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Kinase activation by chromosomal translocations is a common mechanism that drives tumorigenesis in spitzoid
neoplasms. To explore the landscape of fusion transcripts in these tumors, we performed whole-transcriptome
sequencing using formalin-fixed, paraffin-embedded (FFPE) tissues in malignant or biologically indeterminate
spitzoid tumors from 7 patients (age 2–14 years). RNA sequence libraries enriched for coding regions were
prepared and the sequencing was analyzed by a novel assembly-based algorithm designed for detecting
complex fusions. In addition, tumor samples were screened for hotspot TERT promoter mutations, and
telomerase expression was assessed by TERT mRNA in situ hybridization (ISH). Two patients had widespread
metastasis and subsequently died of disease, and 5 patients had a benign clinical course on limited follow-up
(mean: 30 months). RNA sequencing and TERT mRNA ISH were successful in six tumors and unsuccessful in
one disseminating tumor because of low RNA quality. RNA sequencing identified a kinase fusion in five of the six
sequenced tumors: TPM3–NTRK1 (2 tumors), complex rearrangements involving TPM3, ALK, and IL6R (1 tumor),
BAIAP2L1–BRAF (1 tumor), and EML4–BRAF (1 disseminating tumor). All predicted chimeric transcripts were
expressed at high levels and contained the intact kinase domain. In addition, two tumors each contained a
second fusion gene, ARID1B–SNX9 or PTPRZ1–NFAM1. The detected chimeric genes were validated by
home-brew break-apart or fusion fluorescence in situ hybridization (FISH). The two disseminating tumors each
harbored the TERT promoter –124C>T (Chr 5:1,295,228 hg19 coordinate) mutation, whereas the remaining five
tumors retained the wild-type gene. The presence of the –124C>T mutation correlated with telomerase
expression by TERT mRNA ISH. In summary, we demonstrated complex fusion transcripts and novel partner
genes for BRAF by RNA sequencing of FFPE samples. The diversity of gene fusions demonstrated by RNA
sequencing defines the molecular heterogeneity of spitzoid neoplasms.
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Spitzoid tumors are a clinicopathologically distinct
class of melanocytic neoplasms that occur more
commonly in younger individuals and account for
the majority of so-called ‘melanomas’ seen in the
pediatric population. Histologically, these lesions are
characterized by compound or dermal proliferations of
large epithelioid and/or spindle-shaped melanocytes
having abundant eosinophilic cytoplasm, often

forming junctional nests in conjunction with
epidermal hyperplasia. The lack of objective criteria
to determine the malignant potential of spitzoid tumors
is a major diagnostic challenge.1–5 The established
histopathologic criteria used to differentiate nevi from
conventional melanoma are not reliable for spitzoid
neoplasms. Also, unlike conventional melanoma,
lymph node metastasis in general is not predictive of
poor clinical outcome in patients with spitzoid
tumors.6–13

Spitzoid lesions with features significantly
deviating from a stereotypical Spitz nevus, such as
large lesional size (41 cm), asymmetry, ulceration,
pagetoid melanocytosis extending peripherally,
significant intradermal mitotic activity, lack of
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cellular maturation with depth, confluent cellular
growth, involvement of subcutaneous fat, or severe
cytologic atypia, are considered atypical spitzoid
melanocytic proliferations, encompassing atypical
Spitz tumor and spitzoid melanoma. Additional
important clinical information includes the age of
the patient, as melanoma is extremely rare under the
age of 10 years, and clinical features such as a new or
rapidly growing lesion, asymmetry, irregular
coloration, ulceration, bleeding, and history of
trauma. The diagnosis of spitzoid melanoma in
these circumstances is considered when multiple
chromosomal aberrations are detected by using
ancillary molecular techniques, such as the
multiprobe fluorescent in situ hybridization (FISH)
assay14,15 or comparative genomic hybridization
analysis.16,17 The true predictive value of these
assays for determining clinical outcome in spitzoid
tumors, however, remains uncertain. We recently
evaluated 56 spitzoid tumors for the presence of
telomerase reverse transcriptase (TERT) promoter
mutations and their association with disease
progression. We found a hotspot TERT promoter
mutation in tumors from patients who had a
malignant clinical course but not in tumors from
patients who had a favorable clinical outcome,
suggesting that these mutations contribute to
malignant biological behavior.12 Nonetheless, the
underlying molecular mechanisms responsible for
the potential of these lesions to spread distantly need
to be investigated further.

