Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Identifying blood biomarkers for mood disorders using convergent functional genomics

A Corrigendum to this article was published on 18 November 2009

Abstract

There are to date no objective clinical laboratory blood tests for mood disorders. The current reliance on patient self-report of symptom severity and on the clinicians’ impression is a rate-limiting step in effective treatment and new drug development. We propose, and provide proof of principle for, an approach to help identify blood biomarkers for mood state. We measured whole-genome gene expression differences in blood samples from subjects with bipolar disorder that had low mood vs those that had high mood at the time of the blood draw, and separately, changes in gene expression in brain and blood of a mouse pharmacogenomic model. We then integrated our human blood gene expression data with animal model gene expression data, human genetic linkage/association data and human postmortem brain data, an approach called convergent functional genomics, as a Bayesian strategy for cross-validating and prioritizing findings. Topping our list of candidate blood biomarker genes we have five genes involved in myelination (Mbp, Edg2, Mag, Pmp22 and Ugt8), and six genes involved in growth factor signaling (Fgfr1, Fzd3, Erbb3, Igfbp4, Igfbp6 and Ptprm). All of these genes have prior evidence of differential expression in human postmortem brains from mood disorder subjects. A predictive score developed based on a panel of 10 top candidate biomarkers (five for high mood and five for low mood) shows sensitivity and specificity for high mood and low mood states, in two independent cohorts. Our studies suggest that blood biomarkers may offer an unexpectedly informative window into brain functioning and disease state.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 2
Figure 1
Figure 3
Figure 4
Figure 5

References

  1. Niculescu III AB, Segal DS, Kuczenski R, Barrett T, Hauger RL, Kelsoe JR . Identifying a series of candidate genes for mania and psychosis: a convergent functional genomics approach. Physiol Genomics 2000; 4: 83–91.

    CAS  Article  PubMed  Google Scholar 

  2. Ogden CA, Rich ME, Schork NJ, Paulus MP, Geyer MA, Lohr JB et al. Candidate genes, pathways and mechanisms for bipolar (manic-depressive) and related disorders: an expanded convergent functional genomics approach. Mol Psychiatry 2004; 9: 1007–1029.

    CAS  Article  PubMed  Google Scholar 

  3. Rodd ZA, Bertsch BA, Strother WN, Le-Niculescu H, Balaraman Y, Hayden E et al. Candidate genes, pathways and mechanisms for alcoholism: an expanded convergent functional genomics approach. Pharmacogenomics J 2007; 7: 222–256.

    CAS  Article  PubMed  Google Scholar 

  4. Le-Niculescu H, Balaraman Y, Patel S, Tan J, Sidhu K, Jerome RE et al. Towards understanding the schizophrenia code: an expanded convergent functional genomics approach. Am J Med Genet B Neuropsychiatr Genet 2007; 144: 129–158.

    Article  Google Scholar 

  5. Vawter MP, Ferran E, Galke B, Cooper K, Bunney WE, Byerley W . Microarray screening of lymphocyte gene expression differences in a multiplex schizophrenia pedigree. Schizophr Res 2004; 67: 41–52.

    Article  PubMed  Google Scholar 

  6. Tsuang MT, Nossova N, Yager T, Tsuang MM, Guo SC, Shyu KG et al. Assessing the validity of blood-based gene expression profiles for the classification of schizophrenia and bipolar disorder: a preliminary report. Am J Med Genet B Neuropsychiatr Genet 2005; 133: 1–5.

    Article  Google Scholar 

  7. Segman RH, Shefi N, Goltser-Dubner T, Friedman N, Kaminski N, Shalev AY . Peripheral blood mononuclear cell gene expression profiles identify emergent post-traumatic stress disorder among trauma survivors. Mol Psychiatry 2005; 10: 500–513,425.

    CAS  Article  PubMed  Google Scholar 

  8. Middleton FA, Pato CN, Gentile KL, McGann L, Brown AM, Trauzzi M et al. Gene expression analysis of peripheral blood leukocytes from discordant sib-pairs with schizophrenia and bipolar disorder reveals points of convergence between genetic and functional genomic approaches. Am J Med Genet B Neuropsychiatr Genet 2005; 136: 12–25.

