variant of MDD characterized by recurrent episodes of depression. Genetic studies have thus far failed to identify clear and consistent evidence of genetic risk factors for MDD. We conducted a genome-wide association study (GWAS) in two independent datasets. The first GWAS was performed on 1022 recurrent MDD patients and 1000 controls genotyped on the Illumina 550 platform. The second was conducted on 492 recurrent MDD patients and 1052 controls selected from a population-based collection, genotyped on the Affymetrix 5.0 platform. Neither GWAS identified any SNP that achieved GWAS significance. We obtained imputed genotypes at the Illumina loci for the individuals genotyped on the Affymetrix platform, and performed a meta-analysis of the two GWASs for this common set of approximately half a million SNPs. The meta-analysis did not yield genome-wide significant results either. The results from our study suggest that SNPs with substantial odds ratio are unlikely to exist for MDD, at least in our datasets and among the relatively common SNPs genotyped or tagged by the half-million-loci arrays. Meta-analysis of larger datasets is warranted to identify SNPs with smaller effects or with rarer allele frequencies that contribute to the risk of MDD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Waraich P, Goldner EM, Somers JM, Hsu L . Prevalence and incidence studies of mood disorders: a systematic review of the literature. Can J Psychiatry 2004; 49: 124–138.

    Article  PubMed  Google Scholar 

  2. Mann JJ . The medical management of depression. N Engl J Med 2005; 353: 1819–1834.

    Article  CAS  PubMed  Google Scholar 

  3. World Health Organization. World Health Report 2001. Mental health: New Understanding, New Hope, Geneva WHO2 editor 2008.

  4. Belmaker RH, Agam G . Major depressive disorder. N Engl J Med 2008; 358: 55–68.

    Article  CAS  PubMed  Google Scholar 

  5. Farmer A, Harris T, Redman K, Sadler S, Mahmood A, McGuffin P . Cardiff depression study. A sib-pair study of life events and familiality in major depression. Br J Psychiatry 2000; 176: 150–155.

    Article  CAS  PubMed  Google Scholar 

  6. Jones I, Kent L, Craddock N . Genetics of affective disorders. In: McGuffin P, Owen MJ, Gottesman II (eds). Psychiatric Genetics and Genomics. Oxford University Press: Oxford, 2002, pp 211–246.

    Google Scholar 

  7. Shih RA, Belmonte PL, Zandi PP . A review of the evidence from family, twin and adoption studies for a genetic contribution to adult psychiatric disorders. Int Rev Psychiatry 2004; 16: 260–283.

    Article  PubMed  Google Scholar 

  8. Sullivan PF, Neale MC, Kendler KS . Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry 2000; 157: 1552–1562.

    Article  CAS  PubMed  Google Scholar 

  9. Abkevich V, Camp NJ, Hensel CH, Neff CD, Russell DL, Hughes DC et al. Predisposition locus for major depression at chromosome 12q22-12q23.2. Am J Hum Genet 2003; 73: 1271–1281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Holmans P, Zubenko GS, Crowe RR, DePaulo Jr JR, Scheftner WA, Weissman MM et al. Genomewide significant linkage to recurrent, early-onset major depressive disorder on chromosome 15q. Am J Hum Genet 2004; 74: 1154–1167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McGuffin P, Knight J, Breen G, Brewster S, Boyd PR, Craddock N et al. Whole genome linkage scan of recurrent depressive disorder from the depression network study. Hum Mol Genet 2005; 14: 3337–3345.

    Article  CAS  PubMed  Google Scholar 

  12. Webb BT, van den Oord EJCG, McGuffin P, Knight J, Breen G, Brewster S et al. Genome-wide linkage analysis using additional families from the depression network study. Am J Med Genet 2006; 141B: 683–824.

    Article  Google Scholar 

  13. Risch NJ . Searching for genetic determinants in the new millennium. Nature 2000; 405: 847–856.

    Article  CAS  PubMed  Google Scholar 

  14. Reich DE, Lander ES . On the allelic spectrum of human disease. Trends Genet 2001; 17: 502–510.

    Article  CAS  PubMed  Google Scholar 

  15. Levinson DF . The genetics of depression: a review. Biol Psychiatry 2006; 60: 84–92.

    Article  CAS  PubMed  Google Scholar 

  16. Barrett JC, Cardon LR . Evaluating coverage of genome-wide association studies. Nat Genet 2006; 38: 659–662.

    Article  CAS  PubMed  Google Scholar 

  17. Celik C . Computer Assisted Personal Interviewing Application for the Schedules for Clinical Assessment in Neuropsychiatry Version 2.1 and Diagnostic Algorithms for WHO ICD 10 chapter V DCR and for Statistical Manual IV, Release I. Ed. 1.0.3.5. ed. World Health Organization: Geneva, 2003.

