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The pathogenesis of polycystic liver disease is not well understood. The putative function of the associated
proteins, hepatocystin and Sec63p, do not give insight in their role in cystogenesis and their tissue-wide
expression does not fit with the liver-specific phenotype of the disease. We designed this study with the
specific aim to dissect whether pathways involved in polycystic kidney diseases are also implicated in
polycystic liver disease. Therefore, we immunohistochemically stained cyst tissue specimen with antibodies
directed against markers for apoptosis, proliferation, growth receptors, signaling, and adhesion. We analyzed
genotyped polycystic liver disease cyst tissue (n¼ 21) compared with normal liver tissue (n¼ 13). None of the
cysts showed proliferation of epithelial cells. In addition, anti-apoptosis marker Bcl-2 revealed a slight increase
in expression, with variable increase of apoptosis marker active caspase 3. Growth factor receptors EGFR and
c-erbB-2 were overexpressed and mislocalized. We found EGFR staining in the nuclei of cyst epithelial cells
regardless of mutational state of the patient. Further, in hepatocystin-mutant polycystic liver disease patients,
apical membranous staining of c-erbB-2 and adhesion markers MUC1 and CEA was lost and the proteins
appeared to be retained in the cytoplasm of cyst epithelia. Finally, we found loss of adhesion molecules
E-cadherin and Ep-CAM in cyst epithelium of all patients. Nevertheless, we observed normal b-catenin expression.
Our results show that polycystic liver disease cystogenesis is different from renal cystogenesis. Polycystic liver
disease involves overexpression of growth factor receptors and loss of adhesion. In contrast, proliferation
or deregulated apoptosis do not seem to be implicated. Moreover, differential findings for PRKCSH- and SEC63-
associated polycystic liver disease suggest a divergent mechanism for cystogenesis in these two groups.
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Patients suffering from polycystic liver disease
(PCLD) develop numerous fluid filled cysts
restricted to the liver.1 So far, two genes, PRKCSH
and SEC63, have been linked to PCLD by genome-
wide linkage analyses and extensive sequencing.2,3

The incriminated proteins, hepatocystin and
Sec63p, respectively, are predicted to have their
function in the glycosylation and transport of
glycoproteins into and out of the endoplasmic
reticulum (ER) (reviewed in Drenth et al4). Hepato-
cystin and Sec63p have a wide tissue expression,

but the phenotype of PCLD is restricted to the
liver.2,5–7 This paradox is not well understood and
suggests that additional, liver specific, events occur
that mediate cystogenesis.

Cystogenesis in other polycystic diseases such as
autosomal dominant polycystic kidney disease
(ADPKD) and autosomal recessive polycystic kidney
disease (ARPKD) is studied to a greater extent. In
these disorders cystogenesis is associated with
deregulated apoptosis,8,9 increased proliferation10,11

and aberrant localization of growth factor recep-
tors.12–14 In addition, the Wnt signaling pathway,
cell–cell adhesion and cell–matrix adhesion have
been indicated to play a role in polycystic kidney
diseases (PKDs).15–21 Cell adhesion molecules not
only mediate adhesion but also contribute to out-
side-in and inside-out cell signaling, which affects
cell fate, differentiation and morphology (reviewed
in Aplin et al22). To add another level of complexity,
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all the processes mentioned above are intricately
intertwined and interconnected.

In this study we set out to investigate whether the
findings of the major pathways involved in renal
cystogenesis can be extrapolated to PCLD. We
hypothesized that cystogenesis in PCLD follows
the same route as in ADPKD. Therefore, we analyzed
the tissue expression of marker antigens of apopto-
sis, proliferation, cell growth, cell signaling and cell
adhesion in cyst epithelium from PCLD patients.

Materials and methods

Tissues

Cyst tissue samples were collected from 21 PCLD
patients who underwent laparoscopic cyst fenestra-
tion or liver transplantation due to PCLD (all female;
median age at procedure, 44 years; range 35–62
years).23 Mutational analysis showed that 16 patients
carried a PRKCSH mutation, whereas 2 were SEC63
mutants and 3 were wild type for both PRKCSH and
SEC63. All mutations were found in a heterozygous
state consistent with the autosomal dominant in-
heritance pattern of the disorder. Nonpathological
tissue samples from 13 autopsy livers (4 male and 9
female patients; median age at death, 45 years; range
31–68 years) were used for control purposes. Autopsy
patients died from causes other than liver disease or
cancer. The study was performed according to the
guidelines of the code for adequate use of secondary
tissue (Version 2002, Federation of Medical Scientific
Societies, www.fmwv.nl).

