Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Assessment of circadian function in fibroblasts of patients with bipolar disorder

Abstract

Previous studies have implicated the circadian system in the pathophysiology of bipolar disorder, but conclusive evidence for altered circadian clocks is lacking. Cultured fibroblasts harbor circadian clocks representative of those in the master clock resident in the suprachiasmatic nuclei, providing a new avenue to investigate the core clock machinery in patients with bipolar illness. We examined the rhythmic expression patterns of core clock genes (BMAL1, PER1, PER2, REV-ERBα, DEC2, DBP) in fibroblasts from 12 bipolar patients and 12 healthy controls. Although we did not detect differences in the circadian period between bipolar patients and controls, the amplitude of rhythmic expression for BMAL1, REV-ERBα and DBP, as well as the overall mRNA expression level for DEC2 and DBP was reduced in fibroblasts from bipolar patients. Bonferroni's correction for multiple comparisons still resulted in significantly reduced DBP expression level, and trends toward reduced overall expression level of DEC2 and circadian amplitude of BMAL1, in fibroblasts from bipolar patients. We next examined an expanded cohort of 18 bipolar patients and 35 healthy controls for mRNA expression levels of four kinases (CKIδ, CKIɛ, GSK3α and GSK3β) and the protein and phosphorylation levels of two of them (GSK3α and GSK3β). We did not detect differences in steady-state mRNA levels or protein levels of these kinases between bipolar patients and controls, but the level of GSK3β phosphorylation was significantly reduced in bipolar patients within an Old Order Amish bipolar kindred. Our results suggest that the reduced amplitudes and overall expression levels of circadian genes, and the decreased phosphorylation level of GSK3β may lead to dysregulation of downstream genes, which could explain some pathological features of bipolar disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE . Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 2005; 62: 617–627.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Craddock N, O’Donovan MC, Owen MJ . The genetics of schizophrenia and bipolar disorder: dissecting psychosis. J Med Genet 2005; 42: 193–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Healy D . Rhythm and blues. Neurochemical, neuropharmacological and neuropsychological implications of a hypothesis of circadian rhythm dysfunction in the affective disorders. Psychopharmacology (Berl) 1987; 93: 271–285.

    Article  CAS  Google Scholar 

  4. Mitterauer B . Clock genes, feedback loops and their possible role in the etiology of bipolar disorders: an integrative model. Med Hypotheses 2000; 55: 155–159.

    Article  CAS  PubMed  Google Scholar 

  5. Boivin DB . Influence of sleep–wake and circadian rhythm disturbances in psychiatric disorders. J Psychiatry Neurosci 2000; 25: 446–458.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Harvey AG, Mullin BC, Hinshaw SP . Sleep and circadian rhythms in children and adolescents with bipolar disorder. Dev Psychopathol 2006; 18: 1147–1168.

    Article  PubMed  Google Scholar 

  7. Hasler G, Drevets WC, Gould TD, Gottesman II, Manji HK . Toward constructing an endophenotype strategy for bipolar disorders. Biol Psychiatry 2006; 60: 93–105.

    Article  PubMed  Google Scholar 

  8. Atkinson M, Kripke DF, Wolf SR . Autorhythmometry in manic-depressives. Chronobiologia 1975; 2: 325–335.

    CAS  PubMed  Google Scholar 

  9. Candito M, Pringuey D, Iordache A, Souetre E, Chambon P, Darcourt G . Circadian variation in total plasma tryptophan. Antidepressant treatment: drugs and phase advance. Life Sci 1992; 50: PL71–PL74.

    Article  CAS  PubMed  Google Scholar 

  10. Cervantes P, Gelber S, Kin FN, Nair VN, Schwartz G . Circadian secretion of cortisol in bipolar disorder. J Psychiatry Neurosci 2001; 26: 411–416.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Deshauer D, Duffy A, Alda M, Grof E, Albuquerque J, Grof P . The cortisol awakening response in bipolar illness: a pilot study. Can J Psychiatry 2003; 48: 462–466.

    Article  PubMed  Google Scholar 

  12. Giedke H, Gaertner HJ, Mahal A . Diurnal variation of urinary MHPG in unipolar and bipolar depressives. Acta Psychiatr Scand 1982; 66: 243–253.