The Cancer Genome Atlas Network has recently
proposed a genomic classification of cutaneous
melanomas into four mutually exclusive genetic sub-
types on the basis of the presence of a hotspot mutation
in the significantly mutated melanoma-associated
genes, BRAF, RAS (N/K/H), NF1, and the triple
wild-type.18 By this stratification scheme, most spitzoid
melanomas are likely to fall into the triple wild-type
subtype,19,20 a heterogeneous molecular category
shown to be enriched by focal amplifications or
complex structural rearrangements.18 Wiesner et al.
and others21–24 demonstrated that instead of activation
of the MAP kinase pathway through point mutations,
chromosomal translocation-induced kinase fusions
drive tumorigenesis in spitzoid neoplasms. These
rearrangements are predicted to constitutively activate
the MAP kinase pathway by an in-frame fusion of the
receptor tyrosine kinase NTRK1, ROS1, RET, ALK, or
MET or the serine/threonine kinase BRAF to the N
terminal of various 5′ partner genes.21,23,24 As these
genetic alterations are present in the entire biologic
spectrum of the disease, that is, the benign (nevi), the
biologically indeterminate or low-grade malignant
(atypical Spitz tumors), and the overtly malignant
lesions (spitzoid melanoma), they are likely acquired
in the early stage of disease but cannot by themselves
lead to melanoma.25,26

To explore the landscape of structural
rearrangements in spitzoid melanomas, in the current
study we used RNA sequencing to characterize

the transcriptome of seven histologically malignant
or biologically indeterminate spitzoid tumors.
Furthermore, we used TERT mRNA in situ
hybridization (ISH) to demonstrate the association
between TERT promoter mutations and telomerase
expression at the cellular level.

Materials and methods

Study Population

The study was approved by the institutional review
boards of participating institutions. The study
subjects were selected from a previously reported
cohort of 56 patients with spitzoid melanocytic
tumors12 for whom documented clinical outcomes
and sufficient biological material were available. To
improve the performance of RNA sequencing, only
biological samples with a storage time of ≤ 7 years
were considered for the study. As an exception, an
old archived formalin-fixed, paraffin-embedded
(FFPE) block (420 years old) from a rare fatal
spitzoid melanoma in a young patient was also
included. Adequate biologic material was obtained
for RNA sequencing from seven malignant or
biologically indeterminate spitzoid tumors (five
primary tumors and two metastatic tumors).

The hotspot BRAF, NRAS, and TERT promoter
mutation data on these tumors have been previously
reported.12 In summary, genomic DNA was
extracted from the tumor samples (five primary
tumors, one paired primary and metastatic tumor,
and one metastatic tumor) and screened for hotspot
mutations of the genes by PCR and Sanger
sequencing, as previously described.20

Transcriptome Sequencing

Tumor tissue samples from 8 to 10 FFPE
slide-mounted sections were manually dissected, with
corresponding H&E sections used to guide dissections,
to obtain at least 70% tumor purity. RNA was
isolated by using the Maxwell system (Promega).
RNA was quantitated by fluorescence dye staining
by using the Quant-iT (Life Technologies) RNA
assay. RNA quality was evaluated by using a 2100
Bioanalyzer (Agilent Technologies) with a Nano
RNA 6000 Chip. RNASEQ libraries enriched for
coding regions were prepared by using the Truseq
RNA Access Library Prep Kit (Illumina), following
the manufacturer’s protocol for RNA input quantity
relative to RNA quality. Sequencing was performed
on HiSeq2000 (Illumina) to generate 100-bp
paired-end reads.

