
Trigger-happy resident memory CD4þ T cells
inhabit the human lungs
AE Oja1, B Piet1,2, C Helbig1, R Stark1, D van der Zwan1, H Blaauwgeers3, EB M Remmerswaal4,5,
D Amsen1, RE Jonkers6, PD Moerland7, MA Nolte1, RAW van Lier1 and P Hombrink1

Resident memory T cells (TRM) reside in the lung epithelium and mediate protective immunity against respiratory

pathogens. Although lung CD8þ TRM have been extensively characterized, the properties of CD4þ TRM remain unclear.

Here we determined the transcriptional signature of CD4þ TRM, identified by the expression of CD103, retrieved from

human lung resection material. Various tissue homing molecules were specifically upregulated on CD4þ TRM, whereas

expression of tissue egress and lymph node homing molecules were low. CD103þ TRM expressed low levels of T-bet,

only a small portion expressed Eomesodermin (Eomes), and although the mRNA levels for Hobit were increased, protein

expression was absent. On the other hand, the CD103þ TRM showed a Notch signature. CD4þCD103þ TRM

constitutively expressed high transcript levels of numerous cytotoxic mediators that was functionally reflected by a fast

recall response, magnitude of cytokine production, and a high degree of polyfunctionality. Interestingly, the superior

cytokine production appears to be because of an accessible interferon-c (IFNc) locus and was partially because of rapid

translation of preformed mRNA. Our studies provide a molecular understanding of the maintenance and potential

function of CD4þ TRM in the human lung. Understanding the specific properties of CD4þ TRM is required to rationally

improve vaccine design.

INTRODUCTION

The lung is one of the most fascinating and intricate
immunological sites of the human body. The lower respiratory
tract is covered with a 75 m2 monolayer of epithelial cells that
separate the outside world from the underlying vasculature and
protect the interstitial tissue. Although the lungs are constantly
exposed to pollutants and airborne microbes, pathogens
seldom manage to cause disease, as most are met with
appropriate local immune responses. Once elicited, respiratory
infections and ensuing immune responses can have severe
consequences for the vital gas exchange. Therefore, the balance
between immune protection and prevention of immunopathol-
ogy must be carefully regulated.

Annually, respiratory viruses are a major cause of morbi-
dity and mortality worldwide, especially among the young,
elderly, and immunocompromised individuals. Despite reports

demonstrating a role of lung CD4þ T cells in protecting against
airborne infections,1–3 their characteristics and mode of action
remain to be determined. Significant numbers of CD4þ T cells,
even outnumbering CD8þ T cells, were demonstrated to be
present in the lungs of healthy individuals.4 It is unclear
whether lung CD4þ T cells predominantly mediate helper
functions by engaging local B cells and supporting CD8þ

T cells or whether they locally execute immune effector func-
tions. In fact, lung CD4þ T cells could be functionally
multifaceted as they were shown, in mouse infection models, to
drive recruitment of other immune effectors to the inflamed
site1 and promote development of protective resident CD8þ

CD103þ T cells in the lung epithelium.5 To what extent similar
mechanisms operate in human lungs remains unclear.

Upon pathogen encounter naive T (TN) cells can differentiate
into several types of memory T cells. These memory subtypes
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can be phenotypically separated into central memory (TCM),
effector memory (TEM), and resident memory (TRM) T cells.6–9

Whereas TEM and TCM migrate almost exclusively through
blood and lymphoid tissue, TRM are restricted to nonlymphoid
tissues, such as the lungs,1,5,10–13 brain,14,15 skin,16,17 and
vaginal mucosa.18,19 TRM can be defined by the expression of
CD69, an inhibitor of S1PR1 function, that prevents cells from
exiting the tissue.20 Further, downregulation of S1PR1 is
necessary for the establishment of CD8þ TRM.21 Epithelial TRM

can in addition be defined by the expression of CD103, the aE

subunit of theaEb7 integrin that is required to dock these cells to
the E-cadherin-expressing epithelial cells.22,23 This interaction
may be crucial for TRM barrier function, as it retains the TRM at
the entry site of pathogens, thus allowing for their fast
recognition. This notion is corroborated by the enrichment
of respiratory virus-specific CD8þ T cells in the CD103þ

fraction of the human lung.11 Although murine CD4þ TRM

express similar surface molecules as CD8þ TRM,2,10 their
precise characteristics and molecular imprints are not as well
defined. Nevertheless there are several indications pointing
toward the important role of CD4þ TRM in protection against
respiratory infections. CD4þ T cells are necessary for the
formation of protective CD8þ TRM during primary influenza
infection.5 This function would be in line with traditional
helper cell function described for CD4þ T cells.24–29 In
addition, lung CD4þ TRM themselves protect against lethal
influenza challenge, whereas spleen CD4þ T cells do not.2 The
precise mechanism(s) for direct effector functions executed by
CD4þ lung TRM are ill defined, although several reports point
toward a helper-independent function operated by interferon-g
(IFNg)1,3 and cytotoxic molecules.30,31

Here we analyzed the genetic program of CD4þCD103þ T
cells obtained from human lungs. By determining the minimal
core transcriptional signature, we demonstrated that lung CD4þ

CD103þ T cells represent a unique subset of CD4þ T cells that
are very different from blood CD4þ T cells but closely related to
lung CD8þCD103þ TRM.13 In contrast to what was previously
demonstrated for CD4þ memory T cells in the skin,30,31 our data
suggest that CD4þCD103þ T cells from the lung represent a
genuine resident population that is unlikely to equilibrate with the
circulation. We identified a set of chemokine receptors and
adhesion molecules that allow CD4þ TRM to migrate and persist
in the lungs. Furthermore, lung CD4þCD103þ TRM constitu-
tively expressed mRNA encoding various effector molecules and
produced multiple cytokines upon stimulation. The magnitude of
this response was not only more robust than that of circulating
CD4þ T-cell subsets, but also faster and highly polyfunctional.
Our findings suggest that targeting the generation of CD4þ TRM

in the lung would be an attractive approach for future vaccine
strategies and immunotherapies.

