Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

NB: AS OF JANUARY 1, 2023 THIS JOURNAL IS PUBLISHED WITH ELSEVIER: https://www.sciencedirect.com/journal/mucosal-immunology

Progesterone-based compounds affect immune responses and susceptibility to infections at diverse mucosal sites

Abstract

Over 100 million women worldwide are currently on progesterone-based contraceptives to improve their health outcomes through reduced maternal mortality and family planning. In addition to their role in reproduction, progesterone-based compounds modulate immune responses throughout the body, particularly at mucosal sites. By binding to receptors located in immune cells, including natural killer cells, macrophages, dendritic cells, and T cells, as well in non-immune cells, such as epithelial and endothelial cells, progesterone-based compounds alter cellular signaling and activity to affect the outcome of infections at diverse mucosal sites, including the genital, gastrointestinal, and respiratory tracts. As the use of progesterone-based compounds, in the form of contraceptives and hormone-based therapies, continue to increase worldwide, greater consideration should be given to how the immunomodulatory effects these compounds alter the outcome of diseases at mucosal sites beyond the reproductive tract, which has profound implications for women’s health.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

References

  1. Jameson, J.L. Endocrinology: Adult and pediatric 7th edn. Elsevier Sauders: Philadelphia, PA, (2006).

    Google Scholar 

  2. Fink, A.L. & Klein, S.L. Sex and gender impact immune responses to vaccines among the elderly. Physiology (Bethesda) 30, 408–416 (2015).

    CAS  Google Scholar 

  3. Klein, S.L. & Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. McGhee, J.R. & Fujihashi, K. Inside the mucosal immune system. PLoS Biol. 10, e1001397 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Speroff, F.A. Clinical Gynecologic Endocrinology and Infertility 8th edn. Wolters Kluwers Lippincott Williams and Wilkins: Philadelphia, (2011).

    Google Scholar 

  6. Petitti, D.B. Clinical practice. Combination estrogen-progestin oral contraceptives. N. Engl. J. Med. 349, 1443–1450 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Rajaram, R.D. & Brisken, C. Paracrine signaling by progesterone. Mol. Cell. Endocrinol. 357, 80–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Moussatche, P. & Lyons, T.J. Non-genomic progesterone signalling and its non-canonical receptor. Biochem. Soc. Trans. 40, 200–204 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Kaore, S.N., Langade, D.K., Yadav, V.K., Sharma, P., Thawani, V.R. & Sharma, R. Novel actions of progesterone: what we know today and what will be the scenario in the future? J. Pharm Pharmacol. 64, 1040–1062 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Dressing, G.E., Goldberg, J.E., Charles, N.J., Schwertfeger, K.L. & Lange, C.A. Membrane progesterone receptor expression in mammalian tissues: a review of regulation and physiological implications. Steroids 76, 11–17 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Horwitz, K.B. & Alexander, P.S. In situ photolinked nuclear progesterone receptors of human breast cancer cells: subunit molecular weights after transformation and translocation. Endocrinology 113, 2195–2201 (1983).

    Article  CAS  PubMed  Google Scholar 

  12. Sitruk-Ware, R. New progestagens for contraceptive use. Hum ReprodUpdate 12, 169–178 (2006).

    CAS  Google Scholar 

  13. Teilmann, S.C., Clement, C.A., Thorup, J., Byskov, A.G. & Christensen, S.T. Expression and localization of the progesterone receptor in mouse and human reproductive organs. J. Endocrinol. 191, 525–535 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Jain, R., Ray, J.M., Pan, J.H. & Brody, S.L. Sex hormone-dependent regulation of cilia beat frequency in airway epithelium. Am. J. Respir. Cell Mol. Biol. 46, 446–453 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hall, O.J. et al. Progesterone-based therapy protects against influenza by promoting lung repair and recovery in females. PLoS Pathog. 12, e1005840 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Griekspoor, A., Zwart, W., Neefjes, J. & Michalides, R. Visualizing the action of steroid hormone receptors in living cells. Nucl. Recept. Signal 5, e003 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Christin-Maitre, S. History of oral contraceptive drugs and their use worldwide. Best Pract. Res. Clin. Endocrinol. Metab. 27, 3–12 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Robinson, D.P. & Klein, S.L. Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis. Horm. Behav. 62, 263–271 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Colton, F.B. Steroids and "the pill": early steroid research at Searle. Steroids 57, 624–630 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Evans, G. & Sutton, E.L. Oral contraception. Med. Clin. North Am. 99, 479–503 (2015).

