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Numerous protein biomarkers have been analyzed to improve prognostication in non-small cell lung cancer, but
have not yet demonstrated sufficient value to be introduced into clinical practice. Here, we aimed to develop and
validate a prognostic model for surgically resected non-small cell lung cancer. A biomarker panel was selected
based on (1) prognostic association in published literature, (2) prognostic association in gene expression data
sets, (3) availability of reliable antibodies, and (4) representation of diverse biological processes. The five
selected proteins (MKI67, EZH2, SLC2A1, CADM1, and NKX2-1 alias TTF1) were analyzed by immunohistochem-
istry on tissue microarrays including tissue from 326 non-small cell lung cancer patients. One score was
obtained for each tumor and each protein. The scores were combined, with or without the inclusion of clinical
parameters, and the best prognostic model was defined according to the corresponding concordance index
(C-index). The best-performing model was subsequently validated in an independent cohort consisting of tissue
from 345 non-small cell lung cancer patients. The model based only on protein expression did not perform better
compared to clinicopathological parameters, whereas combining protein expression with clinicopathological
data resulted in a slightly better prognostic performance (C-index: all non-small cell lung cancer 0.63 vs 0.64;
adenocarcinoma: 0.66 vs 0.70, squamous cell carcinoma: 0.57 vs 0.56). However, this modest effect did not
translate into a significantly improved accuracy of survival prediction. The combination of a prognostic
biomarker panel with clinicopathological parameters did not improve survival prediction in non-small cell lung
cancer, questioning the potential of immunohistochemistry-based assessment of protein biomarkers for
prognostication in clinical practice.
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Patients with localized non-small cell lung cancer
are potentially curable by surgical resection,
but the risk of recurrence is high. (1) Adjuvant

chemotherapy has been proven to have a significant,
but limited, effect, improving survival at 5 years by
only 4%. (2) Thus, prognostication, or clinical
stratification, is of particular relevance for this
patient group. Patients with a low risk of relapse
could, if accurately identified, be spared from
adjuvant treatment. In contrast, patients with a poor
prognosis might be expected to benefit from che-
motherapy or other treatment modalities with novel
compounds. This information might also help
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patients to make informed choices about potential
modalities of care.

In clinical practice, tumor stage, performance
status, and age are the best predictors of overall
survival and are used to guide therapy.3 However, as
different outcomes are frequently observed for
patients with similar clinicopathological character-
istics, these factors are not sufficient. Consequently,
much effort has been invested to identify better
prognostic markers and various approaches have
been applied. Genomic, transcriptomic, and proteo-
mic studies of tumor tissue have led to the
identification of numerous potential prognostic
factors.4–8 Candidate protein biomarkers have been
extensively evaluated using immunohistochemistry,
which has the advantages of being cost-efficient and
clinically feasible, as it is easily applicable on
diagnostic formalin-fixed paraffin-embedded tissue.
Indeed, numerous immunohistochemical studies
have suggested a prognostic relevance for various
proteins as single markers.5,9,10 Nevertheless,
because of the relatively low prognostic impact and
inconsistency in independent patient cohorts, no
biomarker has been introduced in clinical
diagnostics.5,9

In contrast to gene expression signatures,11–13 only
a few studies in non-small cell lung cancer have
combined multiple protein biomarkers into one
classifier, with the aims of increasing the prognostic
power and of generating a robust and reproducible
assay.14,15 In studies that have applied this
strategy14,15 the proposed biomarkers were, however,
not subsequently sufficiently validated to prove their
value over traditional prognostic parameters. Impor-
tant limitations in these lines of work included the
statistical designs not adjusting for multiple testing
and cutpoint optimization without validation in
independent cohorts. Furthermore, potential mar-
kers were only compared to a selection of clinical
parameters and not necessarily to an optimal
combination.14,15 Finally, a combination of protein
biomarkers with similar biological functions is likely
to contain redundant prognostic information, redu-
cing the likelihood of leading to an improved
classification.

Our study intended to address these problems.
First we selected a set of proteins with diverse
biological functions and, in a next step, we con-
structed an optimized prognostic model using a
large, clinically well-annotated non-small cell lung
cancer patient cohort. The best-performing model
was then applied to an independent validation
cohort and compared with the most important
clinical parameters. The stringent statistical design,
the quality of the immunohistochemical annotation,
and the completeness of both non-small cell lung
cancer patient cohorts make this study unique, and
we believe that it provides a realistic estimation of
the prognostic potential of protein biomarkers in
non-small cell lung cancer.