    Google Scholar 

  18. World Health Organization. Diagnosis and Clinical Measurement in Psychiatry. A Reference Manual for SCAN. World Health Organization: Geneva, 1998.

  19. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-IV), 4th edn American Psychiatric Press: Washington DC, 1994.

  20. World Health Organization. The ICD-10 Classification of Mental and Behavioural Disorders. Diagnostic Criteria for Research. World Health Organization: Geneva, 1993.

  21. Hettema JM . What is the genetic relationship between anxiety and depression? Am J Med Genet C Semin Med Genet 2008; 148: 140–146.

    Article  Google Scholar 

  22. Tozzi F, Prokopenko I, Perry JD, Kennedy JL, McCarthy AD, Holsboer F et al. Family history of depression is associated with younger age of onset in patients with recurrent depression. Psychol Med 2008; 38: 641–649.

    Article  CAS  PubMed  Google Scholar 

  23. Wittchen HU, Hoefler M, Gander F, Pfister H, Storz S, Ustun TB et al. Screening for mental disorders: performance of the Composite International Diagnostic-Screener (CID-S). Int J Methods Psychiatr Res 1999; 8: 59–70.

    Article  Google Scholar 

  24. Preisig M, Vollenweider P, Bovet P, Rothen S, Vandeleur C, Mooser V et al. PsyCoLaus: a cross-sectional population-based study on psychiatric disorders and their association with cardiovascular risk factors. 2008 submitted.

  25. Firmann M, Mayor V, Vidal PM, Bochud M, Pecoud A, Hayoz D et al. The CoLaus study: a population-based study to investigate the epidemiology and genetic determinants of cardiovascular risk factors and metabolic syndrome. BMC Cardiovasc Disord 2008; 8: 6.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Goldberg DP . The Detection of Psychiatric Illness by Questionnaire. Maudsley Monograph 21 ed. Oxford University Press: Oxford, 1972.

    Google Scholar 

  27. Bettschart W, Bolognini M . Questionnaire de santé GHQ-12. In: Guelfi JD (ed). L′évaluation Clinique Standardisée en Psychiatrie. Tome I: Boulogne, 1996, p 157.

    Google Scholar 

  28. Leboyer M, Barbe B, Gorwood P, Teherani M, Allilaire JF, Preisig M et al. Interview Diagnostique pour les Etudes Génétiques. INSERM: Paris, 1995.

    Google Scholar 

  29. Andreasen NC, Endicott J, Spitzer RL, Winokur G . The family history method using diagnostic criteria. Reliability and validity. Arch Gen Psychiatry 1977; 34: 1229–1235.

    Article  CAS  PubMed  Google Scholar 

  30. Fellay J, Shianna KV, Ge D, Colombo S, Ledergerber B, Weale M et al. A whole-genome association study of major determinants for host control of HIV-1. Science 2007; 317: 944–947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D . Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006; 38: 904–909.

    Article  CAS  PubMed  Google Scholar 

  33. Patterson N, Price AL, Reich D . Population structure and eigen analysis. PLoS Genet 2006; 2: e190.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sandhu MS, Waterworth DM, Debenham SL, Wheeler E, Papadakis K, Zhao JH et al. LDL-cholesterol concentrations: a genome-wide association study. Lancet 2008; 371: 483–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Devlin B, Roeder K . Genomic control for association studies. Biometrics 1999; 55: 997–1004.

    Article  CAS  PubMed  Google Scholar 

  36. Marchini J, Howie B, Myers S, McVean G, Donnelly P . A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 2007; 39: 906–913.

    Article  CAS  PubMed  Google Scholar 

  37. Nyholt DR . A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 2004; 74: 765–769.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Li J, Ji L . Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity 2005; 95: 221–227.

    Article  CAS  PubMed  Google Scholar 

  39. Šidák Z . Rectangular confidence regions for the means of multivariate normal distributions. J Am Stat Assoc 1967; 62: 626–633.