    Article  Google Scholar 

  9. Glatt SJ, Everall IP, Kremen WS, Corbeil J, Sasik R, Khanlou N et al. Comparative gene expression analysis of blood and brain provides concurrent validation of SELENBP1 up-regulation in schizophrenia. Proc Natl Acad Sci USA 2005; 102: 15533–15538.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Sullivan PF, Fan C, Perou CM . Evaluating the comparability of gene expression in blood and brain. Am J Med Genet B Neuropsychiatr Genet 2006; 141: 261–268.

    Article  Google Scholar 

  11. Gladkevich A, Kauffman HF, Korf J . Lymphocytes as a neural probe: potential for studying psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28: 559–576.

    Article  PubMed  Google Scholar 

  12. Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA . Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet 2004; 36: 131–137.

    CAS  Article  PubMed  Google Scholar 

  13. Chambers JS, Perrone-Bizzozero NI . Altered myelination of the hippocampal formation in subjects with schizophrenia and bipolar disorder. Neurochem Res 2004; 29: 2293–2302.

    CAS  Article  PubMed  Google Scholar 

  14. Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 2003; 362: 798–805.

    CAS  Article  PubMed  Google Scholar 

  15. Baum AE, Akula N, Cabanero M, Cardona I, Corona W, Klemens B et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry 2007; 13: 197–207.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schulze TG, Chen YS, Badner JA, McInnis MG, DePaulo Jr JR, McMahon FJ . Additional, physically ordered markers increase linkage signal for bipolar disorder on chromosome 18q22. Biol Psychiatry 2003; 53: 239–243.

    CAS  Article  PubMed  Google Scholar 

  17. Maziade M, Roy MA, Chagnon YC, Cliche D, Fournier JP, Montgrain N et al. Shared and specific susceptibility loci for schizophrenia and bipolar disorder: a dense genome scan in Eastern Quebec families. Mol Psychiatry 2005; 10: 486–499.

    CAS  Article  PubMed  Google Scholar 

  18. Aston C, Jiang L, Sokolov BP . Transcriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder. Mol Psychiatry 2005; 10: 309–322.

    CAS  Article  PubMed  Google Scholar 

  19. Jurata LW, Bukhman YV, Charles V, Capriglione F, Bullard J, Lemire AL et al. Comparison of microarray-based mRNA profiling technologies for identification of psychiatric disease and drug signatures. J Neurosci Methods 2004; 138: 173–188.

    CAS  Article  PubMed  Google Scholar 

  20. Badenhop RF, Moses MJ, Scimone A, Mitchell PB, Ewen-White KR, Rosso A et al. A genome screen of 13 bipolar affective disorder pedigrees provides evidence for susceptibility loci on chromosome 3 as well as chromosomes 9, 13 and 19. Mol Psychiatry 2002; 7: 851–859.

    CAS  Article  PubMed  Google Scholar 

  21. Gaughran F, Payne J, Sedgwick PM, Cotter D, Berry M . Hippocampal FGF-2 and FGFR1 mRNA expression in major depression, schizophrenia and bipolar disorder. Brain Res Bull 2006; 70: 221–227.

    CAS  Article  PubMed  Google Scholar 

  22. Park N, Juo SH, Cheng R, Liu J, Loth JE, Lilliston B et al. Linkage analysis of psychosis in bipolar pedigrees suggests novel putative loci for bipolar disorder and shared susceptibility with schizophrenia. Mol Psychiatry 2004; 9: 1091–1099.

    CAS  Article  PubMed  Google Scholar 

  23. Cichon S, Schumacher J, Muller DJ, Hurter M, Windemuth C, Strauch K et al. A genome screen for genes predisposing to bipolar affective disorder detects a new susceptibility locus on 8q. Hum Mol Genet 2001; 10: 2933–2944.

    CAS  Article  PubMed  Google Scholar 

  24. Ryan MM, Lockstone HE, Huffaker SJ, Wayland MT, Webster MJ, Bahn S . Gene expression analysis of bipolar disorder reveals downregulation of the ubiquitin cycle and alterations in synaptic genes. Mol Psychiatry 2006; 11: 965–978.