    Article  CAS  PubMed  Google Scholar 

  13. Jones SH, Hare DJ, Evershed K . Actigraphic assessment of circadian activity and sleep patterns in bipolar disorder. Bipolar Disord 2005; 7: 176–186.

    Article  PubMed  Google Scholar 

  14. Kennedy SH, Kutcher SP, Ralevski E, Brown GM . Nocturnal melatonin and 24-h 6-sulphatoxymelatonin levels in various phases of bipolar affective disorder. Psychiatry Res 1996; 63: 219–222.

    Article  CAS  PubMed  Google Scholar 

  15. Linkowski P, Kerkhofs M, Van Onderbergen A, Hubain P, Copinschi G, L’Hermite-Baleriaux M et al. The 24-h profiles of cortisol, prolactin, and growth hormone secretion in mania. Arch Gen Psychiatry 1994; 51: 616–624.

    Article  CAS  PubMed  Google Scholar 

  16. Sack DA, James SP, Rosenthal NE, Wehr TA . Deficient nocturnal surge of TSH secretion during sleep and sleep deprivation in rapid-cycling bipolar illness. Psychiatry Res 1988; 23: 179–191.

    Article  CAS  PubMed  Google Scholar 

  17. Souetre E, Salvati E, Wehr TA, Sack DA, Krebs B, Darcourt G . Twenty-four-hour profiles of body temperature and plasma TSH in bipolar patients during depression and during remission and in normal control subjects. Am J Psychiatry 1988; 145: 1133–1137.

    Article  CAS  PubMed  Google Scholar 

  18. Swann AC, Stokes PE, Casper R, Secunda SK, Bowden CL, Berman N et al. Hypothalamic-pituitary-adrenocortical function in mixed and pure mania. Acta Psychiatr Scand 1992; 85: 270–274.

    Article  CAS  PubMed  Google Scholar 

  19. Teicher MH . Actigraphy and motion analysis: new tools for psychiatry. Harv Rev Psychiatry 1995; 3: 18–35.

    Article  CAS  PubMed  Google Scholar 

  20. Tsujimoto T, Yamada N, Shimoda K, Hanada K, Takahashi S . Circadian rhythms in depression. Part II: circadian rhythms in inpatients with various mental disorders. J Affect Disord 1990; 18: 199–210.

    Article  CAS  PubMed  Google Scholar 

  21. Wehr TA, Sack D, Rosenthal N, Duncan W, Gillin JC . Circadian rhythm disturbances in manic-depressive illness. Fed Proc 1983; 42: 2809–2814.

    CAS  PubMed  Google Scholar 

  22. Cade JF . Lithium salts in the treatment of psychotic excitement. 1949. Bull World Health Organ 2000; 78: 518–520.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Manji HK, Lenox RH . Lithium: a molecular transducer of mood-stabilization in the treatment of bipolar disorder. Neuropsychopharmacology 1998; 19: 161–166.

    Article  CAS  PubMed  Google Scholar 

  24. Abe M, Herzog ED, Block GD . Lithium lengthens the circadian period of individual suprachiasmatic nucleus neurons. Neuroreport 2000; 11: 3261–3264.

    Article  CAS  PubMed  Google Scholar 

  25. Iitaka C, Miyazaki K, Akaike T, Ishida N . A role for glycogen synthase kinase-3beta in the mammalian circadian clock. J Biol Chem 2005; 280: 29397–29402.

    Article  CAS  PubMed  Google Scholar 

  26. Kaladchibachi SA, Doble B, Anthopoulos N, Woodgett JR, Manoukian AS . Glycogen synthase kinase 3, circadian rhythms, and bipolar disorder: a molecular link in the therapeutic action of lithium. J Circadian Rhythms 2007; 5: 3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Dokucu ME, Yu L, Taghert PH . Lithium- and valproate-induced alterations in circadian locomotor behavior in Drosophila. Neuropsychopharmacology 2005; 30: 2216–2224.

    Article  CAS  PubMed  Google Scholar 

  28. Iwahana E, Akiyama M, Miyakawa K, Uchida A, Kasahara J, Fukunaga K et al. Effect of lithium on the circadian rhythms of locomotor activity and glycogen synthase kinase-3 protein expression in the mouse suprachiasmatic nuclei. Eur J Neurosci 2004; 19: 2281–2287.