    Google Scholar 

  40. Ge D, Zhang K, Need AC, Martin O, Fellay J, Urban TJ et al. WGAViewer: software for genomic annotation of whole genome association studies. Genome Res 2008; 18: 640–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Becker KG, Barnes KC, Bright TJ, Wang SA . The genetic association database. Nat Genet 2004; 36: 431–432.

    Article  CAS  PubMed  Google Scholar 

  42. Hoggart CJ, Clark TG, De Iorio M, Whittaker JC, Balding DJ . Genome-wide significance for dense SNP and resequencing data. Genet Epidemiol 2008; 32: 179–185.

    Article  PubMed  Google Scholar 

  43. George M, Ying G, Rainey MA, Solomon A, Parikh PT, Gao Q et al. Shared as well as distinct roles of EHD proteins revealed by biochemical and functional comparisons in mammalian cells and C elegans. BMC Cell Biol 2007; 8: 3.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Toyota T, Yamada K, Saito K, Detera-Wadleigh SD, Yoshikawa T . Association analysis of adenylate cyclase type 9 gene using pedigree disequilibrium test in bipolar disorder. Mol Psychiatry 2002; 7: 450–452.

    Article  CAS  PubMed  Google Scholar 

  45. Toyota T, Hattori E, Meerabux J, Yamada K, Saito K, Shibuya H et al. Molecular analysis, mutation screening, and association study of adenylate cyclase type 9 gene (ADCY9) in mood disorders. Am J Med Genet 2002; 114: 84–92.

    Article  PubMed  Google Scholar 

  46. Cui DH, Jiang KD, Jiang SD, Xu YF, Yao H . The tumor suppressor adenomatous polyposis coli gene is associated with susceptibility to schizophrenia. Mol Psychiatry 2005; 10: 669–677.

    Article  CAS  PubMed  Google Scholar 

  47. Kishi T, Ikeda M, Suzuki T, Kitajima T, Yamanouchi Y, Kinoshita Y et al. No association of complexin1 and complexin2 genes with schizophrenia in a Japanese population. Schizophr Res 2006; 82: 185–189.

    Article  PubMed  Google Scholar 

  48. Lee HJ, Song JY, Kim JW, Jin SY, Hong MS, Park JK et al. Association study of polymorphisms in synaptic vesicle-associated genes, SYN2 and CPLX2, with schizophrenia. Behav Brain Funct 2005; 1: 15.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Fallin MD, Lasseter VK, Avramopoulos D, Nicodemus KK, Wolyniec PS, McGrath JA et al. Bipolar I disorder and schizophrenia: a 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios. Am J Hum Genet 2005; 77: 918–936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Guo SZ, Huang K, Shi YY, Tang W, Zhou J, Feng GY et al. A case-control association study between the GRID1 gene and schizophrenia in the Chinese Northern Han population. Schizophr Res 2007; 93: 385–390.

    Article  PubMed  Google Scholar 

  51. Baum AE, Akula N, Cabanero M, Cardona I, Corona W, Klemens B et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry 2008; 13: 197–207.

    Article  CAS  PubMed  Google Scholar 

  52. Sklar P, Smoller JW, Fan J, Ferreira MA, Perlis RH, Chambert K et al. Whole-genome association study of bipolar disorder. Mol Psychiatry 2008; 13: 558–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. WTCCC. Genome-wide association study of 14 000 cases of seven common diseases and 3000 shared controls. Nature 2007; 447: 661–678.

    Article  Google Scholar 

  54. Ferreira MA, O’Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 2008; 40: 1056–1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Paddock S, Laje G, Charney D, Rush AJ, Wilson AF, Sorant AJ et al. Association of GRIK4 with outcome of antidepressant treatment in the STAR*D cohort. Am J Psychiatry 2007; 164: 1181–1188.

    Article  PubMed  Google Scholar 

  56. Bodmer W, Bonilla C . Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet 2008; 40: 695–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Altshuler D, Daly M . Guilt beyond a reasonable doubt. Nat Genet 2007; 39: 813–815.

    Article  CAS  PubMed  Google Scholar 

  58. Kingsmore SF, Lindquist IE, Mudge J, Gessler DD, Beavis WD . Genome-wide association studies: progress and potential for drug discovery and development. Nat Rev Drug Discov 2008; 7: 221–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lencz T, Morgan TV, Athanasiou M, Dain B, Reed CR, Kane JM et al. Converging evidence for a pseudoautosomal cytokine receptor gene locus in schizophrenia. Mol Psychiatry 2007; 12: 572–580.