    CAS  Article  PubMed  Google Scholar 

  25. Zubenko GS, Hughes HB, Stiffler JS, Zubenko WN, Kaplan BB . Genome survey for susceptibility loci for recurrent, early-onset major depression: results at 10 cM resolution. Am J Med Genet 2002; 114: 413–422.

    Article  PubMed  Google Scholar 

  26. Liu J, Juo SH, Dewan A, Grunn A, Tong X, Brito M et al. Evidence for a putative bipolar disorder locus on 2p13–16 and other potential loci on 4q31, 7q34, 8q13, 9q31, 10q21–24, 13q32, 14q21 and 17q11–12. Mol Psychiatry 2003; 8: 333–342.

    CAS  Article  PubMed  Google Scholar 

  27. Lambert D, Middle F, Hamshere ML, Segurado R, Raybould R, Corvin A et al. Stage 2 of the Wellcome Trust UK–Irish bipolar affective disorder sibling-pair genome screen: evidence for linkage on chromosomes 6q16-q21, 4q12-q21, 9p21, 10p14-p12 and 18q22. Mol Psychiatry 2005; 10: 831–841.

    CAS  Article  PubMed  Google Scholar 

  28. Aston C, Jiang L, Sokolov BP . Microarray analysis of postmortem temporal cortex from patients with schizophrenia. J Neurosci Res 2004; 77: 858–866.

    CAS  Article  PubMed  Google Scholar 

  29. Nakatani N, Hattori E, Ohnishi T, Dean B, Iwayama Y, Matsumoto I et al. Genome-wide expression analysis detects eight genes with robust alterations specific to bipolar I disorder: relevance to neuronal network perturbation. Hum Mol Genet 2006; 15: 1949–1962.

    CAS  Article  PubMed  Google Scholar 

  30. Dick DM, Foroud T, Flury L, Bowman ES, Miller MJ, Rau NL et al. Genomewide linkage analyses of bipolar disorder: a new sample of 250 pedigrees from the National Institute of Mental Health Genetics Initiative. Am J Hum Genet 2003; 73: 107–114.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447: 661–678.

    Article  Google Scholar 

  32. Morissette J, Villeneuve A, Bordeleau L, Rochette D, Laberge C, Gagne B et al. Genome-wide search for linkage of bipolar affective disorders in a very large pedigree derived from a homogeneous population in Quebec points to a locus of major effect on chromosome 12q23–q24. Am J Med Genet 1999; 88: 567–587.

    CAS  Article  PubMed  Google Scholar 

  33. Schulze TG, Buervenich S, Badner JA, Steele CJ, Detera-Wadleigh SD, Dick D et al. Loci on chromosomes 6q and 6p interact to increase susceptibility to bipolar affective disorder in the National Institute of Mental Health Genetics Initiative pedigrees. Biol Psychiatry 2004; 56: 18–23.

    CAS  Article  PubMed  Google Scholar 

  34. McQueen MB, Devlin B, Faraone SV, Nimgaonkar VL, Sklar P, Smoller JW et al. Combined analysis from eleven linkage studies of bipolar disorder provides strong evidence of susceptibility loci on chromosomes 6q and 8q. Am J Hum Genet 2005; 77: 582–595.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Rice JP, Goate A, Williams JT, Bierut L, Dorr D, Wu W et al. Initial genome scan of the NIMH genetics initiative bipolar pedigrees: chromosomes 1, 6, 8, 10, and 12. Am J Med Genet 1997; 74: 247–253.

    CAS  Article  PubMed  Google Scholar 

  36. Nurnberger Jr JI, Foroud T, Flury L, Su J, Meyer ET, Hu K et al. Evidence for a locus on chromosome 1 that influences vulnerability to alcoholism and affective disorder. Am J Psychiatry 2001; 158: 718–724.

    Article  PubMed  Google Scholar 

  37. Potash JB, Zandi PP, Willour VL, Lan TH, Huo Y, Avramopoulos D et al. Suggestive linkage to chromosomal regions 13q31 and 22q12 in families with psychotic bipolar disorder. Am J Psychiatry 2003; 160: 680–686.