RESULTS

Lung CD4þ TRM are phenotypically distinct from circulating
CD4þ T cells

We found that CD4þ T cells were abundantly present in
human lungs of patients undergoing partial lung resection, and

at similar frequencies as in paired blood (Figure 1a). To identify
CD4þ TRM in human lung tissue, we analyzed the surface
expression of CD103 and CD69 on CD4þ T cells in these
samples. Lung, but not paired blood, CD4þ T cells could be
divided into three populations based on the expression of CD69
and CD103 (Figure 1b and Supplementary Figure S1 online).
The most abundant population in the lung was CD103�

CD69þ that represented 50% of total CD4þ T cells
(Figure 1c). The expression of CD103 varied among the
patients, as 10 to 60% (average 20%) of lung CD4þ T cells were
CD103þCD69þ . In parallel, we determined the differentiation
stage of lung CD4þ T cells by evaluating the surface expression
of CD27 and CD45RA (Figure 1d,e). Both CD103þCD69þ

(95%) and CD103�CD69þ (60%) subsets were enriched
for cells with a CD45RA�CD27� (in blood referred to as TEM)
phenotype (Figure 1e). Furthermore, virtually all of the
lung CD4þ T cells (both CD69þ and CD69� cells) lacked
expression of lymph node-homing chemokine receptor CCR7
(Figure 1f, left and middle) that was abundant and restricted
to CD45RAþCD27þ naive (TN) and CD45RA�CD27þ

memory (TM) cells in blood (Figure 1f, right). Expression
of the costimulatory molecule CD28 was confined to a large
proportion of lung CD103�CD69þ T cells and, with the
exception of CD45RAþCD27� effector T cells, to all other
blood subsets (Figure 1g).

On average, 20% of the lung CD4þ T cells expressed neither
CD69 nor CD103 (Figure 1c). Although we currently do not
have ways to distinguish the potential TRM from the circulating
T cells in humans, it should be noted that based on the low
expression of CD28 it is unlikely that the majority of these
cells belong to the circulating pool. For the remainder of the
study we focused on the analysis of the epithelium-dwelling
CD103þCD69þ fractions and use CD103�CD69þ T cells
and blood-derived CD4þ T-cell subsets as a comparison.
We will refer to lung CD4þCD103þCD69þ T cells as
CD103þ TRM.

Lung CD103þ TRM have a distinct transcriptional profile
compared with circulating CD4þ T cells

To determine the gene expression profile of lung CD4þ TRM,
we isolated mRNA from CD4þCD103þ T cells directly
after isolation and performed microarray analysis. The lung
CD4þCD103þ TRM gene expression profile was compared
with peripheral blood CD4þ T-cell subsets to decipher a
TRM core signature. CD103þ TRM were sorted from non-
cancerous lobectomy tissues of five patients with non-small-cell
lung carcinoma and simultaneously peripheral blood-
derived memory and naive CD4þ T-cell populations were
sorted from five healthy donors. The core lung CD103þ TRM

signature was identified by comparing the transcriptome of
CD103þ TRM with that of blood TEM (CD45RA�CD27� ), TM

(CD45RA�CD27þ ), and TN (CD45RAþCD27þ ) popula-
tions (Figure 2a). CD4þCD103þ TRM differentially expressed
512 genes (Supplementary Table S1). In accordance with their
predominant CD45RA�CD27� phenotype, the CD103þ TRM

transcriptional profile proved most similar to the profile of
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Figure 1 Lung CD4þ TRM have a distinct phenotype compared with circulating CD4þ T cells. (a) Quantification of the number of CD4�CD8� (dark
gray), CD8þ (light gray), and CD4þ (white) as percentage of CD3þ T cells was analyzed by flow cytometry for paired lung and blood samples (b,c) The
expression of CD69 and CD103 on CD4þ T cells derived from paired lung and blood samples, shown by representative contour plots (b) and
quantification as percentage of CD4þ T cells (c). (d) The expression of CD27 and CD45RA was determined on lung CD4þCD103þCD69þ ,
CD4þCD103�CD69þ , and CD4þCD69�CD103� and total blood CD4þ T-cell subsets, shown by representative contour plots. (e) The frequency of
CD45þCD27þ (dark gray), CD45RAþCD27� (medium gray), CD45RA�CD27þ (light gray), and CD45RA�CD27� (white) T-cell subsets was
determined in lung CD4þCD103þCD69þ , CD4þCD103�CD69þ , and CD4þCD103�CD69� , and total blood CD4þ T cells. (f,g) The expression of
CCR7 (f) and CD28 (g) was quantified as percentage on lung CD4þCD103þCD69þ , CD4þCD103�CD69þ , and CD4þCD103�CD69� , and blood
TEM CD4þCD45RA�CD27� , TM CD4þCD45RA�CD27þ , Teff CD4þCD45RAþCD27� , and TN CD4þCD45RAþCD27þ T-cell subsets. The
histogram overlays (maximum set to 100%) show the expression of CCR7 (f) and CD28 (g) on a representative lung CD4þCD103þCD69þ (black),
CD4þCD103�CD69þ (gray), and CD4þCD103�CD69� (black) population and blood TEM CD4þCD45RA�CD27� , TM CD4þCD45RA�CD27þ , Teff

CD4þCD45RAþCD27� , and TN CD4þCD45RAþCD27þ T-cell subsets. (a–e) n¼7–9 and (f,g) n¼4. (a,e) The quantifications are shown as bar
graphs with the mean (±s.d.). (c,f,g) The quantifications are shown as box–whisker plots with min–max. Each symbol depicts an individual sample;
horizontal line shows the median. (a–e) Paired lung–blood samples. (f,g) Blood from healthy donors. TEM, effector memory T cell; TM, memory T cell; TN,
naive T cell; TRM, resident memory T cell.
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peripheral blood TEM, followed by TM and TN with 649, 1,178,
and 2,438 genes differentially expressed, respectively.