    Article  PubMed  Google Scholar 

  21. Daniels, K., Daugherty, J. & Jones, J. Current contraceptive status among women aged 15-44: United States, 2011-2013. NCHS Data Brief 173, 1–8 (2014).

    Google Scholar 

  22. Chao, J.H. & Page, S.T. The current state of male hormonal contraception. Pharmacol. Ther. 163, 109–117 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Sturdee, D.W. Are progestins really necessary as part of a combined HRT regimen? Climacteric 16, 79–84 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Sitruk-Ware, R. & El-Etr, M. Progesterone and related progestins: potential new health benefits. Climacteric 16, 69–78 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Schindler, A.E. The "newer" progestogens and postmenopausal hormone therapy (HRT). J. Steroid Biochem. Mol. Biol. 142, 48–51 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Christiansen, C. Prevention and treatment of osteoporosis: a review of current modalities. Bone 13, S35–S39 (1992).

    Article  PubMed  Google Scholar 

  27. Viola, A.S., Castro, S., Marchi, N.M., Bahamondes, M.V., Viola, C.F. & Bahamondes, L. Long-term assessment of forearm bone mineral density in postmenopausal former users of depot medroxyprogesterone acetate. Contraception 84, 122–127 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Schumacher, M., Hussain, R., Gago, N., Oudinet, J.P., Mattern, C. & Ghoumari, A.M. Progesterone synthesis in the nervous system: implications for myelination and myelin repair. Front. Neurosci. 6, 10 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stein, D.G. & Wright, D.W. Progesterone in the clinical treatment of acute traumatic brain injury. Expert Opin. Investig. Drugs 19, 847–857 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Wright, D.W. et al. ProTECT: a randomized clinical trial of progesterone for acute traumatic brain injury. Ann. Emerg. Med. 49, 402 e391–392 (2007).

    Article  Google Scholar 

  31. Skolnick, B.E. et al. A clinical trial of progesterone for severe traumatic brain injury. N. Engl. J. Med. 371, 2467–2476 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Hardy, D.B., Janowski, B.A., Corey, D.R. & Mendelson, C.R. Progesterone receptor plays a major antiinflammatory role in human myometrial cells by antagonism of nuclear factor-kappaB activation of cyclooxygenase 2 expression. Mol. Endocrinol. 20, 2724–2733 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Jones, L.A., Kreem, S., Shweash, M., Paul, A., Alexander, J. & Roberts, C.W. Differential modulation of TLR3- and TLR4-mediated dendritic cell maturation and function by progesterone. J. Immunol. 185, 4525–4534 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Kalkhoven, E., Wissink, S., van der Saag, P.T. & van der Burg, B. Negative interaction between the RelA(p65) subunit of NF-kappaB and the progesterone receptor. J. Biol. Chem. 271, 6217–6224 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Su, L., Sun, Y., Ma, F., Lu, P., Huang, H. & Zhou, J. Progesterone inhibits Toll-like receptor 4-mediated innate immune response in macrophages by suppressing NF-kappaB activation and enhancing SOCS1 expression. Immunol. Lett. 125, 151–155 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Lei, K., Chen, L. et al. Progesterone acts via the nuclear glucocorticoid receptor to suppress IL-1beta-induced COX-2 expression in human term myometrial cells. PLoS ONE 7, e50167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lei, K. et al. Progesterone and the repression of myometrial inflammation: the roles of MKP-1 and the AP-1 system. Mol. Endocrinol. 29, 1454–1467 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Grandi, G. et al. Progestin suppressed inflammation and cell viability of tumor necrosis factor-alpha-stimulated endometriotic stromal cells. Am. J. Reprod. Immunol. 76, 292–298 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Butts, C.L. et al. Progesterone inhibits mature rat dendritic cells in a receptor-mediated fashion. Int. Immunol. 19, 287–296 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Kyurkchiev, D., Ivanova-Todorova, E., Hayrabedyan, S., Altankova, I. & Kyurkchiev, S. Female sex steroid hormones modify some regulatory properties of monocyte-derived dendritic cells. Am. J. Reprod. Immunol. 58, 425–433 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Grandi, G. et al. Inflammation influences steroid hormone receptors targeted by progestins in endometrial stromal cells from women with endometriosis. J. Reprod. Immunol. 117, 30–38 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Deese, J. et al. injectable progestin-only contraception is associated with increased levels of pro-inflammatory cytokines in the female genital tract. Am. J. Reprod. Immunol. 74, 357–367 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Fichorova, R.N. et al. The contribution of cervicovaginal infections to the immunomodulatory effects of hormonal contraception. MBio 6, e00221–00215 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pisetsky, D.S. & Spencer, D.M. Effects of progesterone and estradiol sex hormones on the release of microparticles by RAW 264.7 macrophages stimulated by Poly(I:C). Clin. Vacc. Immunol. 18, 1420–1426 (2011).