    Article  PubMed  Google Scholar 

  38. Segurado R, Detera-Wadleigh SD, Levinson DF, Lewis CM, Gill M, Nurnberger Jr JI et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part III: bipolar disorder. Am J Hum Genet 2003; 73: 49–62.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Camp NJ, Lowry MR, Richards RL, Plenk AM, Carter C, Hensel CH et al. Genome-wide linkage analyses of extended Utah pedigrees identifies loci that influence recurrent, early-onset major depression and anxiety disorders. Am J Med Genet B Neuropsychiatr Genet 2005; 135: 85–93.

    Article  Google Scholar 

  40. Etain B, Mathieu F, Rietschel M, Maier W, Albus M, McKeon P et al. Genome-wide scan for genes involved in bipolar affective disorder in 70 European families ascertained through a bipolar type I early-onset proband: supportive evidence for linkage at 3p14. Mol Psychiatry 2006; 11: 685–694.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Radhakrishna U, Senol S, Herken H, Gucuyener K, Gehrig C, Blouin JL et al. An apparently dominant bipolar affective disorder (BPAD) locus on chromosome 20p11.2–q11.2 in a large Turkish pedigree. Eur J Hum Genet 2001; 9: 39–44.

    CAS  Article  PubMed  Google Scholar 

  42. Matigian N, Windus L, Smith H, Filippich C, Pantelis C, McGrath J et al. Expression profiling in monozygotic twins discordant for bipolar disorder reveals dysregulation of the WNT signalling pathway. Mol Psychiatry 2007; 12: 815–825.

    CAS  Article  PubMed  Google Scholar 

  43. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 2006; 313: 1929–1935.

    CAS  Article  PubMed  Google Scholar 

  44. Le-Niculescu H, McFarland MJ, Mamidipalli S, Ogden CA, Kuczenski R, Kurian SM et al. Convergent functional genomics of bipolar disorder: from animal model pharmacogenomics to human genetics and biomarkers. Neurosci Biobehav Rev 2007; 31: 897–903.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Kasahara T, Kubota M, Miyauchi T, Noda Y, Mouri A, Nabeshima T et al. Mice with neuron-specific accumulation of mitochondrial DNA mutations show mood disorder-like phenotypes. Mol Psychiatry 2006; 11: 577–593,523.

    CAS  Article  PubMed  Google Scholar 

  46. Prickaerts J, Moechars D, Cryns K, Lenaerts I, van Craenendonck H, Goris I et al. Transgenic mice overexpressing glycogen synthase kinase 3beta: a putative model of hyperactivity and mania. J Neurosci 2006; 26: 9022–9029.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Roybal K, Theobold D, Graham A, Dinieri JA, Russo SJ, Krishnan V et al. From the cover: mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci USA 2007; 104: 6406–6411.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Kato T, Kubota M, Kasahara T . Animal models of bipolar disorder. Neurosci Biobehav Rev 2007; 31: 832–842.

    CAS  Article  PubMed  Google Scholar 

  49. Le-Niculescu H, McFarland MJ, Ogden CA, Balaraman Y, Patel S, Tan J et al. Phenomic, Convergent Functional Genomic, and biomarker studies in a stress-reactive genetic animal model of bipolar disorder and co-morbid alcoholism. Am J Med Genet B Neuropsychiatr Genet 2008; e-pub ahead of print 4 February 2008.

  50. Niculescu AB, Lulow LL, Ogden CA, Le-Niculescu H, Salomon DR, Schork NJ et al. PhenoChipping of psychotic disorders: a novel approach for deconstructing and quantitating psychiatric phenotypes. Am J Med Genet B Neuropsychiatr Genet 2006; 141: 653–662.

    Article  Google Scholar 

  51. Vawter MP, Crook JM, Hyde TM, Kleinman JE, Weinberger DR, Becker KG et al. Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: a preliminary study. Schizophr Res 2002; 58: 11–20.