Immunohistochemistry

We prepared consecutive 4 mm paraffin sections,
which we deparaffinized, rehydrated and blocked
for endogenous peroxidase (30min, 3% hydrogen
peroxide in PBS). If necessary, antigen retrieval was
performed by 10min microwave exposure in 10mM
citrate buffer (pH 6.0) after which the slides were

allowed to cool down for at least 90min. We used
avidin/biotin-blocking kit (Vector Laboratories Inc.,
Burlingame, CA, USA) to block endogenous avidin
and biotin and a 10min preincubation with 20%
normal horse serum to block a-specific binding sites.
Primary antibodies (Table 1) were incubated over-
night at 41C followed by 30min incubation with
biotinylated horse anti-mouse antibody or goat anti-
rabbit antibody (both from Vector Laboratories Inc.).
Next, we tagged antibodies with avidin–biotin–
peroxidase complex (Vector Laboratories Inc.) and
chromagen 3,30-diaminobenzidene with a hematox-
ylin counterstaining. Negative controls were pro-
duced by omitting the primary antibody.

Histological Evaluation

Sections were examined and photographed using a
Zeiss Axioskop 2 FS plus microscope (Zeiss, Jena,
Germany) and a ProgRes C10 plus digital camera with
ProgRes Capture Pro 2.1 software (JenOptik, Jena,
Germany). Immunohistochemistry results were classi-
fied as negative (�), weakly positive (þ /�), positive
(þ ), strongly positive (þ þ ), very intensely positive
(þ þ þ ). We distinguished clusters of moderately
dilated bile duct structures as von Meyenburg com-
plexes and conspicuously expanded bile ducts as
cysts. However, most cyst tissue samples consisted of
sections through cyst wall and lining cells were
considered cyst epithelium. The proliferation index
was defined as the percentage of Ki67/MIB-1-positive
(þ /�, þ , þ þ or þ þ þ ) cells in the cyst epithelium.

Results

Proliferation and Apoptosis in PCLD

Increased proliferation and deregulated apoptosis are
involved in ADPKD and ARPKD cystogenesis.9,10,24

Therefore, we first examined proliferation markers in
PCLD cyst tissue. Immunohistochemical staining of
Ki67 revealed that in none of our patients’ cyst

Table 1 Primary antibodies used for immunohistochemistry

Antigen Antibody Corporation Antigen
retrieval

Dilution

Active caspase 3 C92-605 BD Biosciences, San Jose, CA, USA M 1:500
Bcl-2 Clone 124 DakoCytomation, Glostrup, Denmark M 1:20
b-Catenin Clone 14 BD Biosciences, San Jose, CA, USA M 1:1000
CEA B01-94-11M-P BioGenex, San Ramon, CA, USA; monoclonal — 1:320
CEA A115 DakoCytomation, Glostrup, Denmark; polyclonal — 1:2700
C-erbB-2 Clone CB11 BioGenex, San Ramon, CA, USA M 1:20
E-cadherin HECD-1 Takara Bio Inc., Otsu, Shiga, Japan M 1:50
EGFR Sc-03 Santa Cruz Biotechnology, Santa Cruz, CA, USA M 1:100
Ep-CAM Ber-EP4 DakoCytomation, Glostrup, Denmark M 1:100
Ki67 MIB-1 DakoCytomation, Glostrup, Denmark M 1:100
MUC1 Clone E29 DakoCytomation, Glostrup, Denmark — 1:100

M, 10min microwave exposure in 10mM citrate buffer (pH 6.0); —, no antigen retrieval.
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epithelia proliferation was increased compared to
control liver bile ducts. In all patients the prolifera-
tion index was less than 1%, with only occasionally a
positive cell in the cyst epithelium (Figure 1b).
Lymphocytes present in the tissue samples showed
positive staining and were regarded as an internal
staining control.