Materials and methods

Patient Cohorts and Clinical Characteristics

The study material comprised two patient cohorts
with primary non-small cell lung cancer, surgically
treated at the University Hospital in Uppsala,
Sweden. Uppsala cohort I included 354 non-small
cell lung cancer patients treated in 1995–2005,4,16
and Uppsala cohort II included 357 patients treated
in 2006–2010.4,17,18 Formalin-fixed paraffin-embe-
dded tissue from both cohorts was used to construct
tissue microarrays for the immunohistochemical
analysis. The clinical characteristics (age at diagno-
sis, gender, smoking history, performance status
according to World Health Organisation (WHO)
criteria, tumor stage (TNM 7th edition),19 and tumor
histology in accordance with the WHO classification
of 2004 (ref. 20) of the patients that were included in
the final analysis are shown in Supplementary Table
1. The study was performed in accordance with the
Swedish Biobank Legislation and was approved by
the Uppsala University Ethical Review (Reference
2006/325, Uppsala cohort I; Reference 2012/532,
Uppsala cohort II).

Selection of Protein Biomarkers

For selection of the biomarker panel, a pipeline was
applied based on following criteria: (1) A systematic
evaluation of protein markers reported in the scien-
tific literature between 2008 and 2013,5 consistent
prognostic association in at least two studies and
consistent results in at least 50% of the studies.5 (2)
Prognostic significance (adjusted P-valueo0.05) for
at least one probe set in a meta-analysis based on
Affymetrix gene expression data from 10 independent
cohorts, comprising in total 1779 non-small cell lung
cancer patients; 1142 adenocarcinomas, 451 squa-
mous cell carcinomas, and 186 other non-small cell
lung cancer histologies (Supplementary Table 2A). (3)
Availability of a reliable antibody in the Human
Protein Atlas database (www.proteinatlas.org).
Antibodies were chosen if the staining pattern was
in accordance with the expected subcellular and
histological expression in the scientific literature
(Supplementary Table 2B). (4) Involvement in differ-
ent tumorigenic mechanisms was based on informa-
tion in UniProt and corresponding literature
(Supplementary Table 2B). As an additional biomar-
ker, we included cell adhesion molecule 1 (CADM1),
which fulfilled all criteria except that it was reported
before 2008.4,21 The results from the meta-analysis are
shown in Supplementary Figure 1. The selection
procedure is illustrated in Figure 1.

Meta-Analysis

The meta-analysis was performed as previously
described,4 including 10 gene expression array data
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sets based on Affymetrix microarrays (GSE37745,4
GSE14814,13 GSE19188,22 GSE29013,23 GSE30219,24
GSE31210,25 GSE3141,26 GSE4573,27 GSE50081,28
and Shedden et al. 2008 (ref. 11)). Meta-analysis
was performed with random effect models. Results
were visualized with forest plots, and significance of
the overall effect was measured with the P-value of
the random effect models. All P-values were two-
sided and adjusted for multiple testing for all 54675
analyzed probe sets with the Benjamini–Hochberg
procedure.29 The meta-analysis was conducted using
the R package ‘meta’ (http://CRAN.R-project.org/
package =meta).

Tissue Microarray Production and
Immunohistochemistry

The selected proteins (MKI67, TTF1, EZH2 (enhan-
cer of zeste homolog 2), CADM1, and SLC2A1) were

stained and analyzed in both the Uppsala cohort I
and Uppsala cohort II. Tissue microarray construc-
tion and immunohistochemistry were performed as
previously described.30 In brief, representative
formalin-fixed paraffin-embedded tissue from donor
blocks were punched (1mm in diameter) using a
manual tissue arrayer (MTA-1, Beecher Instruments
Sun Prairie, WI, USA) and placed in a recipient
block, generating tissue microarrays containing
tissues in total from 711 non-small cell lung cancer
patients (354 from cohort I and 357 from cohort II)
represented in duplicates. Sections of 4 μm of the
tissue microarray blocks were cut using a microtome
(HM 355S, Microm), mounted on adhesive slides
(SuperFrost Plus, Thermo Scientific, Braunschweig,
Germany), and baked for 45min at 60 °C. Deparaffi-
nization and hydration were performed in xylene
and graded alcohols to distilled water prior to
immunohistochemical staining. Blocking for