    Article  PubMed  Google Scholar 

  52. Choudary PV, Molnar M, Evans SJ, Tomita H, Li JZ, Vawter MP et al. Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc Natl Acad Sci USA 2005; 102: 15653–15658.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Vawter MP, Tomita H, Meng F, Bolstad B, Li J, Evans S et al. Mitochondrial-related gene expression changes are sensitive to agonal-pH state: implications for brain disorders. Mol Psychiatry 2006; 11: 615,663–79.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Quackenbush J . Genomics. Microarrays—guilt by association. Science 2003; 302: 240–241.

    CAS  Article  PubMed  Google Scholar 

  55. Morrison JL, Breitling R, Higham DJ, Gilbert DR . GeneRank: using search engine technology for the analysis of microarray experiments. BMC Bioinformatics 2005; 6: 233.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Benedetti F, Radaelli D, Bernasconi A, Dallaspezia S, Falini A, Scotti G et al. Clock genes beyond the clock: CLOCK genotype biases neural correlates of moral valence decision in depressed patients. Genes Brain Behav 2008; 7: 20–25.

    CAS  PubMed  Google Scholar 

  57. Hariri AR, Weinberger DR . Imaging genomics. Br Med Bull 2003; 65: 259–270.

    CAS  Article  PubMed  Google Scholar 

  58. Duman RS, Monteggia LM . A neurotrophic model for stress-related mood disorders. Biol Psychiatry 2006; 59: 1116–1127.

    CAS  Article  PubMed  Google Scholar 

  59. Agid Y, Buzsaki G, Diamond DM, Frackowiak R, Giedd J, Girault JA et al. How can drug discovery for psychiatric disorders be improved? Nat Rev Drug Discov 2007; 6: 189–201.

    CAS  Article  PubMed  Google Scholar 

  60. Shaltiel G, Chen G, Manji HK . Neurotrophic signaling cascades in the pathophysiology and treatment of bipolar disorder. Curr Opin Pharmacol 2007; 7: 22–26.

    CAS  Article  PubMed  Google Scholar 

  61. Davis KL, Stewart DG, Friedman JI, Buchsbaum M, Harvey PD, Hof PR et al. White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch Gen Psychiatry 2003; 60: 443–456.

    Article  PubMed  Google Scholar 

  62. Lewohl JM, Wixey J, Harper CG, Dodd PR . Expression of MBP, PLP, MAG, CNP, and GFAP in the human alcoholic brain. Alcohol Clin Exp Res 2005; 29: 1698–1705.

    CAS  Article  PubMed  Google Scholar 

  63. Rodd ZA, Bertsch BA, Strother WN, Le-Niculescu H, Balaraman Y, Hayden E et al. Candidate genes, pathways and mechanisms for alcoholism: an expanded convergent functional genomics approach. Pharmacogenomics J 2007; 7: 222–256.

    CAS  Article  PubMed  Google Scholar 

  64. Haroutunian V, Katsel P, Dracheva S, Stewart DG, Davis KL . Variations in oligodendrocyte-related gene expression across multiple cortical regions: implications for the pathophysiology of schizophrenia. Int J Neuropsychopharmacol 2007; 1–9.

  65. Le-Niculescu H, Balaraman Y, Patel S, Tan J, Sidhu K, Jerome RE et al. Towards understanding the schizophrenia code: an expanded convergent functional genomics approach. Am J Med Genet B Neuropsychiatr Genet 2007; 144B: 129–158.

    CAS  Article  PubMed  Google Scholar 

  66. Sokolov BP . Oligodendroglial abnormalities in schizophrenia, mood disorders and substance abuse. Comorbidity, shared traits, or molecular phenocopies? Int J Neuropsychopharmacol 2007; 10: 547–555.

    CAS  Article  PubMed  Google Scholar 

  67. Kling MA, Alesci S, Csako G, Costello R, Luckenbaugh DA, Bonne O et al. Sustained low-grade pro-inflammatory state in unmedicated, remitted women with major depressive disorder as evidenced by elevated serum levels of the acute phase proteins C-reactive protein and serum amyloid A. Biol Psychiatry 2007; 62: 309–313.