Next, we studied apoptosis by assessing the
expression of Bcl-2 (anti-apoptosis) and active
caspase 3 (apoptosis). Compared to normal liver
bile ducts we found that Bcl-2 staining was slightly
elevated in cyst epithelia. In addition, some, but not
all, bile ducts in cystic tissue had increased staining
(Figure 1d). Finally, active caspase 3 expression
was slightly elevated in cyst epithelia of some, but
not all, PCLD tissue specimens regardless of geno-
type. Furthermore, active caspase 3 expression
showed marked heterogeneity between different
cysts in a single sample (Figure 1g–f). In controls,
expression of Bcl-2 as well as active caspase 3 was
absent.

Growth Factor Receptors are Expressed in Cyst
Epithelia

We have determined the expression of two growth
factor receptors in PCLD cyst epithelia: epidermal
growth factor receptor (EGFR, c-erbB-1) and c-erbB-2
(Her2/neu). EGFR was strongly expressed in cyst
epithelia and also hepatocytes were occasionally
positive. Staining was seen often in the nucleus, and
also in the cytoplasm of positive cells. Hepatocytes
in control livers weakly expressed EGFR only in the
cytoplasm. EGFR was negative in bile ducts in cyst
tissue and in control liver.

C-erbB-2 expression showed divergent staining in
patients with different mutations. Cyst epithelium
of PRKCSH mutation carriers showed strong stain-
ing of c-erbB-2 in the cytoplasm of cyst epithelia.
Patients, wild type for both genes or carrying a
SEC63 mutation, showed expression of c-erbB-2 in
some, but not all, cyst epithelia, and moreover,
staining intensity was less explicit and mainly
located on the apical surface. This staining
resembled the normal bile duct staining in these
patients. In contrast to the apical staining seen on all
bile ducts in patient samples, only the large
bile ducts in control liver samples showed positive
apical staining for c-erbB-2. The smaller bile
ducts were negative as were the hepatocytes.
Representative images of the stainings are depicted
in Figure 2.

Cell Signaling and Cell Adhesion

MUC1 is a glycoprotein active on the crossroads of
many signaling pathways, from growthfactor signal-
ing to Wnt signaling, cell adhesion and morphogen-
esis. We found MUC1 overexpression in the
cytoplasm of the majority of cyst epithelia from

patients with a PRKCSH mutation. The staining
pattern matched exactly that of c-erbB-2 in these
patients. In cyst epithelia from SEC63 mutation
carriers and wild-type patients we also observed
overexpression of MUC1. However, in most cyst
epithelia staining showed a more apical concentra-
tion with weaker staining in the cytoplasm. This
pattern resembled the apically centered expression
in bile ducts seen in control liver (Figure 3a–c).

Next, we assayed the expression of CEA, a
representative of the IgG-like adhesion molecules,
using two different antibodies. As CEA is strongly
glycosylated (28 potentially N-glycosylation sites),
the epitope of the antibody raised against the protein
backbone might be masked. In our study, both
antibodies displayed the same staining pattern, yet
the staining of the antibody raised against the fully
glycosylated protein was more pronounced. CEA
was strongly expressed on the bile canaliculi in
normal liver and in patient cyst tissue. In contrast to
negative staining of bile ducts, cyst epithelia
showed strong cytoplasmic staining of CEA. In
patients carrying a PRKCSH mutation, this staining
pattern matched the patterns for MUC1 and c-erbB2.
In these patients, cysts negative for MUC1 and
c-erbB-2 were also negative for CEA. In SEC63-
mutated patients or wild-type patients both positive
cytoplasmic staining and negative staining was
seen. Here, no correlation to other markers could
be found (Figure 3d–f).

Further, we assayed the expression of E-cadherin
as a representative of the cadherin family of
adhesion molecules. We observed E-cadherin ex-
pression in hepatocytes and bile ducts of normal
liver and in addition, in cyst epithelia of patient cyst
tissue. Occasionally, minor focal loss of E-cadherin
expression was seen in cyst epithelia of all patients
without correlation to mutational state (Figure 3g–i).
An absence of E-cadherin can cause disruption of
the Wnt signaling pathway. To evaluate Wnt signal-
ing involvement, we assessed the b-catenin expres-
sion in cyst epithelia. We found that b-catenin
staining was strongly positive on membranes of all
cyst epithelia, bile ducts and hepatocytes in normal
liver and patient tissue. No translocation of
b-catenin to the nucleus or cytoplasm was observed
(Figure 3j–l). This implicates that in contrast to
ADPKD cystogenesis, a disruption of Wnt signaling
does not seem to be involved in PCLD cystogenesis.