    Article  PubMed  Google Scholar 

  29. Padiath QS, Paranjpe D, Jain S, Sharma VK . Glycogen synthase kinase 3beta as a likely target for the action of lithium on circadian clocks. Chronobiol Int 2004; 21: 43–55.

    Article  CAS  PubMed  Google Scholar 

  30. Yin L, Wang J, Klein PS, Lazar MA . Nuclear receptor Rev-erbalpha is a critical lithium-sensitive component of the circadian clock. Science 2006; 311: 1002–1005.

    Article  CAS  PubMed  Google Scholar 

  31. Benedetti F, Serretti A, Colombo C, Barbini B, Lorenzi C, Campori E et al. Influence of CLOCK gene polymorphism on circadian mood fluctuation and illness recurrence in bipolar depression. Am J Med Genet B Neuropsychiatr Genet 2003; 123: 23–26.

    Article  Google Scholar 

  32. Mansour HA, Wood J, Logue T, Chowdari KV, Dayal M, Kupfer DJ et al. Association study of eight circadian genes with bipolar I disorder, schizoaffective disorder and schizophrenia. Genes Brain Behav 2006; 5: 150–157.

    Article  CAS  PubMed  Google Scholar 

  33. Nievergelt CM, Kripke DF, Barrett TB, Burg E, Remick RA, Sadovnick AD et al. Suggestive evidence for association of the circadian genes PERIOD3 and ARNTL with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2006; 141: 234–241.

    Article  CAS  Google Scholar 

  34. Ogden CA, Rich ME, Schork NJ, Paulus MP, Geyer MA, Lohr JB et al. Candidate genes, pathways and mechanisms for bipolar (manic-depressive) and related disorders: an expanded convergent functional genomics approach. Mol Psychiatry 2004; 9: 1007–1029.

    Article  CAS  PubMed  Google Scholar 

  35. Niculescu III AB, Segal DS, Kuczenski R, Barrett T, Hauger RL, Kelsoe JR . Identifying a series of candidate genes for mania and psychosis: a convergent functional genomics approach. Physiol Genomics 2000; 4: 83–91.

    Article  CAS  PubMed  Google Scholar 

  36. Akhtar RA, Reddy AB, Maywood ES, Clayton JD, King VM, Smith AG et al. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol 2002; 12: 540–550.

    Article  CAS  PubMed  Google Scholar 

  37. Klein DC, Moore RY, Reppert SM . Suprachiasmatic Nucleus: The Mind's Clock. Oxford University Press, Inc.: New York, 1991.

    Google Scholar 

  38. Reppert SM, Weaver DR . Coordination of circadian timing in mammals. Nature 2002; 418: 935–941.

    Article  CAS  PubMed  Google Scholar 

  39. Allada R, Emery P, Takahashi JS, Rosbash M . Stopping time: the genetics of fly and mouse circadian clocks. Annu Rev Neurosci 2001; 24: 1091–1119.

    Article  CAS  PubMed  Google Scholar 

  40. Hastings MH, Reddy AB, Maywood ES . A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 2003; 4: 649–661.

    Article  CAS  PubMed  Google Scholar 

  41. Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB et al. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 2000; 103: 1009–1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science 1998; 280: 1564–1569.

    Article  CAS  PubMed  Google Scholar 

  43. Hogenesch JB, Gu YZ, Jain S, Bradfield CA . The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci USA 1998; 95: 5474–5479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP et al. Positional cloning of the mouse circadian clock gene. Cell 1997; 89: 641–653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin X et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 1999; 98: 193–205.

    Article  CAS  PubMed  Google Scholar 

  46. Okamura H, Miyake S, Sumi Y, Yamaguchi S, Yasui A, Muijtjens M et al. Photic induction of mPer1 and mPer2 in cry-deficient mice lacking a biological clock. Science 1999; 286: 2531–2534.

    Article  CAS  PubMed  Google Scholar 

  47. Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng B et al. Interacting molecular loops in the mammalian circadian clock. Science 2000; 288: 1013–1019.