Human lung CD4þCD103þ TRM expressed high transcript
levels of ITGAE, CTLA4, and ICOS. On the other side, the
expression of S1PR1, and the lymph node-homing mole-
cules, SELL and CCR7, was low (Figure 2b), suggesting that
the CD4þCD103þ TRM are retained in the tissue and unlikely
recirculate. A similar trend was observed for KLF2 (Supple-
mentary Figure S2) that drives expression of S1PR1. We
validated a number of these genes by quantitative PCR (Supple-
mentary Figure S2). Among the 100 most differentially
expressed genes between CD103þ TRM and peripheral TEM

cells were genes encoding for transcription factors mediating
effector T-cell differentiation and function (ERG2, EPAS1, and
BATF), solute carrier family members mediating amino acid
transport (SLC7A5, SLC1A5), a chemokine receptor (CXCR6),
a cytokine receptor (IL21R), a cytokine (TGFB1), and fatty-
acid-binding protein (FABP5), a molecule critical for free fatty
acid uptake and in return survival of skin CD8þ TRM

32

(Figure 2c). All of these genes demonstrated high expression
levels in the CD103þ TRM. CD103þ TRM expressed low levels
of several factors mediating WNT pathway signaling (TCF7,
WNT7A), a guanyl nucleotide exchange factor (RASGRP2), and
ICAM2, an adhesion molecule regulating adhesion between
immune cells.

To identify genes that may be specifically expressed by lung
CD4þCD103þ , but not CD8þCD103þ TRM, we compared the
above identified TRM core signature with that of our previous
report on lung CD8þ TRM.13 We found an overall strong
resemblance between both signatures (Figure 2d). Although
blood CD4þ and CD8þ T cells are generally accepted to be very
distinct from each other, these data indicate that the lung niche
induces a similar transcriptional imprint on the two T-cell
lineages and suggest that the mechanisms involved to retain
CD4þ and CD8þ T cells in the lung tissue are alike. Only very
few genes were uniquely upregulated by CD4þCD103þ TRM.
Among these were the lysosomal vesicle marker LAMP2 and
transcriptional corepressor TLE. The complete list of genes, in
alphabetical order, and the corresponding log2 fold changes are
listed in Supplementary Table S2. As among the circulating
subsets, the TEM appeared most closely related to the lung TRM,
we focus on the comparison of lung TRM and blood TEM in the
remainder of the article.

Differential expression of homing molecules by lung
CD4þ TRM

CD4þ TRM are anchored in the lung tissue. In mice, their
persistence is mediated by specific adhesion molecules that
prevent recirculation and allow migration in the tissue.33,34

Besides the expression of CD103, which helps TRM dock to
E-cadherin in epithelia,22,23 lung CD4þCD103þ TRM exhi-
bited high mRNA levels of various other integrins and adhesion
molecules reflecting this unique property of TRM (Figure 3a).
Relative to circulating TEM, CD103þ TRM demonstrated low
mRNA levels for ICAM2 (also known as CD102) and high levels
of ICAM1 (also known as CD54), a pattern associated with

lymphocyte activation.35 CD103þ TRM also expressed
high levels of the integrin VLA-1 (encoded by ITGA1). As
TRM that express CD69 but lack CD103 have been described,36

we also compared the protein expression of homing molecules
between the lung-derived CD103�CD69þ T cells (referred
to as CD103� TRM) and CD103þ TRM. Protein expression of
VLA-1 was mainly restricted to CD103þ TRM, as only a
part of the CD103� TRM and very few of the peripheral TEM

expressed VLA-1 (Figure 3b). Whereas CD97, G-protein-
coupled receptor, is expressed by all T cells, increased
expression levels of CD97 were found for the CD103þ TRM

and are also shared by lung CD8þCD103þ TRM
13 and

intestinal lamina propria CD8þ TRM.37 Chemokine receptors
that distinguished lung CD103þ TRM from peripheral TEM

include CCR7, CXCR6, and CXCR3 (Figure 3c). Whereas
downregulation of CCR7 impairs T-cell homing to lymph
nodes,38 expression of CXCR6 and CXCR3 is associated with
T-cell recruitment to inflamed tissues.39,40 Elevated levels of
these two chemokine receptors were confirmed at protein level
for both CD103þ TRM and CD103� TRM subsets (Figure 3d).
We also found both CD4þ TRM subsets to express CCR5
protein (Figure 3d), another chemokine receptor associated
with lymphocyte recruitment during inflammation.41 In
summary, consistent with their unique location, lung
CD4þ TRM expressed specialized profiles of adhesion mole-
cules and chemokine receptors that distinguish them from
peripheral CD4þ T cells.

Transcription factor expression by lung CD4þ TRM

T-cell differentiation and function are regulated by networks of
transcription factors. For peripheral blood CD4þ T cells, the
T-box and RORgt transcription factors are known to drive
T helper 1 (Th1) and Th17 cell function, respectively.24 In mice,
the synergistic downregulation of Eomesodermin (Eomes) and
T-bet was demonstrated to be a requirement for the formation
of CD8þ TRM.42 In addition, it has recently become appreciated
that Blimp1 and Hobit (encoded by PRDM1 and ZNF683,
respectively) regulate the programming of CD8þ TRM in
mice.43 To investigate whether similar mechanisms underlie
CD4þ TRM formation in the human lungs, we analyzed the
expression of these transcription factors. The levels of T-bet and
Eomes mRNA transcripts were not elevated in CD103þ TRM

when compared with blood TEM cells (Figure 4a). In addition,
lung CD103þ TRM transcript levels of PRDM1 and ZNF683
were slightly upregulated when compared with blood TEM. In
line with mRNA levels, protein expression of T-bet and Eomes
was intermediate to low in both CD103þ and CD103� TRM

