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Multifrequency excitation of a clamped–clamped microbeam:
Analytical and experimental investigation
Nizar Jaber1, Abdallah Ramini1 and Mohammad I. Younis1,2

Using partial electrodes and a multifrequency electrical source, we present a large-bandwidth, large-amplitude clamped–clamped
microbeam resonator excited near the higher order modes of vibration. We analytically and experimentally investigate the
nonlinear dynamics of the microbeam under a two-source harmonic excitation. The first-frequency source is swept around the first
three modes of vibration, whereas the second source frequency remains fixed. New additive and subtractive resonances are
demonstrated. We illustrated that by properly tuning the frequency and amplitude of the excitation force, the frequency bandwidth
of the resonator is controlled. The microbeam is fabricated using polyimide as a structural layer coated with nickel from the top and
chromium and gold layers from the bottom. Using the Galerkin method, a reduced order model is derived to simulate the static and
dynamic response of the device. A good agreement between the theoretical and experimental data are reported.
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INTRODUCTION
Microelectromechanical systems (MEMS) resonators are the
primary building blocks of several MEMS sensors and actuators
that are used in a variety of applications, such as toxic gas sensors1,
mass and biological sensors2–5, temperature sensors6, force and
acceleration sensors7, and earthquake actuated switches8. MEMS
resonators can be based on thin-film surface micromachining,
yielding compliant resonating structures, or bulk micromachining,
for example, in the case of bulk resonators. These are primarily
based on the wave propagation within the bulk structure.
This article addresses the first category, that is, primarily
clamped–clamped microbeam resonators.
MEMS resonators are excited using different types of forces, such

as piezoelectric9, electromagnetic10, thermal11, and electro-
static8,12. The electrostatic excitation of resonators is the most
commonly used method because of its simplicity and availability12.
However, electrostatic forces are inherently nonlinear, thus adding
complexity to the dynamics of these resonators, especially
when they undergo large motions. The nonlinear dynamics of
electrostatically actuated resonators have been thoroughly studied
over the past two decades12–19.
There has been increasing interest in obtaining resonant

sensors with large-frequency bands, especially with a high-
quality factor range and near higher order modes of vibrations,
where a high sensitivity of detection is demanded1,2. A few of the
approaches that have been investigated to improve the vibration
of resonators and increase their frequency band width are
through parametric excitation16, secondary resonance20, slightly
buckled resonators21, and multifrequency excitation22. Challa
et al.23 designed and tested a device with tunable resonant
frequency for energy harvesting applications. The resonant
frequency band was increased up to ± 20% of the original
resonant frequency using a permanent magnet. The effects of the

double potential well systems on the resonant frequency band
and their application in energy harvesting applications are
reviewed in Ref. 24. Recent studies on a carbon nanotube-based
nano-resonator for mass detection applications proved that the
resonator bandwidth is directly proportional to the forcing
amplitude25.
Recent studies have highlighted the interesting dynamics of

mixed frequency excitation and their applications as sensors and
actuators. The mixed frequency excitation of a micromirror has
been studied extensively in Ref. 22, where it is proposed as a
method to improve the bandwidth in resonators. Erbe et al.26

demonstrated using the nonlinear response of a strongly driven
nanoelectromechanical system resonator as a mechanical mixer in
the radiofrequency regime. They used a magnetic field at an
extremely low temperature (4.2 K) to excite a clamped–clamped
microbeam using two AC signals of a frequency that were
extremely close to each other and to the fundamental natural
frequency of the beam. They determined that by exceeding a
certain threshold of the amplitude excitation, higher order
harmonics appeared. By increasing the excitation amplitude
further, a multitude of satellite peaks with limited bandwidth
occurred, thus allowing effective signal filtering. These results
were verified by applying a perturbation theory on the Duffing
equation with cubic nonlinearity and numerically integrating the
Duffing equation and calculating the power spectrum of the
response. They determined from both analysis and experiment
that the cubic nonlinearity was responsible for generating the
frequency peaks. A parametrically and harmonically excited
microring gyroscope was investigated at two different frequencies
in Ref. 27. The method proposed in the present study increases
the signal to noise ratio and improves the gyroscope performance.
Liu et al.28 fabricated and characterized an electromagnetic
energy harvester, which harvested energy at three different
modes of vibration. Moreover, the method of multifrequency
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excitation was implemented to perform mechanical logic opera-
tion, where each frequency carried a different bit of information29.
The mixed frequency is used for an atomic force microscope
resonator to generate high-resolution imaging and extract the
surface properties30.
Motivated by the interesting dynamics and the wide range of

