RORγt, a multitask nuclear receptor at mucosal surfaces

G Eberl^{1,2}

ROR γ t is a nuclear hormone receptor that has followed an exponential success carrier. Its modest origins as an orphan receptor cloned from human pancreas blossomed within 15 years into a critical regulator of anti-microbial immunity and a major target in the fight against inflammatory pathologies. Here, I review its role as a transcription factor required for the generation of type 3 lymphoid cells, which induce the development of lymphoid tissues, provide resistance of epithelial stem cells to injury, maintain homeostasis with the symbiotic microbiota, orchestrate defense against extracellular microbes, and regulate allergic responses. ROR γ t is also an intriguing molecule that is regulated by the circadian rhythm and includes cholesterol metabolites as ligands. ROR γ t therefore links anti-microbial immunity with circadian rhythms and steroids, the logic of which remains to be understood.

A BRIEF HISTORY OF RORYT

Two independent lines of research lead to the discovery of RORy and its shorter isoform RORyt. In the first line of research, PCR primers were designed to amplify cDNAs coding for conserved regions of the DNA binding domain of nuclear hormone receptors. This strategy aimed for the cloning of presumably all nuclear receptors expressed in a given tissue or cell line. Using this approach, novel orphan receptors named retinoid Z receptor (RZR)α and RZRβ were then identified in umbilical vain endothelial cells¹ and rat brain.² In addition, using hybridization cloning with the cDNA of the retinoic acid receptor (RAR)α, retinoic acid related orphan receptor (ROR)α was identified in rat brain and shown to be identical to RZRα.³ This lead to the identification of the third member of the RZR/ ROR family, RORγ, in a cDNA library from human pancreas, and later from mouse muscle, using the degenerate primer approach.^{4,5} Interestingly, melatonin was reported to activate the transcription factor activity of ROR α and ROR β in cultured cells, 6-8 suggesting a role for the ROR family of receptors in circadian rhythms.

In the second line of research, in a screen for proteins that confer resistance to TCR-mediated apoptosis, a shorter isoform of ROR γ was identified by expression cloning of a thymocyte cDNA library in a T cell hybridoma. Although ROR γ is expressed in a variety of organs, this new isoform was found to

be primarily expressed in the thymus and was therefore named ROR γ t. Mice that lacked the expression of both ROR γ and ROR γ t showed increased thymocyte apoptosis. ⁹⁻¹¹ Such mice also had the remarkable phenotype of lacking lymph nodes (LNs) and Peyer's patches (PPs). In knock-in mice in which the *Rorc*(γ t) locus coded for GFP instead of ROR γ t, but still expressed ROR γ , it was shown that ROR γ t is expressed by and is required for the development of fetal lymphoid tissue inducer (LTi) cells, ¹² a then enigmatic cell type that colonizes developing lymphoid tissues in the fetus before any other hematopoietic cell type. ¹³⁻¹⁵

It was nevertheless the association of ROR γ t with Th17 cells that shot ROR γ t to universal fame. In a landmark paper by Dan Cua *et al.*, it was demonstrated that IL-23, rather than IL-12, is the critical cytokine in experimental autoimmune encephalomyelitis (EAE), a mouse model for multiple sclerosis. ¹⁶ In a second paper, Cua reported that IL-23 promotes the generation of Th17 cells, the effector cells that drive EAE. ¹⁷ On the basis of transcriptome profiles, Th17 cells were found to express high levels of ROR γ t as compared with Th1 cells, an observation that lead to the demonstration that Th17, like LTi cells, express ROR γ t and require ROR γ t for their generation. ¹⁸

Two years later, the world of $ROR\gamma t^+$ cells expanded again. A population of LTi-like cells was identified that express markers of natural killer (NK) cells, such as NKp46, as well as

Received 15 July 2016; accepted 30 August 2016; published online 5 October 2016. doi:10.1038/mi.2016.86

¹Institut Pasteur, Microenvironment & Immunity Unit, Department of Immunology, Paris, France and ²INSERM U1224, Paris, France. Correspondence: G Eberl (gerard.eberl@pasteur.fr)

the signature cytokines IL-17 and IL-22, but do not cluster or induce the development of lymphoid tissues. $^{19-22}$ To keep control of the expanding universe of LTi-like cells, the term "innate lymphoid cells" (ILCs) was coined. 23,24 It was progressively realized that the ILC universe includes ILC1s, ILC2s, and (ROR γt^+) ILC3s, which mirror Th1, Th2, and Th17 cells in the expression of signature transcription factors, surface markers, and effector cytokines. 25

A recent observation brings ROR γ t back full circle to its original description as a cousin of the melatonin receptors ROR α and ROR β . ROR γ is a component of the transcriptional network of peripheral circadian clocks, which regulates the transcription factor Nfil3, which in turn represses the expression of ROR γ t. Deregulation of the circadian clock thus leads to a deregulation of Th17 cells and increased susceptibility to inflammatory pathology. Finally, and no less intriguing, cholesterol metabolites are natural ligands of ROR γ t, possibly linking type 3 immunity to the endocrine system and metabolism, even though the biology of these ligands remains to be understood.