(Figure 4b). Furthermore, CD103þ TRM lacked Hobit protein
expression whereas a proportion of blood TEM expressed Hobit
(Figure 4b). This is in accordance with our observation that the
CD4þCD28� T cells that form a subpopulation within the
TEM compartment express high levels of Hobit.44 We could
not address Blimp1 protein expression because of the lack of
reliable antibodies. To investigate whether CD4þCD103þ TRM

have a Th2, Th17, or regulatory transcriptional identity, we
determined the expression of GATA-3, RORC, and FOXP3. The
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CD103þ TRM did not exhibit differential mRNA expression of
these transcription factors and very few T cells in the lungs
expressed Foxp3 protein (Supplementary Figure S3a,b). In
search of other transcription factors that may be involved in
the regulation of lung CD4þCD103þ TRM, we identified a set

of transcription factors among the core signature described
above (Figure 2). Interestingly, we found CD103þ TRM to
express both BATF and IRF4, transcription factors required
for the maintenance of TRM in adipose tissue45 (Figure 4c).
Furthermore, the expression of EGR2 was increased in the
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Figure 2 Lung CD103þ TRM have a unique transcriptional profile compared with circulating CD4þ T cells. A microarray analysis was performed on
sorted CD4þCD103þ T cell from lung and CD4þCD45RA�CD27� , CD4þCD45RA�CD27þ , and CD4þCD45RAþCD27þ T cells from blood. (a) The
CD103þ TRM core signature was determined as the genes differentially expressed between lung CD103þ TRM and blood TEM CD45RA�CD27� (yellow),
TM CD45RA�CD27þ (green), and TN CD45RAþCD27þ (blue) (based on significance with a false-discovery rate (FDR) of o0.05). The core signature
was defined as the genes differentially expressed between the TRM and all three blood populations, shown in the middle of the Venn diagram. (b) The
expression of selected genes (S1PR1, SELL, CCR7, ITGAE, CTLA4, ICOS) was compared between CD103þ TRM (black circle) and blood TN

CD45RAþCD27þ (gray triangle), TM CD45RA�CD27þ (gray square), and TEM CD45RA�CD27� (gray diamond). (c) Top 100 significantly different
genes are depicted from the CD103þ TRM core signature (from Venn diagram). (d) The lung CD4þCD103þ TRM core signature was compared with lung
CD8þCD103þ TRM. The dot plot shows the genes that are up- and downregulated by CD4þCD103þ TRM compared with blood CD4þ TEM on the y axis
and up- and downregulated genes by CD8þCD103þ TRM compared with blood CD8þ TEM on the x axis. (b,d) The y axes show log2-transformed
normalized values. (b) Each symbol depicts the mean (±s.d.). *FDRo0.05, **FDRo0.01, and ***FDRo0.001; n¼ 5 for lung samples. For the blood
samples, five individually sorted samples were pooled before the microarray analysis. (a–d) Blood from healthy donors. TEM, effector memory T cell; TM,
memory T cell; TN, naive T cell; TRM, resident memory T cell.
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CD103þ TRM when compared with circulating T cells. The
role of EGR2 in lung TRM regulation was previously
demonstrated in influenza mouse models, in which T-cell-
specific deletion of EGR2 reduced the numbers of lung CD8þ

TRM and impaired lung CD4þ T-cell responses.46 CD103þ

TRM also expressed high transcript levels of Notch1, a direct

target of EGR2 (ref. 46) (Figure 4d). Furthermore, increased
transcript levels were observed for the transcriptional regulator
RBPJ, central to Notch signaling, and the Notch ligand JAG2
(Figure 4d). Moreover, we found increased expression of ZEB2,
encoding a transcription factor regulated by Notch signaling
in mice.47

*** **0.076
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and Blimp-1 (PRDM1) by lung CD103þ TRM (black circles), and blood TEM (gray diamonds) was determined. (b) The protein expression of T-bet, Eomes,
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representative histogram overlay (maximum set to 100%) and quantification of percentage of the population. (c) The expression of genes encoding
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and RBPJfl/flCd4-Creþ (wild-type (WT)) littermate mice. (a,d) The y axes show log2-transformed normalized values. Each symbol depicts an individual
sample; horizontal line shows the mean (±s.d.). *False-discovery rate (FDR)o0.05, **FDRo0.01; n¼ 5 for lung samples. For the blood samples, five
individually sorted samples were pooled before the microarray analysis. (b) The quantifications are shown as box–whisker plots with min–max. Each
symbol depicts an individual sample; horizontal line shows the median; n¼ 7; paired samples. **Po0.01 and ***Po0.001; 1-way analysis of variance
(ANOVA) with Holm–Sidak multiple comparison test. (e) Each symbol depicts an individual mouse; n¼ 3; paired littermates. *Po0.05 (paired T-test).
Data represent three experiments. (a–d) For the blood subsets, gray diamonds indicate blood TEM from healthy donors and black diamonds indicate
paired blood TEM of patients. TEM, effector memory T cell; TM, memory T cell; TN, naive T cell; TRM, resident memory T cell.
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To experimentally address the potential role of Notch in the
regulation of CD4þ TRM, we analyzed the CD4þ TRM

composition in the lungs of steady-state RBPJfl/flCd4-Creþ

(RBPJ knockout (KO)) mice and RBPJfl/flCd4-Creþ wild-type
littermates. We found lower frequencies of CD4þCD103þ

TRM in the RBPJ KO mice (Figure 4e) suggesting that Notch
plays a role in the formation or maintenance of CD4þCD103þ

TRM. Overall, we identified a unique set of transcription factors
that may regulate CD4þCD103þ TRM, including several
transcriptional regulators of effector function.