Figure 1 Pipeline of protein selection. For selection of the biomarker panel, a pipeline was applied based on subsequent criteria: (1)
prognostic implication in the scientific literature with consistent prognostic results in at least half of at least two independent cohorts,
reported between 2008 and 2013. (2) Prognostic significance (adjusted P-valueo0.05) of at least one probe set in the gene expression meta-
analysis of all non-small cell lung cancer histologies and either adenocarcinoma or squamous cell carcinoma patients. As an additional
biomarker we included cell adhesion molecule 1 (CADM1) that did not fulfill criterion 1 (reported before 2008). (3) Availability of a
reliable antibody in the Human Protein Atlas database. (4) Involvement in different biological mechanisms. The genes and corresponding
information included in the selection process are listed in Supplementary Table 2.
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endogenous peroxidase was done using 0.3% hydro-
gen peroxide in 95% ethanol for 5min. For antigen
retrieval, a pressure boiler (Decloaking chamber,
Biocare Medical, Walnut Creek, CA, USA) was used
and the slides were boiled for 4min at 125 °C in
citrate buffer, pH6 (Lab Vision, Freemont, CA, USA).
Automated immunohistochemistry was performed
using an Autostainer 480 instrument (Thermo Fisher
Scientific, Runcorn, UK). Primary antibodies used
for immunohistochemical analysis included the
following: CAB000058, DakoCytomation, clone
MIB, dilution 1:200, targeting MKI67; CAB000078,
DakoCytomation, clone 8G7G3/1, dilution 1:150,
targeting TTF1; CAB009589, Novocastra, clone
6A10, dilution 1:500, targeting EZH2; CAB037266,
Sigma, polyclonal antibody, dilution 1:10 000 target-
ing CADM1 and HPA058494, Atlas Antibodies,
polyclonal antibody, dilution 1:50 targeting SLC2A1.
The tissue microarrays were incubated with primary
antibodies diluted in UltraAb Diluent (Lab Vision)
and the secondary reagent UltraVision LP HRP
polymer (Lab Vision) for 30min each at room
temperature. Following washing steps, the slides
were developed for 10min at room temperature,
adding diaminobenzidine (Lab Vision) as a chromo-
gen, and thereafter counterstained with Mayer’s
hematoxylin (Histolab, Gothenburg, Sweden) and
mounted with Pertex (Histolab). The stained slides
were scanned at × 20 magnification using an Aperio
ScanScope XT Slide Scanner (Aperio Technologies,
Vista, CA, USA) to obtain high-resolution digital
images for the annotation of protein expression. An
immunohistochemistry score was calculated by
multiplying the staining intensity (negative = 0,
weak= 1, moderate = 2, and strong =3) with the
fraction of stained tumor cells (1 = 0–1%, 2= 2–
10%, 3= 11–20%, 4= 21–30%, 5=31–40%, 6= 41–
50%, 7=51–75%, and 8⩾75%), giving a range of
0–24. This immunohistochemistry score was used
for further analyses.

Statistical Analysis

Survival analysis. All analyses were performed
using the statistical programming language ‘R-ver-
sion 3.1.1’. Overall survival was calculated from the
date of diagnosis to the date of death. The survival
times were censored at 5 years. Survival was
analyzed by univariate and multivariate Cox models
and visualized by Kaplan–Meier plots. Survival
functions were compared with the log-rank test
using the R package ‘survival’.31 The Kaplan–Meier
plots were generated based on dichotomized immu-
nohistochemistry and risk scores (see below ‘Best
prognostic model’ and ‘Assessment of model perfor-
mance’ for definitions of selected cutpoints). The
clinicopathological variables with an established
prognostic association—tumor stage, performance
status, and age at diagnosis—were categorized as
follows for all analyses: stage I vs stage II–IV,

performance status 0 vs performance status I–IV,
≤70 vs 470 years. Multivariate Cox analyses were
performed with inclusion of the above-mentioned
clinicopathological variables, together with all pos-
sible combinations of the immunohistochemistry
scores based on each protein’s best cutpoint (see
below ‘Best prognostic model) to assess the prog-
nostic power of each combined model. The prog-
nostic power of each model was assessed by the
concordance index (see below ‘C-index’). Adjust-
ment for multiple testing was done by the Benja-
mini–Hochberg method.29

