Original Article | Published:

Appendiceal goblet cell carcinoids and adenocarcinomas ex-goblet cell carcinoid are genetically distinct from primary colorectal-type adenocarcinoma of the appendix

Modern Pathology volume 31, pages 829839 (2018) | Download Citation



The appendix gives rise to goblet cell carcinoids, which represent special carcinomas with distinct biological and histological features. Their genetic background and molecular relationship to colorectal adenocarcinoma is largely unknown. We therefore performed a next-generation sequencing analysis of 25 appendiceal carcinomas including 11 goblet cell carcinoids, 7 adenocarcinomas ex-goblet cell carcinoid, and 7 primary colorectal-type adenocarcinomas, using a modified Colorectal Cancer specific Panel comprising 32 genes linked to colorectal and neuroendocrine tumorigenesis. The mutational profiles of these neoplasms were compared with those of conventional adenocarcinomas, mixed adenoneuroendocrine carcinomas, and neuroendocrine carcinomas of the colorectum. In addition, a large-scale pan-cancer sequencing panel covering 409 genes was applied to selected cases of goblet cell carcinoid/adenocarcinoma ex-goblet cell carcinoid (n=2, respectively). Mutations in colorectal cancer-related genes (eg, TP53, KRAS, APC) were rare to absent in both, goblet cell carcinoids and adenocarcinomas ex-goblet cell carcinoid, but frequent in primary colorectal-type adenocarcinomas of the appendix. Additional large-scale sequencing of selected goblet cell carcinoids and adenocarcinomas ex-goblet cell carcinoid revealed mutations in Wnt-signaling-associated genes (USP9X, NOTCH1, CTNNA1, CTNNB1, TRRAP). These data suggest that appendiceal goblet cell carcinoids and adenocarcinomas ex-goblet cell carcinoid constitute a morphomolecular entity, histologically and genetically distinct from appendiceal colorectal-type adenocarcinomas and its colorectal counterparts. Altered Wnt-signaling associated genes, apart from APC, may act as potential drivers of these neoplasms. The absence of KRAS/NRAS mutations might render some of these tumors eligible for anti-EGFR directed therapy regimens.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    , Veriform appendix. In: For Pathologists. Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012, pp 698–704.

  2. 2.

    , , Appendix. In: TNM classification of malignant tumours 8th edn. John Wiley & Sons: Hoboken, NJ, USA, 2017, pp 93–96.

  3. 3.

    , , . Epithelial noncarcinoid tumors and tumor-like lesions of the appendix. A clinicopathologic study of 184 patients with a multivariate analysis of prognostic factors. Cancer 1995;75:757–768.

  4. 4.

    . Epithelial neoplasms of the appendix. Arch Pathol Lab Med 2010;134:1612–1620.

  5. 5.

    , Adenocarcinoma of the appendix. In:, , , WHO classification of tumours of the digestive system, World Health Organization2010,4th edn.WHO Press, IARC: Lyon, France, 2010, pp 122–129.

  6. 6.

    , , et al. Adenocarcinoma ex-goblet cell carcinoid (appendiceal-type crypt cell adenocarcinoma) is a morphologically distinct entity with highly aggressive behavior and frequent association with peritoneal/intra-abdominal dissemination: an analysis of 77 cases. Mod Pathol 2016;29:1243–1253.

  7. 7.

    , , et al. Pathologic classification and clinical behavior of the spectrum of goblet cell carcinoid tumors of the appendix. Am J Surg Pathol 2008;32:1429–1443.

  8. 8.

    , , et al. Ovarian metastases of appendiceal tumors with goblet cell carcinoidlike and signet ring cell patterns: a report of 30 cases. Am J Surg Pathol 2007;31:1502–1511.

  9. 9.

    , , , , . Goblet cell carcinoid tumor, mixed goblet cell carcinoid-adenocarcinoma, and adenocarcinoma of the appendix: comparison of clinicopathologic features and prognosis. Arch Pathol Lab Med 2015;139:782–790.

  10. 10.

    , , et al. Genotyping of colorectal cancer for cancer precision medicine: results from the IPH center for molecular pathology. Genes Chromosomes Cancer 2016;55:505–521.

  11. 11.

    Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012;487:330–337.

  12. 12.

    , , et al. The consensus molecular subtypes of colorectal cancer. Nat Med 2015;21:1350–1356.

  13. 13.

    , , et al. Colorectal mixed adenoneuroendocrine carcinomas and neuroendocrine carcinomas are genetically closely related to colorectal adenocarcinomas. Mod Pathol 2017;30:610–619.

  14. 14.

    , , et al. In-depth mutational analyses of colorectal neuroendocrine carcinomas with adenoma or adenocarcinoma components. Mod Pathol 2016;30:95–103.

  15. 15.

    , , et al. Molecular profiling of appendiceal epithelial tumors using massively parallel sequencing to identify somatic mutations. Clin Chem 2014;60:1004–1011.

  16. 16.

    , , et al. Semiconductor-based sequencing of formalin-fixed, paraffin-embedded colorectal cancer samples. Oncologist 2015;20:e10–e11.

  17. 17.

    , , et al. Molecular diagnostic profiling of lung cancer specimens with a semiconductor-based massive parallel sequencing approach: feasibility, costs, and performance compared with conventional sequencing. J Mol Diagn 2013;15:765–775.

  18. 18.

    , , et al. Distinctive spatiotemporal stability of somatic mutations in metastasized microsatellite-stable colorectal cancer. Am J Surg Pathol 2015;39:1140–1147.

  19. 19.