Lung CD4þ TRM express several inhibitory receptors

To explore the functional properties of the CD4þCD103þ TRM

we determined the expression of inhibitory molecules often
associated with T-cell exhaustion. CD4þCD103þ TRM

expressed a variety of inhibitory checkpoint molecules, such
as PDCD1 (encoding for PD-1), CTLA4, and LAG3 (Figure 5a).
Protein expression was confirmed for PD-1 and CTLA4 and
although we did not find 2B4 (CD244) to be differentially
expressed at mRNA level, all CD4þCD103þ TRM expressed
high 2B4 protein, whereas only a portion of circulating TEM did
(Figure 5b). The geometric mean fluorescence intensity for
PD-1 was not increased in the CD4þCD103þ TRM either
(Supplementary Figure S4a). To assess whether the disease
state affects the expression of PD-1 on blood TEM, we deter-
mined the expression in a cohort of healthy age-matched
donors. Similar PD-1 levels were observed between patient and
donor blood TEM (Supplementary Figure S4b). This suggests
that the TRM are chronically or intermittently activated and thus
potentially exhausted. Therefore, next we investigated the
responsiveness of these cells in vitro.

Lung CD4þCD103þ TRM exhibit rapid and polyfunctional
cytokine responses

Ideally TRM should be poised for rapid effector function upon
activation as they are perceived as part of the first line of defense
upon secondary infections. To investigate this role in lung
CD4þCD103þ TRM, we analyzed the transcript levels of
various chemokines and effector molecules. Relative to blood-
derived TEM, lung CD4þCD103þ TRM expressed high
transcript levels for genes encoding for several chemokines
and cytotoxic molecules (Figure 6a). We found differentially
high expression of CCL4, CXCL16, and XCL1 and similar
trends for CCL3, CCL5, and CCL18. These elevated mRNA
levels may serve to allow rapid translation and secretion to
attract and position auxiliary immune cells, a key function of
TRM, following infection.5,48,49 The high expression of CXCL16
may be of special interest as its receptor (CXCR6) was found to
be highly expressed on lung CD8þ TRM.13 High expression of
XCL1 was also described for lung CD8þ TRM

13 and is shown to
mediate cytotoxic immune function.50,51

Effector and cytotoxic molecules for which transcript levels
were elevated in CD4þCD103þ TRM include IFNG, GZMA,
GZMB, and PRF1 (Figure 6a). Such deployment-ready mRNA
suggests an alert state and readiness to respond to incoming
pathogens and prevent the spreading of infections. Indeed,
when activated with aCD3/aCD28, CD4þCD103þ TRM

demonstrated accelerated kinetics for IFNg production
when compared with blood-derived CD45RA� memory
T-cells (TM) (Figure 6b). Although after only 2 h of stimula-
tion, on average 17% of CD4þCD103þ TRM produced IFNg,
most blood-derived cells did not accumulate IFNg protein.
Similar responses were observed for tumor necrosis factor-a
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Figure 5 Lung CD4þ TRM express inhibitory checkpoint receptors. (a) The expression of genes encoding inhibitory checkpoint molecules by lung
CD103þ TRM (black circles) and blood TEM (gray diamonds) was analyzed. (b) The protein expression of CTLA4, PD-1, and 2B4 was determined for lung
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discovery rate (FDR)o0.001. For the blood samples, five individually sorted samples were pooled before the microarray analysis. (b) The quantifications
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TEM from healthy donors and black diamonds indicate paired blood TEM of patients. TEM, effector memory T cell; TRM, resident memory T cell.
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and interleukin-2. After 6 h of stimulation, not only more
CD103þ TRM produced IFNg, interleukin-2, and tumor
necrosis factor-a when compared with blood CD45RA�

TM, but also more effector molecules per cell were detected for
IFNg (geometric mean fluorescence intensity; Supplementary

Figure S5a). In contrast, lung CD103� TRM demonstrated
relatively similar effector cytokine expression as blood
CD45RA� TM upon T-cell receptor stimulation.

As the CD103þ TRM constitutively expressed high IFNg
transcript and rapidly produced copious amounts of IFNg
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protein, we set out to investigate whether the preformed
transcript provides the TRM with a kick start. To do so, we
pretreated lung and blood T cells with Actinomycin D (ActD),
blocking de novo transcription, followed by T-cell receptor
stimulation. In this way the protein produced has to be derived
from the preformed transcript. After 2 h of stimulation, the
non-ActD-treated CD103þ TRM produced IFNg, whereas
the ActD-treated CD103þ TRM produced significantly less
(Figure 6c). Thus, the TRM appear to mainly rely on de novo
transcription for their superior cytokine production.

Potency of effector T-cell function is defined as the ability to
produce multiple cytokines simultaneously. This polyfunc-
tionality is gradually lost upon T-cell exhaustion.52,53 We
calculated the percentage of cells that produced at least one
cytokine, referred to as the responders (Figure 6d). As such, the
percentage of responders among CD103þ TRM cells was
55%, more than twice as high as the percentage of responders
among the blood-derived memory T cells. The percentage of
polyfunctional responders was significantly higher in the
CD103þ TRM population (31%) when compared with blood
CD45RA� TM (7%) (Figure 6d and Supplementary Figure
S5b). In summary, we showed that although CD4þCD103þ

TRM expressed several inhibitory molecules associated with
T-cell exhaustion, these cells were more than capable of rapidly
producing a multitude of cytokines upon stimulation and thus
do not correspond with their ‘‘exhausted’’ phenotype.