RNA Sequencing Analysis

RNA sequencing data were generated as previously
described.25 Paired-end reads from RNA sequences
were aligned to the following 4 database files
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by using BWA (0.5.10) aligner: (1) the human
GRCh37-lite reference sequence, (2) RefSeq,
(3) a sequence file representing all possible
combinations of nonsequential pairs in RefSeq
exons, and (4) an AceView database flat file
downloaded from UCSC, representing transcripts
constructed from human expressed sequence tags.
The mapping results from files 2, 3, and 4 were
aligned to human reference genome coordinates and
also to the human GRCh37-lite reference sequence
by using STAR 2.3.0 without annotations. The final
BAM file was constructed by selecting the best
alignment among the five mappings. The coverage
was calculated by using an in-house pipeline.
Structural variations were detected by using
CICERO, a novel algorithm that uses de novo
assembly to identify structural variations in RNA
sequences.

Fluorescence In Situ Hybridization

BAC clones (BACPAC Resources) were used to develop
break-apart probes for the following genes: BRAF
(RP11-837G3, RP11-948O19), NTRK1 (CH17-67O18,
RP11-1038N13), PTPRZ1 (CH17-132B19, RP11-99L10),
IL6R (CH17-169C19, RP11-627K14), TPM3
(CH17-317C21, CH17-169C19), EML4 (CH17-315G08,
RP11-885P15), ARID1B (RP11-230C9, CH17-280H05),
and BAIAP2L1 (RP11-958G24, CH17-112O19).
Break-apart FISH for ALK was performed by using a
commercially available probe set (CytoCell, Cat. no. LPS
019-A). In addition, BAC clones (CH17-132B19,
RP11-99L10 and CH17-57M15, CH17-240N01) were
used to develop a fusion probe set for PTPRZ1–NFAM1.
Dual-color FISH was performed on 4μm FFPE sections,
as previously described.20

TERT mRNA ISH

The mRNA ISH, a novel method to detect mRNA in
FFPE tissues,26 was performed for TERT mRNA on
a Discovery Ultra automation system (Ventana
Medical Systems) by using RNAscope VS
Reagent Kit–RED (Advanced Cell Diagnostics). VS
Probe–Hs-TERT (Cat. no.605516) specific to the
sequence region between nucleotides 2164 and
3231 encoding the TERT transcript was used
according to the manufacturer’s instructions. Briefly,
4 μm FFPE tissue sections of tumors were pretreated
in citrate buffer with heat, followed by protease
digestion before hybridization with the target oligo
probes. Slides were hybridized sequentially with
target probes incubated at 43 °C for 2 h and 32min,
preamplifier at 53 °C for 32min, and amplifier at
53 °C for 32min, and label probes at room
temperature for 12min. Between the hybridization
steps, slides were washed with Ribowash buffer
(0.1 × saline sodium citrate). Hybridization signals
were detected by chromogenic development with
Fast Red, followed by counterstaining with
hematoxylin. Each sample was quality controlled
for RNA integrity with an RNAscope probe for PPIB
RNA and for background with a probe for bacterial
dapB RNA. The specific RNA staining signal was
identified as intracellular red punctate dots.

Results

Clinicopathologic Findings

Table 1 and Figures 1, 2, 3, 4 and 5 show the clinical
and disease characteristics for the seven patients.
Tumors were detected in samples from 4 children
(age 2–7 years) and 3 adolescents (age 11–14 years)

Table 1 Clinical, pathological, and genomic characteristics for the seven patients with spitzoid melanoma or biologically indeterminate
spitzoid tumors