Finally, the adhesion molecule Ep-CAM was
stained because of its negative regulatory effect on
adhesions mediated by the classic cadherins
(including E-cadherin).25 In concordance, we hypo-
thesized that Ep-CAM would be (over)expressed
in cyst epithelia that showed loss of E-cadherin.
Surprisingly, Ep-CAM showed a more extensive loss
than E-cadherin in cyst epithelia of all patients.
Ep-CAM was expressed on the membrane of bile
ducts in control liver and patient tissue (Figure 3m–o).

Table 2 summarizes the results of the immuno-
histochemical stainings of cyst epithelia compared
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to normal liver bile ducts. Most antibodies
showed results similar for all patients regardless of
mutational status. However, c-erbB-2, MUC1 and
CEA showed differential expression in patients with
a PRKCSH mutation.

Discussion

Here, we report that PCLD cyst tissue shows (1)
normal proliferation, (2) slight increase in expres-
sion of anti- and proapoptosis factors, (3) increased

Figure 1 Expression of proliferation and apoptosis markers in control and PCLD liver. Immunohistochemical staining showed no
increase in expression of proliferation marker Ki67 in PCLD liver compared to control liver (a, b). Expression of Bcl-2, an anti-apoptosis
protein, is slightly elevated in cyst epithelia and bile ducts (inset) from PCLD patients (c, d). Finally, active caspase 3, an apoptosis
marker, showed variable expression intensities within samples (e–g). We found no mutation dependent expression variation.
Arrowheads indicate bile ducts and scale bars correspond to 50mm.
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growth factor receptor expression, (4) loss of adhe-
sion molecule expression and (5) mislocalization of
c-erbB-2, MUC1 and CEA in PRKCSH-mutated cyst
epithelia. The current results indicate that, similar
to ADPKD, PCLD cystogenesis involves EGFR and c-
erbB-2 overexpression. However, in contrast to the
findings in ADPKD, PCLD cystogenesis does not
seem to involve increased proliferation or (anti)-
apoptosis.

Proliferation and Apoptosis

It has been suggested that deregulated proliferation
and apoptosis play an important role in PKDs.
Tissue sample proliferation indexes are in-
creased.10,11,26 In addition, several studies have
shown that diverse factors, such as calcium,
c-myc, laminin 5 and cAMP, increase proliferation
in PKD cells.27–31 Recently, Alvaro et al11 found that
in ADPKD liver cyst epithelia, proliferating cell
nuclear antigen is highly expressed and that cyst
fluid stimulates proliferation of cells derived from
ADPKD liver cyst epithelia. In this study we used
the MIB-1 antibody directed against Ki67 to deter-
mine the proliferation index in PCLD cyst tissue.
This antibody stains cells in all phases but the G0

(or rest) phase, in contrast to the commonly used
staining for PCNA which is only expressed late
in cell cycle phase G1 and S phase.32,33 Consequently
MIB-1 gives a more valid impression of
proliferation.

Our results show that proliferation is not in-
creased in PCLD cyst epithelium compared to
control liver bile ducts. The proliferation index
was smaller than 1% in all patients studied. In
addition, we found that all cysts (both large and
small) were completely lined with cubic or flattened
epithelium and we did not find any denuded
basement membranes. Accordingly, as cyst size
ranges from a few millimeters to several centimeters
it can be argued that cyst epithelium has to
proliferate to keep covering the entire cyst. Most
cysts that were part of our sample were large and
were located on the surface of the dorsal liver. The
results suggest that these cysts expanded (passively)
by fluid retention instead of actively proliferating to
a large diameter. Finally, it can be argued that cysts
grow either very slowly or by a nonlinear fashion,
eg, in growth spurts. In summary, although some
proliferation is needed to sustain the cyst coverage,
(excessive) proliferation does not seem to be the
main cause of cystogenesis in PCLD.