applications of a large bandwidth resonator excited near the
higher order modes of vibration, the objective of this article is to
excite higher order modes of vibrations combined with multi-
frequency excitation to broaden the frequency bandwidth around
the excited modes. The behavior of clamped–clamped microbe-
ams excited by a multifrequency electrical source has been
investigated experimentally and analytically.

MATERIALS AND METHODS
Fabrication
The clamped–clamped microbeam resonator, as depicted in
Figure 1a, is fabricated using the in-house process developed in
Refs. 31,32. The microbeam consists of a 6-μm polyimide structural
layer coated with a 500-nm nickel layer from the top and 50 nm
chrome, 250 nm gold, and 50 nm chrome layers from the bottom.
The nickel layer acts as a hard mask to protect the microbeam
during the reactive ion etching process and defines the length
and width of the beam. The lower electrode is placed directly
underneath the microbeams and is composed of gold and chrome
layers. The lower electrode provides the electrical actuation force
to the resonator. The two electrodes are separated by a 2-μm air
gap. When the two electrodes are connected to an external
excitation voltage, the resonator vibrates in the out-of-plane
direction. Figure 1b illustrates the various layers of the fabricated
resonator.

Problem formulation
We investigate the governing equation for a clamped–clamped
microbeam depicted in Figure 2, which is electrostatically
actuated by two AC harmonic loads VAC1 and VAC2 of frequencies
Ω1 and Ω2, respectively, and superimposed onto a DC load VDC.
The equation of motion governing the dynamics of the
microbeam can be written as follows:

EI
∂4w
∂x4

þ ρA
∂2w
∂t2

þ c
∂w
∂t

¼ ∂2w
∂x2
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dx
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þ
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2 d -wð Þ2

ð1Þ

where E is the modulus of elasticity; I is the microbeam moment of
inertia; c is the damping coefficient; A is the cross sectional area;
ρ is the density; ε is the air permittivity; d is the air-gap thickness;
t is time; x is the position along the beam; N is the axial force; b is
the beam width; and w is the microbeam deflection. The boundary
conditions of the clamped–clamped microbeam can be given as
follows:

w 0; tð Þ ¼ 0 ∂w
∂x 0; tð Þ ¼ 0

w l; tð Þ ¼ 0 ∂w
∂x l; tð Þ ¼ 0

ð2Þ

Next, we non-dimensionalize the equation of motion and its
boundary conditions for convenience. Accordingly, the non-
dimensional variables (denoted by hats) can be introduced as
follows:

ŵ ¼ w
d
; x̂ ¼ x

l ; t̂ ¼ t
T ð3Þ

where T is a time scale that can be defined as follows:

T ¼
ffiffiffiffiffiffiffiffiffiffiffi
ρbhl4

EI

s
ð4Þ

By substituting Equations (3) and (4) into Equations (1) and (2) and
dropping the hats from the non-dimensional variables for
convenience, the non-dimensional equation can be derived as
follows:
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Figure 1 Fabrication and composition of the clamped–clamped microbeam resonator. (a) Top view of the fabricated microbeam with half of
the lower electrode configuration and the actuation pad; and (b) cross sectional view of the fabricated microbeam depicting the different
layer thicknesses and material properties.