Case Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7

Age 14 y 0 m 4 y 2 m 2 y 13 y 6 y 2 y 11 y 2 m
Gender M F M F F M F
Primary site Back Leg Thigh Calf Ear Knee Thigh
Thickness (mm) 1.3 7.8 8.2 4 9.1 13.3 7
Ulcer Y N N Y N Y Y
Mitotic rate 5 5 8 3 7 1 7
Diameter (mm) 11 10 17 9 11 15 12
SLN metastasis Y Y Y N Y (mac) NP Y (mac)
Outcome DOD 18 m NED 53 m NED 20 m NED 6 m NED 18 m NED 72 m DOD 24 m
Fusion transcript
by RNA-Seq

EML4–BRAF,
BRAF–EML4

BAIAP2L1–BRAF,
ARID1B–SNX9

TPM3–NTRK1,
PTPRZ1–NFAM1

TPM3–ALK, IL6R–
TPM3, IL6 Intergenic

TPM3–
NTRK1

None Failed

BRAF mutation Negative Negative Negative Negative Negative Negative Negative
NRAS mutation Negative Negative Negative Negative Negative Negative Negative
TERT promoter
mutation

–124C>T Negative Negative Negative Negative Negative –124C>T

TERT mRNA ISH Positive Negative Negative Negative Negative Negative Failed

Abbreviations: DOD, dead of disease; F, female; ISH, in situ hybridization; M, male; m, months; mac, macrometastasis; NED, no evidence of disease;
NP, not performed; SLN, sentinel lymph node; Y, yes; y, years old.
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and involved the lower extremities (n=5), ear (n=1),
and trunk (n=1). Two patients had clinically
detectable lymphadenopathy (macrometastasis). Of
the 6 patients whose sentinel/regional lymph nodes
were examined, 5 patients were positive for nodal

metastasis (Table 1), with clinically detectable
lymphadenopathy (patients 5 and 7), large nodal
deposits (patients 2 and 3), and isolated tumor cells
(patient 1). At a median follow-up of 20 months
(range, 6–72 months), 5 patients were alive and well

Figure 1 Spitzoid melanoma with the EML4–BRAF fusion transcript. Analysis of a tumor sample from a 14 year-old male (patient 1) with a
1.3-mm-thick spitzoid melanoma with microscopic sentinel lymph node metastasis at diagnosis and death as a result of disseminated
disease in 18 months. (a, b) H&E photomicrographs (10× and 40×) of the primary tumor show compound proliferation of epithelioid and
spindle-shaped spitzoid melanocytes arranged in confluent junctional nests with ulceration. (c) TERT mRNA ISH shows bright
intracellular signals in melanocytes in this TERT promoter mutant melanoma. (d, e) Break-apart FISH shows splits of the red and green
signals, consistent with the rearrangement of BRAF and EML4, respectively. (f) Schematic figure depicting the reciprocal translocation
between 2p21 and 7q34, resulting in the chimeric products EML4–BRAF and BRAF–EML4. (g) The in-frame fusion transcript produced by
joining exon 6 of EML4 (NM_019063, chr2:42491872) to exon 10 of BRAF (NM_004333, chr7:140482957). (h) The fusion transcript results
in a 596-amino-acid chimeric protein containing the intact kinase domain of BRAF. (i) The RNA transcript contig shows the fusion
breakpoint in the EML4–BRAF chimeric gene.
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with no evidence of disease and 2 patients devel-
oped distant metastasis in the lungs and brain and
subsequently succumbed to the disease 18 and
24 months after diagnosis (Table 1).

BRAF, NRAS, and TERT Promoter Mutations

The seven spitzoid tumors were negative for the
activating point mutations in BRAF and NRAS. The
two tumors that led to a fatal outcome each harbored
a TERT promoter mutation at –124 bp from the ATG
start site (–124C>T) in the primary and metastatic
samples, whereas the five other tumors retained the
TERT promoter wild type (Table 1).