The role of apoptosis is ambivalent in PKDs. Both
increased apoptosis and increased inhibition of
apoptosis have been implicated in renal cystogen-
esis. In human ADPKD, increased Bcl-2 expression
with normal levels of Bax seems to tip the balance
to anti-apoptosis.9 However, the same study de-
tected increased apoptosis. Woo24 found concordant
results and reported that increased apoptosis causes
loss of renal tissue and leads to renal dysfunction in
ADPKD. Furthermore, the absence of the antiapop-
totic protein Bcl-2 in bcl-2�/� mice leads to severe

Figure 2 Expression of growth factor receptors, EGFR and c-erbB-2, in control and PCLD liver. We observed increased EGFR expression
in nucleus and cytoplasm of PCLD cyst epithelial cells, regardless of mutational status (a–c). Patients carrying a PRKCSH mutation
showed a distinct cytoplasmic overexpression of c-erbB-2. This is in contrast to a more variable c-erbB-2 expression in wild-type and
SEC63-mutated patients (d–f). Arrowheads indicate bile ducts and scale bars correspond to 50mm.
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PKD in animals as young as 10 days.8 In addition,
downregulation of Bcl-2 in the end stage of
kidney development due to knockout of transcrip-

tion factor AP-2b in AP-2b�/� mice also leads to
massive apoptosis, polycystic kidneys and postnatal
death.34
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In this study, we found weak expression of Bcl-2
together with expression of active caspase 3 in some,
but not all, cysts. It seems therefore that in some
PCLD cysts the balance tips to anti-apoptosis (higher
Bcl-2 and low active caspase 3) but in other cysts the
balance seems to be in equilibrium (higher Bcl-2
together with high active caspase 3). This indicates
that PCLD is a dynamic disease. The scored cysts are
in different stages of growth and development, with
some cysts degenerating and others developing.

Further, we found large numbers of bile ducts
in cystic tissue with increased Bcl-2 staining
(Figure 1d). Increased expression of Bcl-2 is found
in reactive bile ducts in various cholestatic liver
diseases.35,36 Reactive bile ducts develop from pro-
liferation of preexisting bile ductules and differ from
normal bile ducts in their protein expression pattern.
The existence of reactive bile ducts in cystic tissue
would be a plausible explanation for the abundance
of bile ducts found in some patients’ tissues.

Growth Factors

Paradoxically, the overexpression of growth factor
receptors EGFR and c-erbB-2 in PCLD cyst epithelia
argues for presence of active proliferation. We found a
nuclear staining pattern for EGFR in PCLD. This is
reminiscent of highly proliferative or neoplastic
tissues such as breast carcinomas. In the nucleus,
EGFR can act as a transcription factor of cyclin D,
iNOS and c-myb, expression of which contributes to
increased proliferation.37–39 Interestingly, translocation
of EGFR is EGF-dependant and mediated by the Sec61
translocon.40 This raises the question whether PCLD
protein Sec63p, which is part of the Sec61 translocon,
could also have a role in EGFR translocation.

In PKD cyst epithelia, both EGFR and c-erbB-2 are
overexpressed and mislocalized to the apical sur-
face, instead of normal basolateral expression on
collecting tubules in the kidney.12,14,41 Subsequently,
overexpressed EGF accounts for an autocrine pro-
liferative response.12 In accordance, nonfunctional
EGFR leads to less severe PKD in double mutant
orpk;wa2 mice13 and selective inhibition of c-erbB-2
decreases cyst growth and results in improvement of
kidney function in PKD1 null mice.14

Mislocalization

In our study, three proteins, c-erbB-2, MUC1 and
CEA, showed overexpression and mislocalization

restricted to or more pronounced in PRKCSH-
mutated patients. Their staining pattern mirrored
the staining pattern for hepatocystin.42 Cysts devoid
of hepatocystin expression showed the cytoplasmic
staining pattern for c-erbB-2, MUC1 and CEA. The
common denominator for these proteins is that they
are all extensively N-glycosylated, a process
mediated by hepatocystin. Defective glycosylation
leads to misfolded glycoproteins resulting in reten-
tion in the ER or translocation out of the ER followed
by degradation by the proteasome (reviewed in
Ruddock and Molinari43). Destruction of the pro-
teins mentioned above does not seem to be the case
in our study as intense staining represents presence
of protein. Additionally, N-glycosylation is impor-
tant not only in protein folding but also in protein
trafficking. For example, differences in glycan
composition are found in secreted and membrane-
bound MUC1.44 MUC1 is a versatile protein inter-
acting with, eg, EGFR, b-catenin, p53 and estrogen
receptor-a (ERa), and also inhibiting proliferation
and influencing cell–cell adhesion through its
extraordinary length.45–49 Intriguing is the fact that
MUC1 stabilizes and stimulates ERa.47 This is
significant as hepatic cyst growth is promoted by
estrogen supplementation and pregnancies.1,50,51