    Article  CAS  PubMed  Google Scholar 

  60. Shifman S, Johannesson M, Bronstein M, Chen SX, Collier DA, Craddock NJ et al. Genome-wide association identifies a common variant in the reelin gene that increases the risk of schizophrenia only in women. PLoS Genet 2008; 4: e28.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sullivan PF, Lin D, Tzeng JY, van den OE, Perkins D, Stroup TS et al. Genomewide association for schizophrenia in the CATIE study: results of stage 1. Mol Psychiatry 2008; 13: 570–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Levinson DF . The genetics of depression: a review. Biol Psychiatry 2006; 60: 84–92.

    Article  CAS  PubMed  Google Scholar 

  63. Levinson DF . The genetics of depression: a review. Biol Psychiatry 2006; 60: 84–92.

    Article  CAS  PubMed  Google Scholar 

  64. Witkin JM, Marek GJ, Johnson BG, Schoepp DD . Metabotropic glutamate receptors in the control of mood disorders. CNS Neurol Disord Drug Targets 2007; 6: 87–100.

    Article  CAS  PubMed  Google Scholar 

  65. Callaerts-Vegh Z, Beckers T, Ball SM, Baeyens F, Callaerts PF, Cryan JF et al. Concomitant deficits in working memory and fear extinction are functionally dissociated from reduced anxiety in metabotropic glutamate receptor 7-deficient mice. J Neurosci 2006; 26: 6573–6582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cryan JF, Kelly PH, Neijt HC, Sansig G, Flor PJ, van der PH . Antidepressant and anxiolytic-like effects in mice lacking the group III metabotropic glutamate receptor mGluR7. Eur J Neurosci 2003; 17: 2409–2417.

    Article  PubMed  Google Scholar 

  67. Mitsukawa K, Mombereau C, Lotscher E, Uzunov DP, van der PH, Flor PJ et al. Metabotropic glutamate receptor subtype 7 ablation causes dysregulation of the HPA axis and increases hippocampal BDNF protein levels: implications for stress-related psychiatric disorders. Neuropsychopharmacology 2006; 31: 1112–1122.

    Article  CAS  PubMed  Google Scholar 

  68. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008; 320: 539–543.

    Article  CAS  PubMed  Google Scholar 

  69. Stefansson H, Rujescu D, Cichon S, Pietilainen OP, Ingason A, Steinberg S et al. Large recurrent microdeletions associated with schizophrenia. Nature 2008; 455: 232–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stone JL, O′Donovan MC, Gurling H, Kirov GK, Blackwood DH, Corvin A et al. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008; 455: 237–241.

    Article  CAS  Google Scholar 

  71. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T et al. Strong association of de novo copy number mutations with autism. Science 2007; 316: 445–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Francks C, Tozzi F, Farmer A, Vincent JB, Rujescu D, St Clair D et al. Population-based linkage analysis of schizophrenia and bipolar case-control cohorts identifies a potential susceptibility locus on 19q13. Mol Psychiatry; advance online publication 16 September 2008; doi:10.1038/mp.2008.100.

    Article  PubMed  Google Scholar 

  73. Kendler KS, Gardner CO, Prescott CA . Toward a comprehensive developmental model for major depression in women. Am J Psychiatry 2002; 159: 1133–1145.

    Article  PubMed  Google Scholar 

  74. Kendler KS, Kuhn JW, Prescott CA . Childhood sexual abuse, stressful life events and risk for major depression in women. Psychol Med 2004; 34: 1475–1482.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge all the participants in the studies. We thank numerous people at GSK and Max-Planck Institute, BKH Augsburg and Klinikum Ingolstadt in Germany and the Staff and the Department of Psychiatry and Internal Medicine at the University of Lausanne who have contributed to this project. In particular, GSK thanks Paul M Matthews for his support to the project over the past year and to Shyama Brewster for initiating and coordinating the first phase of recruitment at the Germany Sites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Muglia.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muglia, P., Tozzi, F., Galwey, N. et al. Genome-wide association study of recurrent major depressive disorder in two European case–control cohorts. Mol Psychiatry 15, 589–601 (2010). https://doi.org/10.1038/mp.2008.131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2008.131

Keywords

This article is cited by

Search

Quick links