    Article  CAS  PubMed  Google Scholar 

  48. Vitaterna MH, Selby CP, Todo T, Niwa H, Thompson C, Fruechte EM et al. Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc Natl Acad Sci USA 1999; 96: 12114–12119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 2002; 110: 251–260.

    Article  CAS  PubMed  Google Scholar 

  50. Ueda HR, Chen W, Adachi A, Wakamatsu H, Hayashi S, Takasugi T et al. A transcription factor response element for gene expression during circadian night. Nature 2002; 418: 534–539.

    Article  CAS  PubMed  Google Scholar 

  51. Honma S, Kawamoto T, Takagi Y, Fujimoto K, Sato F, Noshiro M et al. Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 2002; 419: 841–844.

    Article  CAS  PubMed  Google Scholar 

  52. Noshiro M, Usui E, Kawamoto T, Kubo H, Fujimoto K, Furukawa M et al. Multiple mechanisms regulate circadian expression of the gene for cholesterol 7alpha-hydroxylase (Cyp7a), a key enzyme in hepatic bile acid biosynthesis. J Biol Rhythms 2007; 22: 299–311.

    Article  CAS  PubMed  Google Scholar 

  53. Ripperger JA, Shearman LP, Reppert SM, Schibler U . CLOCK, an essential pacemaker component, controls expression of the circadian transcription factor DBP. Genes Dev 2000; 14: 679–689.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Yamaguchi S, Mitsui S, Yan L, Yagita K, Miyake S, Okamura H . Role of DBP in the circadian oscillatory mechanism. Mol Cell Biol 2000; 20: 4773–4781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Akashi M, Tsuchiya Y, Yoshino T, Nishida E . Control of intracellular dynamics of mammalian period proteins by casein kinase I epsilon (CKIepsilon) and CKIdelta in cultured cells. Mol Cell Biol 2002; 22: 1693–1703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Camacho F, Cilio M, Guo Y, Virshup DM, Patel K, Khorkova O et al. Human casein kinase Idelta phosphorylation of human circadian clock proteins period 1 and 2. FEBS Lett 2001; 489: 159–165.

    Article  CAS  PubMed  Google Scholar 

  57. Kloss B, Price JL, Saez L, Blau J, Rothenfluh A, Wesley CS et al. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iepsilon. Cell 1998; 94: 97–107.

    Article  CAS  PubMed  Google Scholar 

  58. Price JL, Blau J, Rothenfluh A, Abodeely M, Kloss B, Young MW . Double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 1998; 94: 83–95.

    Article  CAS  PubMed  Google Scholar 

  59. Martinek S, Inonog S, Manoukian AS, Young MW . A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell 2001; 105: 769–779.

    Article  CAS  PubMed  Google Scholar 

  60. Klein PS, Melton DA . A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA 1996; 93: 8455–8459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang F, Phiel CJ, Spece L, Gurvich N, Klein PS . Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium. Evidence for autoregulation of GSK-3. J Biol Chem 2003; 278: 33067–33077.

    Article  CAS  PubMed  Google Scholar 

  62. Carr AJ, Whitmore D . Imaging of single light-responsive clock cells reveals fluctuating free-running periods. Nat Cell Biol 2005; 7: 319–321.

    Article  CAS  PubMed  Google Scholar 

  63. Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U . Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 2004; 119: 693–705.

    Article  CAS  PubMed  Google Scholar 

  64. Welsh DK, Yoo SH, Liu AC, Takahashi JS, Kay SA . Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr Biol 2004; 14: 2289–2295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Akashi M, Nishida E . Involvement of the MAP kinase cascade in resetting of the mammalian circadian clock. Genes Dev 2000; 14: 645–649.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 2000; 289: 2344–2347.

    Article  CAS  PubMed  Google Scholar 

  67. Balsalobre A, Damiola F, Schibler U . A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 1998; 93: 929–937.

    Article  CAS  PubMed  Google Scholar 

  68. Balsalobre A, Marcacci L, Schibler U . Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts. Curr Biol 2000; 10: 1291–1294.

    Article  CAS  PubMed  Google Scholar 

  69. Yagita K, Okamura H . Forskolin induces circadian gene expression of rPer1, rPer2 and dbp in mammalian rat-1 fibroblasts. FEBS Lett 2000; 465: 79–82.