DISCUSSION

Here we analyzed the molecular and functional profiles of the
previously uncharacterized, but abundantly present, CD4þ

TRM population in the human lungs. We addressed several
properties of CD4þ TRM demonstrating their adaptation to the
tissue niche, including the expression of a wide range of
chemokine receptors and adhesion molecules and a strictly
controlled effector mechanism designed to effectively mediate
pathogen control while safeguarding the fragile lung environ-
ment. TRM are traditionally defined by the expression of CD103
and CD69, the latter molecule blocking tissue egress by the
inhibition of S1PR1 function.21 Recently, these criteria have
been challenged, as CD69þ cells were found to recirculate31

and CD69� cells were found to be resident.54 In support of this,
we demonstrated that lung CD4þCD69� T cells are composed
of effector and memory cells, whereas circulating CD4þ T cells
mainly consist of naive and central memory T cells. Thus the
CD4þCD69� T cells are not in strict equilibrium with
circulating CD4þ T cells. The characterization of TRM by the
expression of CD103 remains undisputed, as this molecule is
important to dock T cells to the epithelial E-cadherin.22,23,55,56

We therefore identified lung CD4þ TRM cells by the expression
of CD103 and found these cells to clearly express a distinct
mRNA expression profile when compared with circulating
CD4þ T cells. Using classical flow cytometric analysis, we
showed that at least three different lung CD4þ T-cell subsets
could be established based on the expression of CD69 and
CD103. More detailed phenotyping revealed a previously
unrecognized complexity of the CD4þ TRM compartment in

the lung. For example, the expression of VLA-1, CXCR6, and
even inhibitory molecules, such as 2B4, did not strictly associate
to any of the three populations as addressed by the conventional
phenotyping method. Future single-cell approaches may deal
with this caveat of population-averaged measurements in
conventional transcriptome analysis experiments.

A large body of evidence indicates the indispensable role
of CD8þ and CD4þ TRM in protecting the lung against
respiratory pathogens.1,2,10,11,42,57 For this purpose, TRM must
be equipped to immediately react when a pathogen enters the
lungs. However, such responses need to be kept in check, as
excessive cytotoxicity may damage the fragile lung architecture
and compromise its vital function. We previously published
that human CD8þ TRM are specifically programmed for this
tightly regulated effector function.13 In line with this, others
have shown that when lung TRM function is not effectively
controlled there is an increased correlation with inflammatory
diseases of the airway, such as asthma.58 Here, we describe that
similar mechanisms may apply to the lung CD4þ TRM

compartment, as we found a high degree of resemblance of
differentially expressed genes that regulate T-cell effector
function between the CD8þ and CD4þ TRM. This suggests that
the lung environment is important for the transcriptional and
functional identity of lung TRM, regardless of their lineage.
CD4þCD103þ TRM also constitutively expressed mRNA for
various effector molecules potentially underlying the rapid
response to T-cell receptor stimulation. In addition, we
demonstrated that not only the magnitude, but also the quality
of the effector response is different when compared with blood
T cells, as the TRM exhibited a higher degree of polyfunction-
ality. Although CD4þCD103þ TRM showed elevated transcript
levels of IFNg, suggesting that the rapid production of IFNg is
due to the lack of transcriptional delay, our data suggest that
this is not entirely the case. We showed that CD4þCD103þ

TRM require active transcription to produce effector cytokines,
as the cytokine production was diminished upon blockade of de
novo transcription. This rather proposes that the IFNg locus is
readily accessible in the TRM. Simultaneously, the TRM do not
produce IFNg protein until stimulated, indicating that the TRM

are poised for effector function. This may be elementary to the
core tasks of CD4þ TRM, as IFNg is essential for the swift
recruitment of auxiliary immune cells to the site of infec-
tion,49,59 protection against respiratory viruses,57 as well as the
formation of CD8þCD103þ TRM in the lung.5 At the same
time, although rapid effector function of TRM is desirable when
combating incoming pathogens, release of effector molecules
needs stringent regulation to prevent excessive immunopathol-
ogy to the fragile lung tissue. Next to the strict translational
control, as a second potential safety mechanism, CD4þ TRM

expressed high levels of various inhibitory checkpoint mole-
cules. It is likely that in vivo these inhibitory molecules depend
on their ligands to limit activation of the CD4þ TRM.
Controversially, such receptors indicate chronic or intermittent
activation and therefore potential exhaustion, especially in the
context of tumor tissues.60 As lung CD4þCD103þ TRM

possessed the capacity to robustly and polyfunctionally respond
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to T-cell receptor stimulation, our data provide more insights
regarding T-cell exhaustion. Furthermore, it indicates that
tissue context should be considered when interpreting T-cell
dysfunction on the basis of checkpoint molecule expression.

A large proportion of the CD4þ T cells in the lungs
expressed the chemokine receptor CXCR6. As lung epithelial
cells constitutively express the CXCR6 ligand CXCL16, this axis
may be crucial for homing of T cells to the lung tissue.61 This
mechanism may also be more generic, as liver-resident natural
killer (NK) and NK T cells, as well as lymphoid tissue-derived
NK cells express CXCR6.62–64 In addition, CD4þ TRM

populations uniformly expressed CXCR3 and CCR5, the
chemokine receptors that are important for T-cell recruitment
to inflamed lungs.39–41 CXCR3 is also more broadly described
to regulate T-cell recruitment to sites of inflammation or
disease.65–69 The preferential expression of the integrin VLA-1
by CD4þCD103þ TRM could account for their survival and
accumulation in the vicinity of the lung epithelium, as was
previously shown for mouse CD8þ and CD4þ TRM.34,70

Simultaneously, VLA-1 expression discriminates CD8þ TRM

with high cytotoxic potential specifically localized in the
epidermis of human skin.71 We have previously shown that
CD8þCD103þ TRM line the epithelium of the human lung.72 It
has recently been shown that CD4þ and CD8þ TRM localize
differently in the lungs of mice. CD4þ TRM cluster in bronchus-
associated lymphoid tissue structures, whereas CD8þ TRM

form niches around areas of tissue damage.73 Similar structures
were observed in the skin, female reproductive tract, and
intestines.31,74,75 As to whether similar clusters exist in the
human lungs needs further investigation.