C-index. The C-index is a rank-based method for
assessing the prognostic power of a model 32 and was
here applied to indicate how well a model discrimi-
nated patients with longer survival from patients
with shorter survival times. On the basis of a fitted
Cox model, the C-index compares the predicted
survival times with the observed survival times of all
possible patient pairs, and estimates the probability
of concordant patient pairs. A patient pair is
concordant if the predicted outcomes agree with
the actual outcomes, ie, if the predicted survival time
is longer for the patient who lived longer. Thus, a
patient pair is only informative if the patient with
shorter survival time has died, and only the patient
pairs that fulfilled this criterion were included in the
analysis. A C-index of 1 implies perfect prediction
accuracy, a C-index of 0.5 indicates no predictive
ability, and a value below 0.5 indicates a predictive
ability that is even worse than random guessing.

Best prognostic model. The predictive power of
each individual protein in combination with the
dichotomized clinicopathological variables was first
assessed. To accomplish this, multivariate Cox
models, based on dichotomized immunohistochem-
istry scores, were fitted in the Uppsala cohort I. For
each protein, different cutpoints were considered by
splitting the data into two groups—below and above
the cutpoint—at each possible protein score (range
0–24). A multivariate Cox model was fitted for each
split, and the corresponding C-index was calculated.
For each protein, the cutpoint corresponding to the
model with the highest C-index was selected. This
resulted in five fixed cutpoints, referred to as the five
proteins’ best cutpoints, which were used in all
subsequent analyses.

Next, we aimed to define the best prognostic
model, based on the clinicopathological variables
together with an optimal combination of the protein
scores, using the above-defined best cutpoint for
each protein. To this end, we fitted multivariate Cox
models that included the dichotomized clinico-
pathological variables together with all possible
combinations of two to five proteins, followed by
C-index calculation. The best-performing model was
defined as the model that yielded the highest
C-index.
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Finally, a risk score was calculated for each
individual patient, where a higher risk score meant
a higher risk of death. On the basis of the best
prognostic model, the risk score of a patient was
defined as the linear combination of the fitted
parameters and the patient's individual values for
the fitted parameters (ie, the immunohistochemistry
scores dichotomized according to each protein’s best
cutpoint and the clinicopathological variables
dichotomized at the above-described fixed cutoffs).
Given the best prognostic model based on the
dichotomized variables (clinicopathological and

immunohistochemistry scores), the risk score for a
patient was calculated as follows:

riskscore ¼ age � xage þ stage � xstage

þ performance status � xperformance status

þ
Xn

k¼1
proteink � xk ;

where age, stage, and performance status denote the
estimated coefficients of the clinicopathological
variables and proteink the estimated coefficient of
the kth-protein, k ϵ {MKi67, EZH2, TTF1, SLC2A1,
CADM1}, obtained from the fitted model, and

Figure 2 Study design. Tissue microarrays of the training cohort (Uppsala cohort I, n=326) were annotated and immunohistochemistry
scores were obtained for all five proteins. The different immunohistochemistry scores were used to identify the best cutoff to predict
survival. The fixed combinations for clinicopathological parameters (age, stage, and performance status) with all possible combinations of
protein markers were tested to develop the best prognostic model. The best prognostic model obtained on the training cohort was tested in
the validation cohort (Uppsala cohort II, n=345) and compared to the model only consisting of clinicopathological parameters.
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xvariable, variable ϵ {age, stage, performance status, k},
denotes the indicated individual value for patient x.
A risk score was also calculated for each patient
based on the clinicopathological data only.

Assessment of model performance. In the next
step, we evaluated the performance of the best-
performing model with regard to prediction of
overall survival rates in an independent validation
cohort (Uppsala cohort II), and compared the best-
performing model, based on protein and clinico-
pathological data, with models based on clinico-
pathological or protein data only. This was
accomplished in two ways. First, we calculated the
C-index. Second, we calculated the sensitivity of the
model as the rate of patients with high risk scores
among the short-time survivors, and the specificity
as the rate of patients with low risk score among the
long-time survivors based on a 2× 2 contingency
table of dichotomized survival times and risk scores.
For survival time, the cutpoints for dichotomization
were 2, 3, and 4 years. For the risk score, the cutpoint
was chosen so that the proportion of patients with
high risk scores equaled the proportion of patients
with survival times shorter than 2, 3, and 4 years. For
the direct comparison of two models we first
calculated for each patient if survival time and risk
score agreed (correct prediction: if survival is long
and risk score is low, or if survival is short and risk
score is high), and then compared the predictions of
the two models (correct, false) in 2× 2 contingency
tables. To assess the statistical significance of the
difference of two models we applied the McNemar's
test to the contingency tables. A small two-sided
P-value (P≤ 0.05) indicates that one model makes
more correct predictions than the other model.