    Article  CAS  PubMed  Google Scholar 

  70. Yagita K, Tamanini F, van Der Horst GT, Okamura H . Molecular mechanisms of the biological clock in cultured fibroblasts. Science 2001; 292: 278–281.

    Article  CAS  PubMed  Google Scholar 

  71. Brown SA, Fleury-Olela F, Nagoshi E, Hauser C, Juge C, Meier CA et al. The period length of fibroblast circadian gene expression varies widely among human individuals. PLoS Biol 2005; 3: e338.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Rosbash M . Why the rat-1 fibroblast should replace the SCN as the in vitro model of choice. Cell 1998; 93: 917–919.

    Article  CAS  PubMed  Google Scholar 

  73. Egeland JA, Sussex JN, Endicott J, Hostetter AM, Offord DR, Schwab JJ et al. The impact of diagnosis on genetic linkage study for bipolar affective disorders among the Amish. Psychiatr Genet 1990; 1: 5–18.

    Google Scholar 

  74. Yang S, Farias M, Kapfhamer D, Tobias J, Grant G, Abel T et al. Biochemical, molecular and behavioral phenotypes of Rab3A mutations in the mouse. Genes Brain Behav 2007; 6: 77–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Diggle PJ, Liang KY, Zeger SL . Analysis of Longitudinal Data. Clarendon Press: Oxford, 1996.

    Google Scholar 

  76. Van Dongen HPA, Olofsen E, Dinges DF, Maislin G . Mixed-model regression analysis and dealing with interindividual differences. Methods Enzymol 2004; 384: 139–171.

    Article  PubMed  Google Scholar 

  77. Mikulich SK, Zerbe GO, Jones RH, Crowley TJ . Comparing linear and nonlinear mixed model approaches to cosinor analysis. Stat Med 2003; 22: 3195–3211.

    Article  PubMed  Google Scholar 

  78. Varkevisser M, Van Dongen HPA, Kerkhof GA . Physiologic indexes in chronic insomnia during a constant routine: evidence for general hyperarousal? Sleep 2005; 28: 1588–1596.

    PubMed  Google Scholar 

  79. Rinn JL, Bondre C, Gladstone HB, Brown PO, Chang HY . Anatomic demarcation by positional variation in fibroblast gene expression programs. PLoS Genet 2006; 2: e119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Jones SH . Circadian rhythms, multilevel models of emotion and bipolar disorder—an initial step towards integration? Clin Psychol Rev 2001; 21: 1193–1209.

    Article  CAS  PubMed  Google Scholar 

  81. Lenox RH, Gould TD, Manji HK . Endophenotypes in bipolar disorder. Am J Med Genet 2002; 114: 391–406.

    Article  PubMed  Google Scholar 

  82. Mansour HA, Monk TH, Nimgaonkar VL . Circadian genes and bipolar disorder. Ann Med 2005; 37: 196–205.

    Article  CAS  PubMed  Google Scholar 

  83. Wever RA . Internal interactions within the human circadian system: the masking effect. Experientia 1985; 41: 332–342.

    Article  CAS  PubMed  Google Scholar 

  84. Saper CB, Lu J, Chou TC, Gooley J . The hypothalamic integrator for circadian rhythms. Trends Neurosci 2005; 28: 152–157.

    Article  CAS  PubMed  Google Scholar 

  85. Ko CH, Takahashi JS . Molecular components of the mammalian circadian clock. Hum Mol Genet 2006; 15 (Spec No 2): R271–R277.

    Article  CAS  PubMed  Google Scholar 

  86. Lowrey PL, Takahashi JS . Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 2004; 5: 407–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Panda S, Hogenesch JB . It's all in the timing: many clocks, many outputs. J Biol Rhythms 2004; 19: 374–387.