Recently, we demonstrated that Notch signaling is required
for the maintenance of lung CD8þCD103þ TRM.13 More
recently, similar Notch signatures were identified in CD8þ T
cell with TRM like features in lung cancer.76 Our data suggest
that Notch may play a similar role in the regulation of lung
CD4þ TRM. Moreover, the immunomodulatory role of Notch
signaling in the lungs may not be restricted to T cells, as other
studies demonstrated Notch dependency of lung dendritic cells
and macrophages.77,78 Notch is a surface receptor that, upon
stimulation by Delta-like ligands, acts as a transcriptional
activator.79 Consequently, tissue environmental-induced
Notch signaling can directly lead to expression of mRNA
encoding for Notch target genes, including IFNg.80 This type of
mechanism demonstrates the perfect adaption of TRM to the
lung environment. In addition, as pharmaceutical inhibitors of
Notch signaling are available, this offers ways for therapeutic
intervention when TRM mediate pathology in the airways.

CD4þ TRM expressed low to intermediate levels of T-bet and
Eomes. The downregulation of these two transcription factors
is necessary for the formation of CD8þ TRM, and thus similar
mechanisms may be important for CD4þ TRM. Strikingly, we
did not detect protein expression of the Hobit (encoded by
ZNF683) transcription factor that serves as an ontogenic
regulator of TRM formation.43 These results appear counter-
intuitive, as we found CD4þCD103þ TRM to express high
mRNA levels encoding for this transcription factor that is in

contrast to our previous findings in circulating T cells.44,81 Our
data do not exclude a possible role of Hobit for the formation of
human lung CD4þ TRM and as its expression was found to be
regulated by stimulation in NKT cells,82 more research is
required.

Overall, our work strengthens the fundamental under-
standing of CD4þ T cells residing in the human lungs. This
knowledge will create opportunities for novel therapeutic
manipulation of CD4þ TRM in terms of vaccine design and
immunotherapy. Ideally, these cells could be harnessed to boost
the efficacy of vaccine regimens. In addition, as TRM can
also contribute to local pathology,58 identifying novel targets
can enable selective deletion of these cells for therapeutic
intervention.

METHODS

Subjects. Lung tissue samples were obtained from a total of 85 patients
with an average age of 63.9 years. In all, 70 patients underwent
lobectomy for a peripheral primary lung tumor and 15 received a lung
transplantation due to end-stage pulmonary disease. The exclusion
criteria included history of asthma or a recent lower respiratory tract
infection. The patients did not receive systemic immunosuppressive
drugs, chemotherapy, or radiotherapy. Lung material from six
lobectomy patients was used for the microarray, of whom two had
normal lung function and four had mild to moderate chronic
obstructive pulmonary disease. For the other assays samples were
chosen at random. The lobectomy patients were recruited from the
Academic Medical Centre (AMC), Amsterdam, The Netherlands,
Tergooi Hospitals, Hilversum, The Netherlands, and Onze Lieve
Vrouwe Gasthuis (OLVG), Amsterdam, The Netherlands, and the
transplantation patients were recruited from University Medical
Centre Groningen, Groningen, The Netherlands. Sanquin Blood
Supply Foundation, Amsterdam, The Netherlands, supplied the buffy
coats of donors used as healthy controls. The age and sex of the healthy
donors is unknown.

Mice. RBPJfl/flCd4-Creþ (RBPJ KO) and RBPJfl/flCd4-Cre� (wild-
type) littermates on C57BL/6/NCrl background were bred and housed
in pathogen-free conditions at the Animal Resources Center of the
AMC (Amsterdam, The Netherlands). The mice were males and
females between 8 and 29 weeks old.

Study approval. Written informed consent was given by all of the
patients and donors before inclusion into the study. The ethical review
board of the AMC and the METC/CCMO of the OLVG approved the
study under the MEC-U number NL52453.100.15 according to the
Declaration of Helsinki. All mice were used in accordance of insti-
tutional and national animal experimentation guidelines.

Isolation of mononuclear cells from peripheral blood and lung

tissue. Peripheral blood mononuclear cells were isolated from
heparinized peripheral blood samples with standard density gradient
techniques. For the lung material, after the lobectomy the pathologist
cuts off a piece of peripheral normal-looking lung tissue farthest away
from the tumor. The lung mononuclear cells were isolated from the
tissue as previously described.4,83 In short, the tissue was sliced into
1 mm pieces using a McIlwain tissue chopper (Loughborough, UK)
and incubated at 37 1C in digestion medium (RPMI with 20 mM Hepes,
15% fetal calf serum, and 50 U ml� 1 DNAse type I (Sigma-Aldrich,
Zwijndrecht, the Netherlands)). The tissue pieces were dried with
sterile gauze and incubated for 60 min with medium and collagenase
type I or 4 (300 U ml� 1; Worthington, The Hague, the Netherlands) at
37 1C while shaking. The digested tissue was passed through a flow-
through chamber to achieve a cell suspension. To isolate mononuclear
cells from the cell suspension, standard density gradient techniques

ARTICLES

664 VOLUME 11 NUMBER 3 |MAY 2018 |www.nature.com/mi

http://www.nature.com/mi


were used. The lung mononuclear cell and peripheral blood
mononuclear cell samples were cryopreserved in liquid nitrogen until
further analysis.

Lungs of the mice were cut into small pieces and digested with
Collagen type I (750 U ml� 1; Gibco, Landsmeer, the Netherlands) and
DNAse type I (0.31 mg ml� 1; Roche, Woerden, the Netherlands) in
Iscove’s modified Dulbecco’s medium for 30 min at 37 1C, followed by
filtration. To isolate mononuclear cells from the cell suspension,
standard density gradient techniques were used.

Flow cytometric cell sorting. For gene expression analysis, peripheral
blood mononuclear cells and lung mononuclear cells were sorted
based on different combinations of the following antibodies: CD27,
CD45RO, CD103, CD45RA, CD3, CD8, CD4, and CD69.