Figure 2 Schematic of the clamped–clamped resonator excited by a
multifrequency electrical source.
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where the normalized boundary conditions are

w 0; tð Þ ¼ 0 ∂w
∂x 0; tð Þ ¼ 0

w 1; tð Þ ¼ 0 ∂w
∂x 1; tð Þ ¼ 0

ð6Þ

The parameters in Equation (5) can be defined as follows:

cnon ¼ 12cl4

ETbh3
; α1 ¼ 6

d
h

� �2

; α2 ¼ 6εl4

Eh3d3
; Nnon ¼ 12Nl2

Ebh3
ð7Þ

To calculate the beam response, we solve the normalized
microbeam equation, Equation (5), in conjunction with its bound-
ary conditions, Equation (6), using the Galerkin method12. This
method reduces the partial differential equation into a set of
coupled second order differential equations. The microbeam
deflection can be approximated as follows:

w x; tð Þ ¼
Xn
i¼1

ϕiðxÞuiðtÞ ð8Þ

where ϕi(x) is selected to be the ith undamped, unforced and
linear orthonormal clamped–clamped beam mode shape; ui(t) is
the ith modal coordinate; and n is the number of assumed modes.
To determine the mode shape functions ϕ(x), we can solve the
eigenvalue problem as follows:

ϕð4ÞðxÞ -Nnonϕ
2ð ÞðxÞ -onon

2ϕðxÞ ¼ 0 ð9Þ
where ωnon is the eigenfrequency. Both sides of Equation (5) are
multiplied by (1−w)2 to simplify the spatial integration of the
forcing term12. Then, we substitute Equation (8) into Equation
(5) and multiply the outcome by the mode shape ϕi(x). Next, we
can integrate the resulting equation from 0–1 over the spatial
domain as follows:
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Evaluating the spatial integration in Equation (10) produces a set
of coupled ordinary equations, which can be solved numerically
using the Runge–Kutta method. We implement the first three mode
shapes to produce converged and accurate simulation results.

Experimental characterization
The experimental characterization setup used for testing the
device and measuring the initial profile, gap thickness and out-of-
plane vibration is depicted in Supplementary Figure S1. The
experiment is conducted on a 400-μm microbeam with a lower
electrode that spans half of the beam length. This electrode
provides an anti-symmetric electrical force to excite the symmetric
and anti-symmetric resonance frequencies. The experimental
setup consists of a microsystem analyzer, which is a high-
frequency laser Doppler vibrometer under which the microbeam
is placed to measure the vibration, data acquisition card
connected to an amplifier to provide actuation signals of wide
range of frequencies and amplitudes, and vacuum chamber,
which is equipped with ports to pass the actuation signal and
measure the pressure. In addition, the chamber is connected to a
vacuum pump that can reduce the pressure to 4 mtorr.
The initial profile of the microbeam is revealed using an optical

profilometer. After defining the vertical scanning range and

exposure time, a 3D map of the microbeam is generated
(Supplementary Figure S2). The combined thickness of the
microbeam and air gap is measured to be ~ 9 μm. In addition,
the total length of the microbeam is 400 μm with a fully straight
profile and without any curvature or curling.
To characterize the static behavior of the device, we initially

biased the microbeam by a slow DC ramp voltage, generated
using the data acquisition card, and measured the static
deflection. The experimental result is reported in Supplementary
Figure S3. The deflection increases until pull in is exhibited at 168 V.
We experimentally measured the first three natural frequencies

by exciting the device with a white noise signal of VDC = 30 V
and VAC = 50 V. The vibration at different points along the beam
length is scanned to extract the vibration mode shapes and
resonance frequencies. The acquired frequency response curve is
depicted in Figure 3, which reveals the values of the first
three natural frequencies of ω1 = 160 kHz, ω2 = 402 kHz, and
ω3 = 738 kHz. The mode shapes (root mean squared absolute
values) are reported in the insets of Figure 3. We observed that all
of the points vibrate at ω1, whereas the mid points are nodal
points at ω2. In addition, at ω3, there are two nodal points. These
results match the clamped–clamped structure’s first, second, and
third vibration mode shapes.