Receiver-operating-characteristic curves were used
to visualize the relationship between survival time
(dichotomized at 4 years) and risk score (continuous).
The patients who died within the first 4 years were
labeled as positives, and those who lived beyond 4
years as negatives, ie, the patients with a high risk
score who died before 4 years were labeled as true
positives, and those with a low risk score who lived
beyond 4 years were classified as true negatives. The
true-positive rate was plotted against the false-
positive rate, which is equal to 1-specificity, in the
receiver-operating-characteristic curve.

Results

Selection of Clinical and Protein Markers for the
Prognostic Panel

The study design, based on the training and valida-
tion cohorts, is illustrated in Figure 2. The three
clinicopathological parameters (stage, age, and per-
formance status) analyzed in this study have a well-
established prognostic value and are those most
commonly used to stratify patients for standard

treatment or in clinical trials. As expected, all three
were associated with overall survival in the training
cohort (Uppsala cohort I; Supplementary Figure 2).
The selection process for the prognostic panel,
illustrated in Figure 1, identified five proteins with
different tumorigenic mechanisms:

Antigen Ki-67 (MKI67) is expressed during the
active phases of the cell cycle (G1, G2, and S) and
serves as a marker of proliferation.33 While in breast
cancer and neuroendocrine tumors MKI67 is an
established prognostic and diagnostic marker,34,35
the use of MKI67 in lung cancer is not established,
although its potential prognostic value has been
demonstrated in several studies.36

Homeobox protein Nkx-2.1 (NKX2-1), also known
as TTF1 (thyroid transcription factor-1), is a transcrip-
tion factor, exclusively expressed in thyroid, lung,
and ventral forebrain. In the lung, TTF1 is involved in
morphogenesis and differentiation of epithelial
cells.37 TTF1 has an established role in tumor
development and is a diagnostic marker for the origin
of cancer and the adenocarcinoma differentiation.38
Several studies indicate that higher TTF1 expression
is associated with a better prognosis.39,40

The enhancer of zeste homolog 2 (EZH2) is the
functional unit of the polycomb repressive complex 2,
a methyltransferase that mediates gene silencing
through post-translational histone modifications, and
works in principal as a transcriptional repressor.41
High expression of EZH2 has been reported in a wide
range of cancers and higher expression has been
linked to more aggressive tumor behavior.42–44

The CADM1 belongs to the immunoglobulin
superfamily and is involved in cell adhesion,
proliferation, and differentiation.45 CADM1 acts as
a tumor suppressor in several epithelial cancers and
lower expression of CADM1 has been associated
with worse prognosis in epithelial cancers, including
lung cancer.46,47

Solute carrier family 2, facilitated glucose trans-
porter member 1 (SLC2A1 alias GLUT1), is a
transporter protein involved in cellular glucose
metabolism.48 Overexpression of SLC2A1 is reported
in several cancers and has also been associated with
poorer survival in lung cancer.49

Annotation of Protein Expression and Cutpoint
Optimization

The five protein biomarkers were analyzed with
immunohistochemistry on the Uppsala cohort I
tissue microarray, including 326 evaluable tumors.
Representative staining patterns and the distribution
of the protein scores are shown in Figure 3. To
identify the cutpoints of the protein scores that best
discriminated between long- and short-term survi-
vors, the C-index was used as a measurement of
prognostic performance (Figure 4 and Supplem-
entary Figure 3). For each protein (MKI67, TTF1,
EZH2, CADM1, and SLC2A1), the training set was
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split into two groups at each possible protein score
(range 0–24) and for each split both univariate and
multivariate model (including age, stage, and perfor-
mance status) were fitted, followed by calculation of
the C-index. The analysis was performed separately
for all non-small cell lung cancer, adenocarcinomas,
and squamous cell carcinomas; this procedure was
repeated for each protein (MKI67, TTF1, EZH2,
CADM1, and SLC2A1). In the final prognostic model,
the cutpoint with the highest C-index based on the
multivariate analysis was used for dichotomization
of the protein scores (Supplementary Table 3).