Fusion Transcripts by RNA Sequencing

RNA sequencing was successful in 6 of the 7 samples,
with a minimum 20× coverage of at least 20% exonic

bases and a median coverage of 10× in all RefSeq
annotated exons (Supplementary Table 1). Coverage
was low in one sample obtained from old FFPE
material (patient 7), and it was excluded from
analysis. RNA sequencing identified a kinase fusion
in five of the six successfully tested tumors
(Supplementary Table 2). The following fusion genes
were identified by RNA sequencing: EML4–BRAF
(1 disseminating tumor; Figure 1), BAIAP2L1–BRAF
(1 tumor; Figure 2), TPM3–NTRK1 (2 tumors;
Figure 3), and TPM3–ALK (1 tumor; Figure 4). All
predicted chimeric transcripts were expressed at high
levels and contained the intact kinase domain. The
FPKM (fragment per kb per million mapped reads)
expression values for the fusion genes are provided
in Supplementary Table 2. In addition, two
spitzoid tumors each carried a second fusion gene,
ARID1B–SNX9 and PTPRZ1–NFAM1 (Supplementary
Figure 1). There was no structural rearrangement in
one of the successfully sequenced samples (patient 6).

Figure 2 Spitzoid neoplasm with the BAIAP2L1–BRAF fusion transcript. Analysis of a tumor sample from a 4-year-old African-American
female (patient 2) with a 7.8-mm-thick spitzoid melanocytic proliferation on her thigh, sentinel lymph node metastasis at diagnosis, and
no evidence of disease at 53 months of follow-up. (a) H&E photomicrograph (4× ) showing a dome-shaped proliferation of vertically
oriented fascicles of spindled melanocytes throughout the reticular dermis. (b) TERT mRNA ISH shows no detectable intracellular signals
beyond the background expression in this wild-type TERT promoter melanocytic tumor. (c) Break-apart FISH shows the rearrangement of
BRAF with loss of the 5′ end (red signal), consistent with a complex translocation. (d) Break-apart FISH for BAIAP2L1 shows splits of the
red and green signals. (e) Schematic representation of the BAIAP2L1–BRAF fusion, showing that the fusion occurred by tandem
duplication at 7q21.3-7q34. (f) The fusion transcript is formed by joining exon 12 of BAIAP2L1 (NM_018842, chr7:97933507) to exon 9 of
BRAF (NM_004333, chr7:140487384). (g) The fusion product is an 860-amino-acid chimeric protein containing the entire kinase domain of
BRAF. (h) The RNA transcript contig shows the fusion breakpoint in the chimeric BAIAP2L1-BRAF transcript.
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Fluorescence In Situ Hybridization

Break-apart FISH for BRAF (2 tumors), NTRK1
(2 tumors), PTPRZ1 (1 tumor), IL6R (1 tumor), TPM3
(3 tumors), EML4 (1 tumor), ARID1B (1 tumor), and
BAIAP2L1 (1 tumor) showed split signals in at least
30% of the evaluated cells, indicating rearrangement
of the respective genes (Figures 1, 2, 3 and 4 and
Supplementary Figure 1). The PTPRZ1–NFAM1 fusion
FISH showed multiple copies of overlapping signals
(Supplementary Figure 1), suggesting gene fusion
followed by copy gain in the kinase fusion gene.

TERT mRNA ISH

TERTmRNA ISH showed distinct bright intracellular
signals in melanocytes in the TERT promoter mutant
metastasizing tumor (Figure 1) but not in the wild-
type TERT promoter tumors (Figure 2). TERT mRNA
ISH was not successful in one sample (patient 7)
because of low RNA quality.