    Article  CAS  Google Scholar 

  45. Menzies, F.M., Henriquez, F.L., Alexander, J. & Roberts, C.W. Selective inhibition and augmentation of alternative macrophage activation by progesterone. Immunology 134, 281–291 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jones, L.A. et al. Toll-like receptor-4-mediated macrophage activation is differentially regulated by progesterone via the glucocorticoid and progesterone receptors. Immunology 125, 59–69 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Arruvito, L. et al. NK cells expressing a progesterone receptor are susceptible to progesterone-induced apoptosis. J Immunol 180, 5746–5753 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Grunert, G., Porcia, M., Neumann, G., Sepulveda, S. & Tchernitchin, A.N. Progesterone interaction with eosinophils and with responses already induced by oestrogen in the uterus. J Endocrinol 102, 295–303 (1984).

    Article  CAS  PubMed  Google Scholar 

  49. Piccinni, M.P. et al. Progesterone favors the development of human T helper cells producing Th2-type cytokines and promotes both IL-4 production and membrane CD30 expression in established Th1 cell clones. J Immunol 155, 128–133 (1995).

    CAS  PubMed  Google Scholar 

  50. Miyaura, H. & Iwata, M. Direct and indirect inhibition of Th1 development by progesterone and glucocorticoids. J Immunol 168, 1087–1094 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Kim, M.R. et al. Progesterone-dependent release of transforming growth factor-beta1 from epithelial cells enhances the endometrial decidualization by turning on the Smad signalling in stromal cells. Mol. Hum. Reprod. 11, 801–808 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Rodriguez, G.C. et al. Progestin treatment induces apoptosis and modulates transforming growth factor-beta in the uterine endometrium. Cancer Epidemiol. Biomarkers Prev. 17, 578–584 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Mao, G. et al. Progesterone increases systemic and local uterine proportions of CD4+CD25+ Treg cells during midterm pregnancy in mice. Endocrinology 151, 5477–5488 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Lee, J.H., Ulrich, B., Cho, J., Park, J. & Kim, C.H. Progesterone promotes differentiation of human cord blood fetal T cells into T regulatory cells but suppresses their differentiation into Th17 cells. J. Immunol. 187, 1778–1787 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, L., Chang, K.K., Li, M.Q., Li, D.J. & Yao, X.Y. Mouse endometrial stromal cells and progesterone inhibit the activation and regulate the differentiation and antibody secretion of mouse B cells. Int. J. Clin. Exp. Pathol 7, 123–133 (2014).

    PubMed  Google Scholar 

  56. Canellada, A., Blois, S., Gentile, T. & Margni Idehu, R.A. In vitro modulation of protective antibody responses by estrogen, progesterone and interleukin-6. Am. J. Reprod. Immunol. 48, 334–343 (2002).

    Article  PubMed  Google Scholar 

  57. Pauklin, S. & Petersen-Mahrt, S.K. Progesterone inhibits activation-induced deaminase by binding to the promoter. J. Immunol. 183, 1238–1244 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Medina, K.L. & Kincade, P.W. Pregnancy-related steroids are potential negative regulators of B lymphopoiesis. Proc. Natl. Acad. Sci. USA 91, 5382–5386 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hall, O.J. et al. Progesterone-based contraceptives reduce adaptive immune responses and protection against heterosubtypic infection with influenza A viruses. J. Virol. 91, e02160–16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wira, C.R., Rodriguez-Garcia, M. & Patel, M.V. The role of sex hormones in immune protection of the female reproductive tract. Nat. Rev. Immunol. 15, 217–230 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kaushic, C., Murdin, A.D., Underdown, B.J. & Wira, C.R. Chlamydia trachomatis infection in the female reproductive tract of the rat: influence of progesterone on infectivity and immune response. Infect. Immun. 66, 893–898 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Cherpes, T.L., Busch, J.L., Sheridan, B.S., Harvey, S.A. & Hendricks, R.L. Medroxyprogesterone acetate inhibits CD8+ T cell viral-specific effector function and induces herpes simplex virus type 1 reactivation. J. Immunol. 181, 969–975 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Gillgrass, A.E., Ashkar, A.A., Rosenthal, K.L. & Kaushic, C. Prolonged exposure to progesterone prevents induction of protective mucosal responses following intravaginal immunization with attenuated herpes simplex virus type 2. J. Virol. 77, 9845–9851 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Trunova, N. et al. Progestin-based contraceptive suppresses cellular immune responses in SHIV-infected rhesus macaques. Virology 352, 169–177 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Ildgruben, A.K., Sjoberg, I.M. & Hammarstrom, M.L. Influence of hormonal contraceptives on the immune cells and thickness of human vaginal epithelium. Obstet. Gynecol. 102, 571–582 (2003).