Development of best-Performing Prognostic Model
Based on Clinical and Protein Data

On the basis of the protein's best cutpoints, we first
performed univariate and multivariate Cox regres-
sion models to analyze the association of each

protein with overall survival, alone (Supplementary
Table 4) and combined with the clinical data
(Supplementary Table 5). All proteins showed a
significant, or near significant, association with
overall survival, either in the complete non-small
cell lung cancer cohort or in the separate analysis of
the adenocarcinomas, with C-index values ranging
from 0.54 to 0.58 (Supplementary Table 6). The
results were illustrated using Kaplan–Meier plots
(Figure 4 and Supplementary Figure 3). Compared
with the clinical parameters, the single protein
markers showed comparable associations with over-
all survival (Supplementary Table 6).

Next, the analysis was repeated for the combina-
tion of the five proteins. This improved the C-index
for the complete cohort (0.59), and for the histologi-
cal subtypes (adenocarcinoma: 0.63; squamous
cell carcinoma: 0.58), compared to the C-indices
obtained when the proteins were analyzed

MKI67 TTF1 EZH2 CADM1 SLC2A1 

MKI67 TTF1 EZH2 CADM1 SLC2A1
sc

or
e:

 0
sc

or
e:

 8
-1

0
sc

or
e:

 2
4

Figure 3 (a) Staining patterns of the selected proteins. Representative immunohistochemical images of the five proteins in non-small cell
lung cancer. The staining intensity and fraction of positive cells were annotated. The product of both resulted in an
immunohistochemistry score that was used in further analysis. (b) Bar plots showing the distribution of the immunohistochemistry scores.
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separately. However, the C-index was not higher
than that obtained by a combination of the clinical
parameters only (all non-small cell lung cancer: 0.62;
adenocarcinoma: 0.62; squamous cell carcinoma:
0.63; Supplementary Table 6).

Finally, the best prognostic model was defined
based on the clinicopathological variables together
with an optimal combination of the protein scores,
yielding the highest C-indices (all non-small cell
lung cancer: 0.64; adenocarcinoma: 0.69; squamous
cell carcinoma: 0.66; Supplementary Table 6). The
best model for all non-small cell lung cancer
included the clinical parameters combined with all
five proteins. For the adenocarcinoma subgroup, the
best model included the clinical parameters com-
bined with MKI67, EZH2, TTF1, and CADM1, and
for the squamous cell carcinomas it included the
clinical parameters combined with EZH2, TTF1,
SLC2A1, and CADM1 (Supplementary Table 7). The
best models (highest C-index) are shown in
Supplementary Table 8. Kaplan–Meier curves were
plotted for the complete non-small cell lung cancer
cohort, as well as for the two main histologies
separately, with patients stratified at dichotomized

risk scores (Figure 5). The models were subsequently
applied to the validation cohort.

Independent Validation of the Best-Performing Models

To validate the models that performed best in the
training cohort for all non-small cell lung cancer,
adenocarcinoma, and squamous cell carcinoma, we
next applied them to an independent cohort
(Uppsala cohort II) and compared them to the
models based on only the clinicopathological vari-
ables and only the protein biomarkers.

In the validation cohort, the models consisting of
only the clinicopathological variables revealed
C-indices of 0.63 (all non-small cell lung cancer),
0.66 (adenocarcinoma), and 0.57 (squamous cell
carcinoma), and the models based only on the five
protein biomarkers demonstrated C-indices of 0.57
(all non-small cell lung cancer), 0.65 (adenocarci-
noma), and 0.54 (squamous cell carcinoma).

In comparison, the previously established best-
performing prognostic models, combining clinical
parameters and an optimal combination of the

Figure 4 Identification of best cutoffs for immunohistochemistry scores. Plot of the C-indices obtained from the trained uni- and multivariate
Cox models using the dichotomized immunohistochemistry scores for MKI67 for all non-small cell lung cancer cases, adenocarcinoma, and
squamous cell carcinoma. The univariate model (gray dashed line) was built based on the protein alone, the multivariate model (black
dashed line) combines clinical data (age, stage, performance status) with single protein data. The C-index (y axis) was calculated for the
univariate (gray dotted line) and multivariate model (black dotted line) using all possible protein cutpoints (x axis). The best cutpoint for
dichotomizing the protein score was determined by the highest multivariate C-index (black bold dot). The light gray dashed line indicates the
boundary line to random guessing. Kaplan–Meier analysis of overall survival stratified by MKI67 protein expression dichotomized at its best
cutpoint. The corresponding plots for the other four proteins are shown in Supplementary Figure 3.
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protein markers, revealed higher C-indices for the
complete non-small cell lung cancer cohort (0.64)
and adenocarcinomas (0.70), but not for the squa-
mous cell carcinomas (0.56; Table 1).