Discussion

By using RNA sequencing, we identified in-frame
fusions of kinases, BRAF, NTRK1, and ALK, in a
mutually exclusive pattern, with various partner
genes in five of the six successfully sequenced

spitzoid tumors. We found two novel 5′ BRAF fusion
partners EML4 and BAIAP2L1, expanding the list of
BRAF N-terminal fusion partners previously
described in pilocytic astrocytoma and melanocytic
tumors.21–23,27 EML4 is a recurrent fusion partner
gene with ALK, and the resulting fusion transcript
EML4–ALK is the primary oncogenic driver in 3–6%
of non-small-cell lung carcinomas.28,29 However, to
our knowledge, there are no reports of EML4
participating in an oncogenic fusion with BRAF.
BAIAP2L1 (BAI1-associated protein 2-like 1) has
been reported to participate in the fusion transcript
with FGFR3 in bladder and lung cancer, but has
never been described previously in melanoma.30–32

One of the samples in our study (patient 4)
harbored the TPM3–ALK fusion that has been
previously reported in spitzoid neoplasms.33,34

Interestingly, before the discovery of its oncogenic
association with melanocytic neoplasms,
TPM3–ALK was identified in tumors from other
lines of differentiation, namely the mesenchymal
(inflammatory myofibroblastic tumor),35 the
lymphoid (anaplastic large-cell lymphoma),36 and
the epithelial (squamous cell carcinoma and renal
cancer) lineages.37,38 This finding supports the
assertion that known fusion genes can drive
oncogenesis in tumors of different cell types. In
addition to translocations, ALK is also activated
through a de novo alternative transcription

Figure 2 Continued.
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Figure 3 Multiple isoforms of the TPM3–NTRK1 fusion transcripts in two spitzoid melanocytic tumors. (a) Photograph of a 2-year-old boy
(patient 3) with an amelanotic exophytic nodule on the thigh that was clinically thought to be a pyogenic granuloma. (b) H&E
photomicrograph (4× ) of the upper part of the lesion shows fascicles of spindled and epithelioid melanocytes arranged in whorls and
nests with edema of the papillary dermis with telangiectasia. There were lymphovascular invasion and focal necrosis (not shown). (c) H&E
photomicrograph (4× ) of the bottom part of the lesion shows dumbbell-shaped configuration and deep extension into the subcutaneous
fat. (d, f) H&E photomicrographs (4 × ) of the top and bottom portions of a lesion on the ear of a 6-year-old female (patient 5) showing nests
of polygonal-shaped epithelioid melanocytes at high magnification (inset in e) that extend throughout the dermis and far into the basal line
of resection margin in subcutis. (g, h) Break-apart FISH for NTRK1 shows split signals in both spitzoid tumors. (i–k) The NTRK1 fusion
gene encoded two variant TPM3–NTRK1 isoforms in patient 3 and a third isoform in patient 5. All isoforms retained the intact tyrosine
kinase domain of NTRK1.
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Figure 4 Complex genomic rearrangements involving ALK, TPM3, and IL6R. Spitzoid melanocytic neoplasm in the calf of a 13-year-old
female (patient 4). (a) H&E photomicrograph showing nests of spindled melanocytes with ulceration. (b) ALK immunoreactivity highlights
a fascicular architecture in the dermis. (c, d) Break-apart FISH for ALK and IL6R confirms rearrangements in the respective genes. (e–h)
Schematic of the TPM3–ALK fusion gene. The first 222 amino acids of TPM3 are fused to the C terminus of ALK, incorporating the intact
tyrosine kinase domain of ALK. The remaining TPM3 protein is fused to the IL6R protein. The identification of multiple fusions involving
TPM3 suggests a complex translocation event.
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initiation, without genetic alterations at the ALK
locus, in ∼ 11% of melanomas.39

Certain morphologic features have been linked to
spitzoid tumors with ALK rearrangement.24,34

Similar features were seen in our patient sample
with ALK fusion that exhibited nests of
spindle-shaped melanocytes with fascicular
infiltration of the dermis and subcutis (Figure 4).
Although no definitive conclusions can be drawn
because of the small number of samples in this
study, the two samples with NTRK1 fusion shared a
few morphologic features such as prominent
cellularity, deep extension, nested arrangement in
the upper part, and confluent cellular nodules with
rounded pushing margins at the bottom (Figure 3).
How reliably these morphologic manifestations
predict the type of fusion transcripts has not yet
been sufficiently studied. In any case, given the
diversity of gene fusions involving alternative
partners or even alternative exons within the same
pairs of genes, as demonstrated in two spitzoid
melanomas in this series harboring TMP3–NTRK1
(Figure 3), or other coexisting genetic alterations, the

morphologic heterogeneity in spitzoid tumors even
with the same kinase fusion is not unexpected.