    CAS  PubMed  Google Scholar 

  66. Hild-Petito, S., Veazey, R.S., Larner, J.M., Reel, J.R. & Blye, R.P. Effects of two progestin-only contraceptives, Depo-Provera and Norplant-II, on the vaginal epithelium of rhesus monkeys. AIDS Res. Hum. Retroviruses 14, S125–S130 (1998).

    CAS  PubMed  Google Scholar 

  67. Sheffield, J.S., Wendel, G.D. Jr., McIntire, D.D. & Norgard, M.V. The effect of progesterone levels and pregnancy on HIV-1 coreceptor expression. Reprod. Sci. 16, 20–31 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Huijbregts, R.P., Helton, E.S., Michel, K.G., Sabbaj, S., Richter, H.E., Goepfert, P.A. et al. Hormonal contraception and HIV-1 infection: medroxyprogesterone acetate suppresses innate and adaptive immune mechanisms. Endocrinology 154, 1282–1295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cabrera-Munoz, E., Fuentes-Romero, L.L., Zamora-Chavez, J., Camacho-Arroyo, I. & Soto-Ramirez, L.E. Effects of progesterone on the content of CCR5 and CXCR4 coreceptors in PBMCs of seropositive and exposed but uninfected Mexican women to HIV-1. J. Steroid Biochem. Mol. Biol. 132, 66–72 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Saba, E. et al. Productive HIV-1 infection of human cervical tissue ex vivo is associated with the secretory phase of the menstrual cycle. Mucosal Immunol. 6, 1081–1090 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Byrne, E.H., Anahtar, M.N., Cohen, K.E., Moodley, A., Padavattan, N., Ismail, N. et al. Association between injectable progestin-only contraceptives and HIV acquisition and HIV target cell frequency in the female genital tract in South African women: a prospective cohort study. Lancet Infect. Dis. 16, 441–448 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Heffron, R. et al. Use of hormonal contraceptives and risk of HIV-1 transmission: a prospective cohort study. Lancet Infect. Dis. 12, 19–26 (2012).

    Article  PubMed  Google Scholar 

  73. Morrison, C.S. et al. Hormonal contraception and the risk of HIV acquisition: an individual participant data meta-analysis. PLoS Med. 12, e1001778 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Birse, K. et al. Molecular signatures of immune activation and epithelial barrier remodeling are enhanced during the luteal phase of the menstrual cycle: implications for HIV susceptibility. J. Virol. 89, 8793–8805 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lavreys, L. et al. Injectable contraceptive use and genital ulcer disease during the early phase of HIV-1 infection increase plasma virus load in women. J. Infect. Dis. 189, 303–311 (2004).

    Article  PubMed  Google Scholar 

  76. Vishwanathan, S.A. et al. High susceptibility to repeated, low-dose, vaginal SHIV exposure late in the luteal phase of the menstrual cycle of pigtail macaques. J. Acquir. Immune Defic. Syndr. 57, 261–264 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Marx, P.A. et al. Progesterone implants enhance SIV vaginal transmission and early virus load. Nat. Med. 2, 1084–1089 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Achilles, S.L., Creinin, M.D., Stoner, K.A., Chen, B.A., Meyn, L. & Hillier, S.L. Changes in genital tract immune cell populations after initiation of intrauterine contraception. Am. J. Obstet. Gynecol. 211, 489 e481–489 e489 (2014).