RNA isolation,amplification, labeling, and hybridization. RNA from
the sorted cells was isolated using the Nucleospin RNA XS and
Nucleospin RNA II kit (Macherey-Nagel) in accordance with the
manufacturer’s protocols. Amplification, labeling, hybridization, and
data extraction were done by ServiceXS (Leiden, The Netherlands).
Hybridization was performed on to Whole Human Genome HT12-
Microarrays (Illumina, Leiden, the Netherlands) and the Illumina
iScan array scanner was used to scan the arrays. Illumina Geno-
meStudio v2011.1 software was used to retrieve the data. Because of
low average signal after the hybridization, four of the microarrays were
excluded.

Microarray analysis. Analyses were carried out with packages from
Bioconductor in the statistical software package R (version 3.0.0,
Auckland, New Zealand). Normexp-by-control background correc-
tion, quantile normalization, and log2 transformation84 were per-
formed on the Illumina sample and control probe profiles using the
limma package (version 3.16.8). Using the arrayQualityMetrics
package (version 3.16.0, Bioconductor Buffalo, NY) one outlier array
was detected. This array was discarded and the data were renormalized.
Technical replicate arrays were averaged. Only probes detected
(detection P value o0.05) on at least one array were included in the
differential expression analysis. Gene-wise linear models were fitted
using the limma package. A consensus intrapatient correlation was
estimated for measurements on the same subject (function ‘dupli-
cateCorrelation’, package limma) and included in the linear model fit.
Differential gene expression between the different conditions was
assessed via a moderated t-test. Resulting P values were corrected for
multiple testing using the Benjamini–Hochberg false discovery rate.
The illuminaHumanv4.db package (version 1.18.0) was used to update
the probe annotation provided by Illumina. The microarray data have
been deposited in the NCBI (National Center for Biotechnology
Information) Gene Expression Omnibus (GEO) in a MIAME
compliant format and are accessible under GEO Series accession
number GSE103527.

Quantitative PCR. For validation of the microarray data, RNA was
isolated from the sorted samples using Invisorb RNA isolation kit
(Invitek, Berlin, Germany) or Trizol reagent (Invitrogen, Landsmeer,
the Netherlands). Complementary DNA was synthesized using
RevertAID H Minus Reverse Transcriptase (Thermo Scientific,
Landsmeer, the Netherlands) and random primers (Invitrogen) or
poly dT oligos (Invitrogen). Quantitative PCR analysis was performed
in duplicate using Power SYBR Green (Applied Biosystem, Landsmeer,
the Netherlands) with StepOnePlus Real-Time PCR system (Applied
Biosystem). The gene expression was normalized to S18. The primers
used are listed in Supplementary Table S3.

Flowcytometryanalysis. Human peripheral blood mononuclear cells
or lung mononuclear cells were labeled with combinations of the
following antibodies: anti-CD4, anti-CD3, anti-CD8, anti-CD27, anti-
CD45RA, anti-CD69, anti-CD103, anti-CD49a, anti-CXCR6, anti-
CXCR3, anti-CCR5, anti-CD28, anti-CCR7, anti-PD-1, and anti-2B4.
Near-infrared fixable dye (Invitrogen) was used to exclude dead cells

from the analysis. For intracellular staining the following antibodies
were used: anti-CTLA4, anti-Hobit, anti-Eomes, anti-T-bet, anti-
IFNg, anti-interleukin-2, and anti-tumor necrosis factor-a. To stain
for Hobit a labeled secondary anti-IgM was used. The cells were labeled
according to the manufacturer’s instructions. For the intracellular
staining the cells with fixed and permeabilized using the Foxp3/
Transcription Factor Staining kit (eBioscience, Landsmeer, the
Netherlands). For analysis of the mouse TRM, the lung cells were
stained with the following fluorochrome-conjugated antibodies: anti-
CD3, anti-CD4, anti-CD44, anti-CD62L, anti-CD103, anti-CD69, and
CD1d tetramer at 4 1C for 30 min. Near-infrared fixable dye (Invi-
trogen) was used to exclude dead cells from the analysis. The cells were
labeled according to the manufacturer’s instructions. For the intra-
cellular staining with Foxp3, cells were fixed and permeabilized using
the Foxp3/Transcription Factor Staining kit (eBioscience). All samples
were measured in phosphate-buffered saline 0.5% fetal calf serum with
a LSR Fortessa (BD, Temse, Belgium) and the analysis was performed
using FlowJo Version 10 software (Temse, Belgium). See Supple-
mentary Table S4 for the full list of antibodies used in this paper.

In vitrostimulationassays. Cytokine production by the CD4þ T cells
was determined by incubating the cells with plate-bound aCD3
(HIT3A; eBioscience) and soluble CD28 (s.28; CLB, De Rijp, the
Netherlands) for 6 h at 37 1C in the presence of Brefeldin A
(eBioscience). For the experiments using ActD, CD4þ T cells were
isolated using MACS (Miltenyi Biotec, Leiden, the Netherlands).
Where indicated, T cells were pretreated with ActD (Sigma-Aldrich)
for 30 min at 37 1C before activation with plate-bound aCD3 (HIT3A;
eBioscience) and soluble CD28 (s.28; CLB) for 2 h at 37 1C in the
presence of Brefeldin A (eBioscience).

Statistics. To determine the significance of our flow cytometry results
we used one-way analysis of variance and Holm–Sidak multiple
comparisons test using GraphPad Prism 6 (La Jolla, CA). To analyze
the significant of the mouse TRM, paired T-test was used. Two-way
analysis of variance and Tukey’s multiple comparisons test was used to
determine the significance of the in vitro functional assays. The P value
of o0.05 was considered statistically significant (*Po0.05; **Po0.01;
***Po0.001; ****Po0.0001). Gene-E v3.0.206 (Cambridge, MA) was
used to make the heat maps for which the mean and maximum values
for each row was used to generate the heat map colors.

SUPPLEMENTARY MATERIAL is linked to the online version of the paper

at http://www.nature.com/mi
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