Of the two patients with fatal outcomes in our
study, one carried a BRAF fusion and the sample
from the other patient could not be successfully
sequenced because of degraded RNA. The second
patient with BRAF fusion in our series had a benign
course of disease. To date, the association between
the type of fusion gene and prognosis in patients
with spitzoid tumors remains uncertain. Tumors
from both patients with fatal outcomes harbored the
–124C>T transcriptional activating mutation in the
TERT promoter. The –124C>T mutation (also
referred to as C228T in the literature) has been
previously shown to correlate with high TERT
mRNA expression in melanoma,18 and here on a
different platform using TERT mRNA ISH, we
demonstrated its association with telomerase
expression at a cellular level (Figure 1).

Transcriptome sequencing identified additional
novel fusion genes accompanied with kinase fusions
in spitzoid tumors. One sample harbored the
PTPRZ1–NFAM1 that was associated with elevated
expression of the NFAT activated protein with

Figure 5 Spitzoid melanoma with a TERT promoter mutation and fatal outcome. An 11-year-old girl (patient 7) presented with a lesion on
her thigh with an initial histologic diagnosis of a Spitz nevus, bulky nodal metastasis in 6 months, and disseminated disease and death
24 months after diagnosis. (a) Scanning magnification shows closely packed nests of spindle-shaped melanocytes with pseudoepithe-
liomatous hyperplasia and telangiectasia in the upper dermis. (b) The lower half of the lesion shows dense cellularity, sheet-like
arrangement, and deep extension into subcutis. (c) Intermediate magnification shows confluent fascicles of spindle-shaped melanocytes.
(d) Metastatic lung nodule composed of morphologically similar spindled melanocytes.
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ITAM motif 1 (NFAM1) (FPKM=621.2). The protein
encoded by NFAM1 contains an immunoreceptor
tyrosine-based activation motif that is thought to
regulate the development of B cells,40 but its role in
cancer development and melanoma is not well
studied. The 5′ partner gene PTPRZ1 is a recurrent
fusion partner with MET in glioblastoma.41 The
fusion transcript ARID1B–SNX9 is expected to lead
to the loss of function of the tumor suppressor gene
ARID1B, a subunit of the SWI/SNF complex.
Although the exact function of ARID1B in melanoma
has not been investigated, 13% of melanomas have a
loss-of-function mutation in a component of the
SWI/SNF complex,42 suggesting that the chromatin
remodeling complex plays a role in melanoma
tumorigenesis. Although the oncogenic contribution
of these genetic alterations remains speculative until
they are functionally characterized, our findings,
together with the complex nature of translocation
events seen in the tumor samples, suggest that
spitzoid tumors are enriched with structural
rearrangements.

Notably, no structural rearrangement was
identified in one spitzoid tumor in our study
(Table 1; patient 6), even though the exonic coverage
for this sample was comparable to that of other
specimens (Supplementary Table 1). Therefore, we
speculate that in a subset of spitzoid neoplasms,
mechanisms other than translocations can activate
oncogenes. Whole-genome sequencing can give
further insights into the oncogenic mechanisms of
these tumors.

In summary, we demonstrate complex and
heterogeneous structural rearrangements in spitzoid
tumors by transcriptome sequencing by using FFPE
tissue. The heterogeneity of the fusion transcripts
observed by RNA sequencing correlates with the
morphologic and clinical diversity of this group of
melanocytic tumors. The association between TERT
promoter mutations or telomerase expression with
outcomes in patients with spitzoid melanocytic
tumors requires further studies.
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