RESULTS
Frequency response curves
The nonlinear response of the microbeam is experimentally
investigated near the first three modes of vibration. The
microbeam is excited using the data acquisition card, and the
vibration is detected using the laser Doppler vibrometer. The
excitation signal is composed of two AC signals, VAC1 and VAC2,
superimposed on a DC signal VDC. The measurements are
performed by focusing the laser at the mid-point for the first
and third mode measurements and at a quarter of the beam
length for the second mode measurements. Then, the frequency
response curve is generated by taking the steady-state maximum
amplitude of the motion Wmax. The generated frequency response
curves near the first mode are depicted in Figure 4a. Each curve
denotes the frequency response for different values of VAC2. The
results are obtained by sweeping the frequency of the first AC
source Ω1 around the first mode and fixing the second source
frequency Ω2 at 1 kHz. The swept source voltage VAC1 and the DC
voltage are fixed at 5 and 15 V, respectively. The results of
sweeping Ω1 near the second mode while fixing the second
source frequency Ω2 at 5 kHz is depicted in Figure 4b. The swept

Figure 3 Frequency response curve of the microbeam to a white
noise actuation signal with the corresponding mode shape at a load
of VDC= 30 V and VAC= 50 V and a pressure of 4 mtorr. The
resonance frequencies values are ω1= 160 kHz, ω2= 402 kHz, and
ω3= 738 kHz.
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source voltage VAC1 and the DC voltage are fixed at 20 and 15 V,
respectively. In addition, this experiment is repeated near the third
mode, as indicated in Figure 4c, where Ω2 is fixed at 10 kHz and
the actuation voltages VAC1 and the DC are fixed at 40 and 20 V,
respectively. The chamber pressure is fixed at 4 mtorr.
The curves of Figure 4 highlight the effects of VAC2 on the com-

bination resonances, where new resonance peaks appear at
frequencies of the additive type at (Ω1+Ω2), (Ω1+2Ω2), and
(Ω1+3Ω2) and the subtractive type at (Ω1−Ω2), (Ω1− 2Ω2), and
(Ω1− 3Ω2)

33. These resonances appear due to the quadratic
nonlinearity of the electrostatic force as well as the cubic non-
linearity caused by mid-plane stretching. It should be noted that in
Equation (5), the integral term representing mid-plane stretching
indicates W and its derivatives to be a positive cubic term, which
tends to cause hardening behavior. However, expanding the
electrostatic force term in Equation (5) with a Taylor series results

in a constant term, that is, representing the static effect, linear
term, that is, representing the linear decrease in the natural
frequency due to voltage loads, quadratic nonlinearity and other
higher order nonlinearities. The strongest nonlinearity is the
quadratic one, which is known to cause a softening effect
regardless of its sign17. In addition, hardening behavior is reported
near the first and second resonances. As VAC2 increases near the
first resonance (Figure 4a), the response curves tilt toward the
lower frequency values (softening), where the quadratic non-
linearity from the electrostatic force dominates the cubic
nonlinearity from mid-plane stretching.
Figures 5a–c reports the results for different values of Ω2 under

the same electrodynamic loading condition near the first,
second and third resonance frequencies. As Ω2 decreases further,
a continuous band of high amplitude is formed. This result
demonstrates that the multifrequency excitation can be used to
broaden the large amplitude response near the main resonance,
hence increasing the bandwidth, even for higher order modes.
In addition to the previous results, Supplementary Figure S4

compares the experimentally obtained response owing to a
single-frequency excitation of parameters VDC = 15 V and VAC = 5 V
to that of a two-source excitation, where another harmonic source
of frequency fixed at 1 kHz and amplitude of 10 V is added. The
multifrequency response indicates a clear contrast and clear
advantage in terms of bandwidth, which can have several
practical applications. Typically, resonators of the resonant sensors
may not necessarily be driven at the exact sharp peak due to
noise, temperature fluctuation and other uncertainties, which
results in significant losses and weak signal to noise ratios. The
above results prove the ability to control the resonator bandwidth
by properly tuning the excitation force frequencies. In addition, by
using the partial lower electrode configuration and properly
tuning the excitation voltages, the higher order modes of
vibration are excited with high amplitudes above the noise level.