    Article  Google Scholar 

  79. Ferreira, V.H. et al. Medroxyprogesterone acetate regulates HIV-1 uptake and transcytosis but not replication in primary genital epithelial cells, resulting in enhanced T-cell infection. J. Infect. Dis. 211, 1745–1756 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Meier, A. et al. Sex differences in the Toll-like receptor-mediated response of plasmacytoid dendritic cells to HIV-1. Nat. Med. 15, 955–959 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Polis, C.B., Phillips, S.J., Hillier, S.L. & Achilles, S.L. Levonorgestrel in contraceptives and multipurpose prevention technologies: does this progestin increase HIV risk or interact with antiretrovirals? AIDS 30, 2571–2576 (2016).

    Article  PubMed  Google Scholar 

  82. Ralph, L.J., McCoy, S.I., Shiu, K. & Padian, N.S. Hormonal contraceptive use and women's risk of HIV acquisition: a meta-analysis of observational studies. Lancet Infect. Dis. 15, 181–189 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Phillips, S.J., Polis, C.B. & Curtis, K.M. The safety of hormonal contraceptives for women living with HIV and their sexual partners. Contraception 93, 11–16 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Kaushic, C., Roth, K.L., Anipindi, V. & Xiu, F. Increased prevalence of sexually transmitted viral infections in women: the role of female sex hormones in regulating susceptibility and immune responses. J. Reprod. Immunol. 88, 204–209 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Bhavanam, S., Snider, D.P. & Kaushic, C. Intranasal and subcutaneous immunization under the effect of estradiol leads to better protection against genital HSV-2 challenge compared to progesterone. Vaccine 26, 6165–6172 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Gillgrass, A.E., Tang, V.A., Towarnicki, K.M., Rosenthal, K.L. & Kaushic, C. Protection against genital herpes infection in mice immunized under different hormonal conditions correlates with induction of vagina-associated lymphoid tissue. J. Virol. 79, 3117–3126 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Parr, M.B. & Parr, E.L. Vaginal immunity in the HSV-2 mouse model. Int. Rev. Immunol. 22, 43–63 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Quispe Calla, N.E. et al. Medroxyprogesterone acetate and levonorgestrel increase genital mucosal permeability and enhance susceptibility to genital herpes simplex virus type 2 infection. Mucosal. Immunol. 9, 1571–1583 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Vicetti Miguel, R.D. et al. Dendritic cell activation and memory cell development are impaired among mice administered medroxyprogesterone acetate prior to mucosal herpes simplex virus type 1 infection. J. Immunol. 189, 3449–3461 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Kaushic, C., Ashkar, A.A., Reid, L.A. & Rosenthal, K.L. Progesterone increases susceptibility and decreases immune responses to genital herpes infection. J. Virol. 77, 4558–4565 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gillgrass, A.E., Fernandez, S.A., Rosenthal, K.L. & Kaushic, C. Estradiol regulates susceptibility following primary exposure to genital herpes simplex virus type 2, while progesterone induces inflammation. J. Virol. 79, 3107–3116 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. MacDonald, E.M. et al. Susceptibility of human female primary genital epithelial cells to herpes simplex virus, type-2 and the effect of TLR3 ligand and sex hormones on infection. Biol. Reprod. 77, 1049–1059 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Kaushic, C., Zhou, F., Murdin, A.D, & Wira, C.R. Effects of estradiol and progesterone on susceptibility and early immune responses to Chlamydia trachomatis infection in the female reproductive tract. Infect. Immun. 68, 4207–4216 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gursahaney, P.R., Meyn, L.A., Hillier, S.L., Sweet, R.L. & Wiesenfeld, H.C. Combined hormonal contraception may be protective against Neisseria gonorrhoeae infection. Sex Transm. Dis. 37, 356–360 (2010).

    CAS  PubMed  Google Scholar 

  95. Edwards, J.L. Neisseria gonorrhoeae survival during primary human cervical epithelial cell infection requires nitric oxide and is augmented by progesterone. Infect. Immun. 78, 1202–1213 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Xu, L. et al. Progesterone suppresses Th17 cell responses, and enhances the development of regulatory T cells, through thymic stromal lymphopoietin-dependent mechanisms in experimental gonococcal genital tract infection. Microbes Infect. 15, 796–805 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Vodstrcil, L.A. et al. Hormonal contraception is associated with a reduced risk of bacterial vaginosis: a systematic review and meta-analysis. PLoS ONE. 8, e73055 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Alves, C.T., Silva, S., Pereira, L., Williams, D.W., Azeredo, J. & Henriques, M. Effect of progesterone on Candida albicans vaginal pathogenicity. Int. J. Med. Microbiol. 304, 1011–1017 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Kita, E. et al. Alterations of host resistance to mouse typhoid infection by sex hormones. J. Leukoc. Biol. 46, 538–546 (1989).