    Article  CAS  PubMed  Google Scholar 

  88. Morton AJ, Wood NI, Hastings MH, Hurelbrink C, Barker RA, Maywood ES . Disintegration of the sleep–wake cycle and circadian timing in Huntington's disease. J Neurosci 2005; 25: 157–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vitaterna MH, Ko CH, Chang AM, Buhr ED, Fruechte EM, Schook A et al. The mouse clock mutation reduces circadian pacemaker amplitude and enhances efficacy of resetting stimuli and phase-response curve amplitude. Proc Natl Acad Sci USA 2006; 103: 9327–9332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Roybal K, Theobold D, Graham A, Dinieri JA, Russo SJ, Krishnan V et al. From the cover: mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci USA 2007; 104: 6406–6411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lakin-Thomas PL, Brody S, Cote GG . Amplitude model for the effects of mutations and temperature on period and phase resetting of the Neurospora circadian oscillator. J Biol Rhythms 1991; 6: 281–297.

    Article  CAS  PubMed  Google Scholar 

  92. Pittendrigh CS, Kyner WT, Takamura T . The amplitude of circadian oscillations: temperature dependence, latitudinal clines, and the photoperiodic time measurement. J Biol Rhythms 1991; 6: 299–313.

    Article  CAS  PubMed  Google Scholar 

  93. Winfree AT . The Geometry of Biological Time. Springer: New York, 2001.

    Book  Google Scholar 

  94. Millar A, Espie CA, Scott J . The sleep of remitted bipolar outpatients: a controlled naturalistic study using actigraphy. J Affect Disord 2004; 80: 145–153.

    Article  PubMed  Google Scholar 

  95. Piletz JE, DeMet E, Gwirtsman HE, Halaris A . Disruption of circadian MHPG rhythmicity in major depression. Biol Psychiatry 1994; 35: 830–842.

    Article  CAS  PubMed  Google Scholar 

  96. Koyanagi S, Okazawa S, Kuramoto Y, Ushijima K, Shimeno H, Soeda S et al. Chronic treatment with prednisolone represses the circadian oscillation of clock gene expression in mouse peripheral tissues. Mol Endocrinol 2006; 20: 573–583.

    Article  CAS  PubMed  Google Scholar 

  97. Li JD, Hu WP, Boehmer L, Cheng MY, Lee AG, Jilek A et al. Attenuated circadian rhythms in mice lacking the prokineticin 2 gene. J Neurosci 2006; 26: 11615–11623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Le-Niculescu H, McFarland MJ, Ogden CA, Balaraman Y, Patel S, Tan J et al. Phenomic, Convergent Functional Genomic, and biomarker studies in a stress-reactive genetic animal model of bipolar disorder and co-morbid alcoholism. Am J Med Genet B Neuropsychiatr Genet 2008 February 4; E-pub ahead of print.

  99. Prickaerts J, Moechars D, Cryns K, Lenaerts I, van Craenendonck H, Goris I et al. Transgenic mice overexpressing glycogen synthase kinase 3beta: a putative model of hyperactivity and mania. J Neurosci 2006; 26: 9022–9029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li X, Friedman AB, Zhu W, Wang L, Boswell S, May RS et al. Lithium regulates glycogen synthase kinase-3beta in human peripheral blood mononuclear cells: implication in the treatment of bipolar disorder. Biol Psychiatry 2007; 61: 216–222.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Janice Egeland at the Department of Psychiatry and Behavioral Sciences, University of Miami North Research Office, Hershey, PA, for sharing with us the updated diagnosis of Bipolar patients; Junhyong Kim for his advice and help with the analysis; Amita Sehgal and JD Alvarez for their advice in setting up the fibroblast culture experiment and helpful discussion; John Rinn and Howard Chang for sharing their unpublished results; John B Hogenesch, Peter Klein and Timothy O’Brien for their insightful advice and critical reading of the manuscript; and Michael Farias, Chris Weber, Rui Liu and Jessica Ardis for their technical help. This work was supported by the NIH (R01 MH604687; R21 MH078179) and, in part, by a grant from the Pennsylvania Department of Health. Hans Van Dongen was supported by congressionally directed funding W81XWH05-1-0099 through the US Army Medical Research and Materiel Command.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Bućan.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Van Dongen, H., Wang, K. et al. Assessment of circadian function in fibroblasts of patients with bipolar disorder. Mol Psychiatry 14, 143–155 (2009). https://doi.org/10.1038/mp.2008.10

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2008.10

Keywords

This article is cited by

Search

Quick links