Simulation results
The microbeam dynamical behavior is modeled according to
Equation (5) with the unknown parameters EI, N, and C, which are
extracted experimentally. All of the results are obtained based on
the derived reduced order model. The eigenvalue problem of
Equation (9) is solved for different values of the non-dimensional
internal axial force Nnon to determine the theoretical frequency
ratio ω2/ω1 that matches the measured ratio. The theoretical and
experimental ratios are matched for Nnon = 20.82, as reported
in Supplementary Figure S5. The axial forces in the surface
micromachining process arise due to the residual stress from
depositing the different layers of the microbeam at high
temperatures and then being cooled down to room temperature.
These forces affect the resonance frequency values and their ratio.
To extract the flexural rigidity EI, we use the static deflection curve
and match the theoretical result with the experimental data
(Supplementary Figure S3). On the basis of the static solution of
Equation (5), we determined that EI= 0.106 × 10− 9 Nm2. The
damping ratio ς is extracted from the frequency response curve
of the beam to a single and small AC excitation, where the
experimental and theoretical results are matched at a damping
ratio ς= 0.002, as depicted in Supplementary Figure S6.
The simulated dynamic response is based on a long-time

integration of the modal equations of the reduced-order model of
Equation (10) to reach a steady-state response. The first three-
mode shapes are used in the reduced-order model to
approximate the response. The simulation and experimental
results for the multifrequency excitation near the first three
modes of vibrations are reported in Figures 6a–c. Using the
Galerkin approximation, the model predicts the resonator
response accurately near the first and third mode shapes. Near
the second mode, long-time integration method failed to

Figure 4 Frequency response curves for different values of VAC2.
(a) VDC= 15 V, VAC1= 5 V, and Ω2= 1 kHz near the first mode; (b)
VDC= 15 V, VAC1= 20 V, and Ω2= 5 kHz near the second mode; and
(c) VDC= 20 V, VAC1= 40 V, and Ω2= 10 kHz near the third mode.
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Figure 5 Frequency response curves for different values of Ω2. (a) Near the first mode at VDC= 15 V, VAC1= 5 V, and VAC2= 35 V. (b) Near the
second mode at VDC= 15 V, VAC1= 20 V, and VAC2= 70 V. (c) Near the third mode at VDC= 20 V, VAC1= 40 V, and VAC2= 20 V.

Figure 6 Experimental and simulation results of the microbeam. (a) Near the first mode of vibration for VDC= 15 V, VAC1= 5 V, VAC2= 20 V, and
Ω2= 1 kHz; (b) Near the second mode of vibration for VDC= 20 V, VAC1= 15 V, VAC2= 50 V, and Ω2= 5 kHz; and (c) Near the third mode of
vibration for VDC= 20 V, VAC1= 40 V, VAC2= 40 V, and Ω2= 10 kHz.
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capture the complete solution due to the weak basin of attraction
near the large response curve, as indicated in Figure 6b. As
reported by Batineh and Younis34, long-time integration
method depends on the size and robustness of the basin of
attraction to capture a solution. Another numerical technique
needs to be implemented to accurately predict the complete
response, such as the shooting technique, which can determine
the entire response as well as capture the stable and unstable
periodic solutions12,34.

CONCLUSIONS
In this report, we investigated the dynamics of an electrically
actuated clamped–clamped microbeam excited by two harmonic
AC sources with different frequencies superimposed onto a DC
voltage near the first three modes of vibrations. After recording
the static deflection curve and detecting the first three
natural frequencies, a numerical analysis was conducted to extract
the device parameters. Then, the governing equation was solved
using three mode shapes, which provided a good agreement
between the simulation and the experimental results. Moreover,
we proved the ability to excite the combination resonance of both
the additive and subtractive type. In addition, the ability to
broaden and control the bandwidth of the resonator near the
higher order modes has been illustrated by properly tuning the
frequency of the fixed source. Furthermore, by increasing the fixed
frequency source voltage, the vibration amplitude with respect to
noise near the higher order modes is enhanced. These capabilities
of generating multiple peaks and a wide continuous response
band with the ability to control its amplitude and location can
have a promising application in increasing the resonator
bandwidth for applications such as mechanical logic circuits,
energy harvesting and mass sensing.
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