    Article  CAS  PubMed  Google Scholar 

  100. Escobedo, G. et al. Progesterone induces mucosal immunity in a rodent model of human taeniosis by Taenia solium. Int. J. Biol. Sci. 7, 1443–1456 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Saqui-Salces, M., Rocha-Gutierrez, B.L., Barrios-Payan, J.A., Ruiz-Palacios, G., Camacho-Arroyo, I. & Gamboa-Dominguez, A. Effects of estradiol and progesterone on gastric mucosal response to early Helicobacter pylori infection in female gerbils. Helicobacter 11, 123–130 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Markle, J.G. et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339, 1084–1088 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Vom Steeg, L.G. & Klein, S.L. Sex steroids mediate bidirectional interactions between hosts and microbes. Horm. Behav. 88, 45–51 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kleynhans, L. et al. The contraceptive depot medroxyprogesterone acetate impairs mycobacterial control and inhibits cytokine secretion in mice infected with Mycobacterium tuberculosis. Infect. Immun. 81, 1234–1244 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Boulet, S.L. et al. Contraceptive use among nonpregnant and postpartum women at risk for unintended pregnancy, and female high school students, in the context of Zika preparedness - United States, 2011-2013 and 2015. MMWR Morb. Mortal. Wkly. Rep. 65, 780–787 (2016).

    Article  PubMed  Google Scholar 

  106. Feinen, B., Jerse, A.E., Gaffen, S.L. & Russell, M.W. Critical role of Th17 responses in a murine model of Neisseria gonorrhoeae genital infection. Mucosal Immunol. 3, 312–321 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Liang, J., Sun, L., Wang, Q. & Hou, Y. Progesterone regulates mouse dendritic cells differentiation and maturation. Int. Immunopharmacol. 6, 830–838 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Tayel, S.S., Helmy, A.A., Ahmed, R., Esmat, G., Hamdi, N. & Abdelaziz, A.I. Progesterone suppresses interferon signaling by repressing TLR-7 and MxA expression in peripheral blood mononuclear cells of patients infected with hepatitis C virus. Arch. Virol. 158, 1755–1764 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Hellings, P.W., Vandekerckhove, P., Claeys, R., Billen, J., Kasran, A. & Ceuppens, J.L. Progesterone increases airway eosinophilia and hyper-responsiveness in a murine model of allergic asthma. Clin. Exp. Allergy. 33, 1457–1463 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Yates, M.A., Li, Y., Chlebeck, P., Proctor, T., Vandenbark, A.A. & Offner, H. Progesterone treatment reduces disease severity and increases IL-10 in experimental autoimmune encephalomyelitis. J. Neuroimmunol. 220, 136–139 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hughes, G.C., Clark, E.A. & Wong, A.H. The intracellular progesterone receptor regulates CD4+ T cells and T cell-dependent antibody responses. J. Leukoc. Biol. 93, 369–375 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Murphy, K., Irvin, S.C. & Herold, B.C. Research gaps in defining the biological link between HIV risk and hormonal contraception. Am. J. Reprod. Immunol. 72, 228–235 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Munoz, L.D., Serramia, M.J., Fresno, M. & Munoz-Fernandez, M.A. Progesterone inhibits HIV-1 replication in human trophoblast cells through inhibition of autocrine tumor necrosis factor secretion. J. Infect. Dis. 195, 1294–1302 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Andrew Pekosz, Nicola Heller, and Wayne Mitzner for feedback on earlier drafts of this manuscript.

Author contributions

O.J.H. and S.L.K. conceived the idea and drafted the outline, O.J.H. and S.L.K wrote the manuscript, S.L.K. edited the manuscript, O.J.H. drafted the figures and tables.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabra L Klein.

Ethics declarations

Competing interests

The authors declared no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hall, O., Klein, S. Progesterone-based compounds affect immune responses and susceptibility to infections at diverse mucosal sites. Mucosal Immunol 10, 1097–1107 (2017). https://doi.org/10.1038/mi.2017.35

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mi.2017.35

Search

Quick links