    , , et al. Genetic heterogeneity in synchronous colorectal cancers impacts genotyping approaches and therapeutic strategies. Genes Chromosomes Cancer 2015;55:268–277.

  20. 20.

    , , et al. Mutational profiles of Brenner tumors show distinctive features uncoupling urothelial carcinomas and ovarian carcinoma with transitional cell histology. Genes Chromosomes Cancer 2017;56:758–766.

  21. 21.

    , , . ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 2010;38:e164.

  22. 22.

    , , et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res 2015;43:D805–D811.

  23. 23.

    , , et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 2001;29:308–311.

  24. 24.

    , , et al. Copy number changes of clinically actionable genes in melanoma, non-small cell lung cancer and colorectal cancer-A survey across 822 routine diagnostic cases. Genes Chromosomes Cancer 2016;55:821–833.

  25. 25.

    , , et al. Immunohistochemistry versus microsatellite instability testing in phenotyping colorectal tumors. J Clin Oncol 2002;20:1043–1048.

  26. 26.

    , . Microsatellite instability in colorectal cancer. Gastroenterology 2010;138:2073–2087 e2073.

  27. 27.

    , , , . Glycogen synthase kinase-3beta modulates notch signaling and stability. Curr Biol 2002;12:1006–1011.

  28. 28.

    , , , , . HAT cofactor TRRAP mediates beta-catenin ubiquitination on the chromatin and the regulation of the canonical Wnt pathway. Cell Cycle 2008;7:3908–3914.

  29. 29.

    , , . Association of the APC tumor suppressor protein with catenins. Science 1993;262:1734–1737.

  30. 30.

    , , , , . The deubiquitinating enzyme Fam interacts with and stabilizes beta-catenin. Genes Cells 1999;4:757–767.

  31. 31.

    , , et al. Deubiquitinase USP9X deubiquitinates beta-catenin and promotes high grade glioma cell growth. Oncotarget 2016;7:79515–79525.

  32. 32.

    , , , , . Loss of Usp9x disrupts cell adhesion, and components of the Wnt and Notch signaling pathways in neural progenitors. Sci Rep 2017;7:8109.

  33. 33.

    , , et al. Goblet cell appendiceal tumors—management dilemmas and long-term outcomes. Surg Oncol 2015;24:47–53.

  34. 34.

    , , et al. Somatic mutation of CDKN1B in small intestine neuroendocrine tumors. Nat Genet 2013;45:1483–1486.

  35. 35.

    , . Wnt/beta-catenin signaling and disease. Cell 2012;149:1192–1205.

  36. 36.

    , . Wnt signaling in adult intestinal stem cells and cancer. Cell Signal 2014;26:570–579.

  37. 37.

    , , . EGFR, KRAS, BRAF-mutations and microsatellite instability are absent in goblet cell carcinoids of the appendix. Pathol Res Pract 2014;210:274–278.

  38. 38.

    , , et al. K-ras and p53 mutations in the pathogenesis of classical and goblet cell carcinoids of the appendix. Cancer 1999;86:14–21.

  39. 39.

    , , et al. PIK3CA exon 20 mutations as a potential biomarker for resistance to anti-EGFR monoclonal antibodies in KRAS wild-type metastatic colorectal cancer: a systematic review and meta-analysis. Ann Oncol 2012;23:1518–1525.

  40. 40.

    , , et al. The prognostic role of BRAF mutation in metastatic colorectal cancer receiving anti-EGFR monoclonal antibodies: a meta-analysis. PLoS ONE 2013;8:e65995.

  41. 41.

    , , et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 2010;11:753–762.

Download references


We thank Petra Meyer and Thomas Wochnig for excellent technical assistance.

Author information

Author notes

    • Nicole Pfarr
    •  & Anna Melissa Schlitter

    Shared last authorship.


  1. Institute of Pathology, Technical University of Munich, Munich, Germany

    • Moritz Jesinghaus
    • , Björn Konukiewitz
    • , Katja Steiger
    • , Alexander Muckenhuber
    • , Claudia Groß
    • , Martin Mollenhauer
    • , Wilko Weichert
    • , Günter Klöppel
    • , Nicole Pfarr
    •  & Anna Melissa Schlitter
  2. German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany

    • Moritz Jesinghaus
    • , Alexander Muckenhuber
    • , Wilko Weichert
    •  & Anna Melissa Schlitter
  3. Institute of Pathology, University Hospital Mainz, Mainz, Germany

    • Sebastian Foersch
    •  & Wilfried Roth
  4. Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany

    • Albrecht Stenzinger
  5. National Center for Tumor Diseases (NCT), Heidelberg, Germany

    • Albrecht Stenzinger
  6. Department of Clinical Pathology, University Hospital Odense, Odense, Denmark

    • Sönke Detlefsen


  1. Search for Moritz Jesinghaus in:

  2. Search for Björn Konukiewitz in:

  3. Search for Sebastian Foersch in:

  4. Search for Albrecht Stenzinger in:

  5. Search for Katja Steiger in:

  6. Search for Alexander Muckenhuber in:

  7. Search for Claudia Groß in:

  8. Search for Martin Mollenhauer in:

  9. Search for Wilfried Roth in:

  10. Search for Sönke Detlefsen in:

  11. Search for Wilko Weichert in:

  12. Search for Günter Klöppel in:

  13. Search for Nicole Pfarr in:

  14. Search for Anna Melissa Schlitter in:

Competing interests

The authors declare no conflict of interest.

Corresponding author

Correspondence to Moritz Jesinghaus.

Supplementary information

About this article

Publication history







Supplementary Information accompanies the paper on Modern Pathology website (http://www.nature.com/modpathol)