Comparable results were obtained based on
receiver-operating-characteristic curves when the
clinical model consisting of the three clinical
parameters only was compared with the best model.

Figure 5 Overall survival of the patients from the training cohort stratified by the risk score. Risk scores were calculated from the model
trained on the clinical variables only (age, stage, performance status; left column) and in combination with the protein data (right column),
given the best-parameter combination with highest-trained C-index. The cutpoint for stratification of the risk score was chosen such that
the proportion of patients with high risk scores equaled the proportion of patients with survival time shorter than 4 years. The unadjusted
P-value of the log-rank test is given in the figure.
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The area under the curve was markedly higher for
the combined model only when the adenocarcinoma
cases were analyzed (0.71 vs 0.75, Supplementary
Figure 4). The results of these analyses were
illustrated using Kaplan–Meier plots (Figure 6).

Although the C-index gives an estimation of the
model performance, the comparison above does not
provide information whether or not the difference
between two C-indices is statistically significant,
such as the difference between 0.70 (best-performing
model) and 0.66 (model based on clinical data only)
observed in the validation cohort for the adenocarci-
noma subgroup. To address this question, we first
predicted if each individual patient survived longer
than 2, 3, or 4 years, respectively, based on the best-
performing model and model built based on clinical
parameters only, and then compared the predicted
outcome with the actual outcome of the patient
(Supplementary Table 9). The combination of clin-
ical and protein markers was not found to correctly
classify a significantly higher number of patients as
long- or short-term survivors beyond 2, 3, or 4 years
(adjusted P-value 40.08, all comparisons).

Discussion

The choice of therapy for lung cancer patients is
based on clinical parameters, most importantly stage,
performance status, and age. All three parameters are
associated with prognosis and are consequently used
to guide therapy decisions. This prognostic accuracy
is of particular importance for patients with loca-
lized disease, for whom surgery presents a poten-
tially curative treatment option. Since most patients
develop local or distant relapse, adjuvant therapy,
with the aim to target remaining tumor cells, is
added. However, the effect of this adjuvant interven-
tion is modest, with improvement of 5-year survival
rates by only 4%.2 This means that only 1 of 25
patients benefits from this demanding therapy,

whereas 24 of 25 patients suffer from side effects
without any benefit.

With this background, we developed and validated
an immunohistochemistry-based biomarker assay that
adds prognostic information to that conveyed by the
most important clinical parameters. A protein bio-
marker panel was selected based on supportive
information from the scientific literature, and valida-
tion of significant survival associations on the
transcript level in a large collection of 10 publically
available non-small cell lung cancer data sets (1779
patients). Furthermore, a stringent biostatistical
approach was applied to be able to critically assess
the prognostic value of the models. In the direct
comparison, the prognostic model based on proteins
alone failed to outperform clinical parameters. Com-
bining the protein biomarkers with the clinical
parameters demonstrated only limited added value,
and would appear to be of minor relevance for clinical
practice. It should also be noted that the performance
of the biomarker immunohistochemistry assay is
likely to be overestimated, since both the training
and the validation cohort originated from the same
center, were stained in the same laboratory, and were
annotated by the same observer, ie, interlaboratory
and interobserver variability, which might further
impair the performance, were excluded.