Nevertheless, we did not find overexpression of
ERa in PCLD tissues (data not shown). This suggests

Figure 3 Immunohistochemical staining of adhesion molecules in control and PCLD liver. Staining of MUC1 revealed a slight increase in
staining intensity in wild-type and SEC63-mutant patients. Staining was apically centered. In contrast, patients carrying a PRKCSH
mutation showed strongly increased cytoplasmic expression in cyst epithelia. Bile ducts in all patients showed MUC1 staining on the
apical membrane (insets) (a–c). We observed an increased expression of CEA in cyst epithelia. In addition, PRKCSH-mutant patients
showed similar cytoplasmic overexpression as was seen in MUC1 and c-erbB-2 stainings (d–f). E-cadherin expression was focally lost in
cyst epithelia regardless of mutational state (g–i). However, b-catenin expression was not lost and was solely found in membrane
association (j–l). Finally, staining of Ep-CAM revealed extensive loss in all PCLD cyst epithelia (m–o). Arrowheads indicate bile ducts
and scale bars correspond to 50mm.

Table 2 An overview of the results found in this study separated
by genotype

Antibody Mutation

PRKCSH SEC63 WT

Ki67 N N N
Bcl-2 +/� +/� +/�
Active caspase 3 N/+ N/+ N/+
EGFR + + +
C-erbB-2 +++a N/+ N/+
MUC1 +++a + +
CEA +++a N/++ N/++
E-cadherin F� F� F�
b-Catenin N N N
Ep-CAM F�� F�� F��

a
Corresponding pattern.
WT, wild type; N, normal expression; +/�, slight increase of
expression; +, increased expression; +++ strong increase of expres-
sion; F�, focal loss; F��, more extensive focal loss; N/+, normal
expression in some cysts, increase of expression in other cysts; N/++,
normal expression in some cysts, strong increase of expression in
other cysts.
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that the MUC1/ERa pathway is not responsible for
increased cystogenesis in female PCLD patients.

The discrepancy between the results in PRKCSH-
mutated patients and SEC63-mutated or wild-type
patients indicate that PCLD cystogenesis might
evolve through divergent pathways. A defect in
hepatocystin seems to have effect on highly glyco-
sylated proteins in addition to the general effects
also seen in Sec63p mutants.

Adhesion

Finally, we turned our attention to the expression of
adhesion molecules E-cadherin and Ep-CAM. The
loss of both Ep-CAM and E-cadherin expression
from PCLD cyst epithelia was surprising as expres-
sion of Ep-CAM is known to discard E-cadherin
mediated cell–cell adhesions.25,52 Our results indi-
cate that loss of E-cadherin in PCLD cyst epithelia is
not induced by Ep-CAM and that multiple adhesion
processes are involved in PCLD cystogenesis.

Crucial for the normal functioning of E-cadherin
is b-catenin.53 However, b-catenin expression in
PCLD cyst epithelia was unaltered compared to
normal bile ducts. More specifically, we found no
accumulation of b-catenin in the cytoplasm or
nuclei. This suggests that the canonical Wnt signal-
ing pathway is not active in PCLD cyst epithelia.
This is in contrast with the findings in ADPKD and
nephronophthisis, where cystic kidneys develop
respectively due to the activation or the failure of
inhibition of the canonical (b-catenin mediated)
Wnt signaling pathway.18,19,54 However, further
research using more sensitive methods are war-
ranted to confirm and specify our results.

Another arm of the Wnt signaling pathway, the
noncanonical pathway or the planar cell polarity
pathway, is also associated with ADPKD.55 This
pathway mediates cytoskeletal organization and cell
polarity. Lengthening of tubules, a major component
of kidney and liver development, involves length-
wise oriented cell proliferation. Loss of cell polarity
undermines cell orientation and leads to cell division
in planes other than the tubule axis, which can give
rise to cystic structures. Our results cannot exclude
involvement of this pathway in PCLD cystogenesis.

In summary, our results show that PCLD cysto-
genesis is different from cystic kidney diseases.
PCLD cystogenesis involves overexpression of
growth factor receptors and loss of adhesion, but
no decrease or increase in apoptosis or proliferation.
Moreover, differential findings for PRKCSH- and
SEC63-associated PCLD suggest a divergent me-
chanism for cystogenesis in these two groups.
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