    CAS  Article  PubMed  Google Scholar 

  68. Qi X, Hosoi T, Okuma Y, Kaneko M, Nomura Y . Sodium 4-phenylbutyrate protects against cerebral ischemic injury. Mol Pharmacol 2004; 66: 899–908.

    CAS  Article  PubMed  Google Scholar 

  69. Leng Y, Chuang DM . Endogenous alpha-synuclein is induced by valproic acid through histone deacetylase inhibition and participates in neuroprotection against glutamate-induced excitotoxicity. J Neurosci 2006; 26: 7502–7512.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. McCullumsmith RE, Kristiansen LV, Beneyto M, Scarr E, Dean B, Meador-Woodruff JH . Decreased NR1, NR2A, and SAP102 transcript expression in the hippocampus in bipolar disorder. Brain Res 2007; 1127: 108–118.

    CAS  Article  PubMed  Google Scholar 

  71. Einat H, Manji HK . Cellular plasticity cascades: genes-to-behavior pathways in animal models of bipolar disorder. Biol Psychiatry 2006; 59: 1160–1171.

    CAS  Article  PubMed  Google Scholar 

  72. Zarate Jr CA, Singh J, Manji HK . Cellular plasticity cascades: targets for the development of novel therapeutics for bipolar disorder. Biol Psychiatry 2006; 59: 1006–1020.

    CAS  Article  PubMed  Google Scholar 

  73. Haendeler J, Hoffmann J, Rahman S, Zeiher AM, Dimmeler S . Regulation of telomerase activity and anti-apoptotic function by protein–protein interaction and phosphorylation. FEBS Lett 2003; 536: 180–186.

    CAS  Article  PubMed  Google Scholar 

  74. Neckers L . Using natural product inhibitors to validate Hsp90 as a molecular target in cancer. Curr Top Med Chem 2006; 6: 1163–1171.

    CAS  Article  PubMed  Google Scholar 

  75. De Sarno P, Li X, Jope RS . Regulation of Akt and glycogen synthase kinase-3 beta phosphorylation by sodium valproate and lithium. Neuropharmacology 2002; 43: 1158–1164.

    CAS  Article  PubMed  Google Scholar 

  76. Niculescu AB . Genomic studies of mood disorders—the brain as a muscle? Genome Biol 2005; 6: 215.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Evans SJ, Choudary PV, Neal CR, Li JZ, Vawter MP, Tomita H et al. Dysregulation of the fibroblast growth factor system in major depression. Proc Natl Acad Sci USA 2004; 101: 15506–15511.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. Niculescu III AB . Polypharmacy in oligopopulations: what psychiatric genetics can teach biological psychiatry. Psychiatr Genet 2006; 16: 241–244.

    Article  PubMed  Google Scholar 

  79. Goldberg TE, Weinberger DR . Genes and the parsing of cognitive processes. Trends Cogn Sci 2004; 8: 325–335.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from INGEN (Indiana Genomics Initiative of Indiana University) and INBRAIN (Indiana Center for Biomarker Research In Neuropsychiatry) to ABN, as well as NIMH R01 MH071912-01 to MTT and ABN. ABN is a NARSAD Mogens Schou Young Investigator. ABN thanks Drs Christian Felder and George Sandusky of Lilly Research Laboratories for help with establishing INBRAIN, Dr Matthew McFarland for help with sample repository organization and Dr Nicholas Schork from Scripps for insightful discussions and advice. We thank Sudharani Mamidipalli and Dr Meghana Bhat for their precise work with database maintenance and data analysis, Dr Paul Lysaker for advice on neuropsychological testing and help with subject recruitment, as well as David Bertram and Jeremy Davis for help with subject testing. Last but not least, we thank the subjects who participated in these studies. Without their generous participation, such work to advance the understanding of mental illness would not be possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A B Niculescu.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Le-Niculescu, H., Kurian, S., Yehyawi, N. et al. Identifying blood biomarkers for mood disorders using convergent functional genomics. Mol Psychiatry 14, 156–174 (2009). https://doi.org/10.1038/mp.2008.11

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2008.11

Keywords

  • convergent functional genomics
  • brain
  • blood
  • bipolar
  • mood
  • biomarkers

This article is cited by

Search

Quick links