So why did the combined prognostic model fail?
Obviously, the choice of protein biomarkers can be
questioned. Each of the five selected proteins
showed a significant or close to significant prognos-
tic impact in the training cohort, with hazard ratios
between 0.6 and 0.8 for favorable prognostic markers
(CADM1, TTF1) and 1.3 and 1.4 for unfavorable
markers (MKI67, EZH2, SLC2A1), depending on
histology. This was in line with previous studies
evaluating these biomarkers21,39,43,50,51 and the
hazard ratios were even higher than those obtained
in the meta-analysis of publically available gene
expression cohorts for the corresponding transcripts.
Of note, the size of the hazard ratios was in the range
of many other proposed biomarkers,14,15,52 with few
exceptions.53,54 Thus, protein selection was most
likely not decisive for the failure of the overall
procedure. Upon first sight, the combination of the
five proteins suggested an impressive separation of
the survival curves both in the training and valida-
tion cohort (Figure 4 and Supplementary Figure 3).
Nevertheless, this separation was not better than
stratification solely based on the combination of
clinical parameters. This result was already obtained
in the training cohort, where the clinical parameters
alone or in combinations showed higher C-indices
and hazard ratios, ie, the combination of tumor-
(stage) and patient-related factors (age and perfor-
mance status) in general outperformed molecular
tumor features. Only the addition of the protein
markers increased the prognostic power, but if this
minimal increase is of any practical relevance is
questionable. Our study was not able to demonstrate
a significantly improved prediction of 2, 3, or 4-year

Table 1 C-indices of the best models on the validation cohort
using only clinical data or clinical data in combination with
protein data

Only
clinicala

Clinical and
proteinb

Only
proteinsc

All NSCLC 0.632 0.641 0.568
Adenocarcinoma 0.660 0.701 0.646
Squamous cell
carcinoma

0.565 0.562 0.539

Abbreviations: C-index, concordance index; NSCLC, non-small cell
lung cancer.
Protein data dichotomized at best cutpoint.
Age at diagnosis: ≤ 70 years vs 470 years; stage: IA+IB vs II–IV.
Performance status according to WHO 0 vs 1–4.
aRefers to all three clinical parameters combined (age, stage,
performance status according to WHO).
b Refers to the best clinical + protein combination.
cRefers to all five proteins.

Modern Pathology (2017) 30, 964–977

Prognostication in NSCLC

M Grinberg et al 973



survival for the individual patients. These findings
obviously question the general concept that immu-
nohistochemical markers have an additional value
for prognostication in localized lung cancer.

Are there better methods for molecular prognos-
tication? Perhaps a more promising strategy is the
use of global gene expression profiles to develop

prognostic classifiers. The public availability of gene
expression data sets facilitated validation across
multiple independent patient cohorts and several
of them showed promising, and stage-specific,
performance.55,56 Two of them were adapted for
the use of formalin-fixed paraffin-embedded tissue in
a quantitative real-time PCR format and were

Figure 6 Overall survival of the patients from the validation cohort stratified by the risk score. Kaplan–Meier plots were established for all
non-small cell lung cancer cases (upper), adenocarcinomas (middle), and squamous cell carcinoma (lower) separately. The best-
performing model combining clinical and protein data based on the analysis of the training cohort was applied to the validation cohort
(right) and compared to a model of clinical parameters only (left). The cutpoint for stratification of the risk score was adopted from the
training cohort. The unadjusted P-value of the log-rank test is given in the figure.
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commercially launched to predict survival after
radical resection.57,58 Although both assays demon-
strated significant separation of patients with short-
and long-term survival within stage I or even stage Ia
patients, neither was tested head to head to clinical
models including performance status. Thus, we
believe that molecular prognostication is yet to
provide proof that it can add substantial information
regardless of whether protein or gene expression as
biomarkers are used. In contrast, our study recon-
firms the importance of traditional clinical para-
meters for prognostication. This should motivate
clinicians to assess these parameters as accurately as
possible to obtain optimal prognostic information.
Attempts are ongoing to refine the TNM staging
system for non-small cell lung cancer, and the
assessment of patient performance status may also
be an appropriate subject for optimization. The
implementation of additional patient-related factors
may further optimize survival prediction. Promising
factors to be included in such an extended model
include, for instance, pre-operative weight loss59 and
the Glasgow prognostic score based on plasma levels
of C-reactive protein and albumin.60

Finally, it should be stressed that reporting of the
prognostic impact of a molecule is not superfluous. A
significant survival association might, for instance,
indicate a particular molecular tumor subgroup, eg,
TTF1, 16 or a tumorigenic mechanism (eg, EGFR;61
CADM1 (ref. 62)). Here, we presented a stringent
statistical approach to develop and validate an immu-
nohistochemical predictor of survival of non-small
cell lung cancer after surgical resection. However, the
failure to substantially improve prognostic accuracy,
alone or together with clinical parameters, challenges
efforts to implement immunohistochemistry-based
assays for prognostication.
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