RORYt AND LYMPHOID TISSUE DEVELOPMENT

LTi cells were first described as CD3 $^-$ CD4 $^+$ or CD3 $^-$ IL-7R α^+ cells in the developing LNs^{13,14} and PPs¹⁵ (**Figure 1**). Mebius' and Nishikawa's labs characterized LTi cells and their interactions with stroma cells within the lymphoid tissue anlagen, 31,32 but it is the discovery of RORyt that allowed to demonstrate formally that LTi cells are required for the development of lymphoid tissues. 12 In the fetus, LTi cells are the only cells expressing RORyt. In RORyt-deficient mice, LTi cells are absent and LNs and PPs fail to develop. These cells express several members of the TNF superfamily, such as soluble lymphotoxin (LT) α_3 and its membrane-bound variant $LT\alpha_1\beta_2$, TNF-related activationinduced cytokine (TRANCE), and TRANCE-L. 14,31,33 $LT\alpha_1\beta_2$ is essential for the development of lymphoid tissues, 34-36 as it engages LTBR on specialized stroma cells, which in turn induces the expression of adhesion molecules and chemokines that recruit lymphocytes and myeloid cells.³⁷

After birth, LTi cells cluster in hundreds of so-called cryptopatches (CPs) located between crypts of the intestinal lamina propria. 38,39 CPs collect B cells to develop into isolated lymphoid follicles (ILFs), which generate mostly T cellindependent IgA + B cells. 40-42 Surprisingly, the formation of ILFs from CPs requires bacterial microbiota. 41,43 Proliferating bacteria release peptidoglycans from their cell wall, which is recognized by the innate receptor NOD-1 in epithelial cells.⁴⁴ This unleashes an activation cascade through the release of CCL-20, the activation of the CCR6 + (the receptor for CCL-20) LTi cells and stroma cells in CPs and the recruitment of B cells. 43,45 In RORyt-deficient mice, ILFs-like structures still develop. 46 However, these structures are termed tertiary lymphoid tissues, which are induced by chronic inflammation in most organs independently of LTi cells, through the expression of LT $\alpha_1\beta_2$ by subsets of B cells, T cells, or NK cells.⁴⁷

Intriguingly, LTi cells are retained in mature (adult) LNs and PPs, and locate in the cortex between B cell follicles.⁴⁸ Their functions in this region remains enigmatic, mainly because it

has been so far impossible to investigate the consequence of a absence of LTi cells in adult lymphoid tissues, as ROR γ t-deficient mice lack both.

ILC3s

A population of intestinal lymphoid cells expressing the NK marker NKp46 in mouse and NKp44 in human, was found to co-express ROR γ t and IL-22. These cells were originally named NK22 cells, but their requirement for ROR γ t rather than Eomes in development, as well as their cytokine profile, makes them more similar to LTi cells than to NK cells. However, in contrast to LTi cells, NK22 do not cluster in CPs, and therefore, are not involved in the development of LNs, PPs, and ILFs. A9,50 Rather, NK22 are viewed as more "regular" effector cells that patrol the tissue and produce effector cytokines where it matters in terms of defense and injury.

Given their common dependence on RORγt and their similar cytokine profiles, LTi cells and NK22 cells were grouped together as ILC3s, whereas lymphoid cells that produce the type 2 cytokines IL-4, IL-5, and IL-13 were grouped as ILC2s, and those that produce IFNγ as ILC1s. ^{23,24} A difficulty arose when it was found that ILC3s can downregulate RORγt and upregulate T-bet to produce IFNγ in a context of intense inflammation. ⁵² These cells were termed ex-ILC3s. Another form of ILC3 plasticity was found *in vitro* using human ILC lines. When stimulated through TLR2, such lines expressed IL-5 and IL-13 in addition to IL-22. ⁵³ It remains to be assessed to what extent such plasticity is operational *in vivo*, underlying for example the rapid response of ILCs to diverse types of tissue perturbations.

The prompt responsiveness of ILCs to infection and injury places them upstream in the immune response. ILC3s are activated by the inducer cytokines IL-1β and IL-23 produced by macrophages and dendritic cells (DCs) typically in response to infection by extracellular bacteria and fungi. Activated ILC3s produce the effectors cytokines IL-17, IL-22, GM-CSF, LTα₃, and $LT\alpha_1\beta_2$, which in turn induce the production of antimicrobial peptides by epithelial cells, of neutrophil-recruiting chemokines by stromal cells and epithelial cells, 25,54 and the activation of B cells. 55,56 This antigen-independent mode of activation of ILCs is similar to that of memory and "innate" T cells, at least in terms of kinetics.⁵⁷ It does not require selection and expansion of antigen-specific clones, but rather relies on the expansion of populations. It remains to be understood whether sub-subsets of ILCs exist and specifically expand in reaction to particular infections and injuries, thereby providing a form of immunological memory to challenges, as described for NK cells.58

ILC3s have a critical role early in the protection to enteropathogens, such as the proteobacteria *Citrobacter rodentium*, a homolog of the human *Escherichia coli* intestinal pathogens, ¹⁹ to *Salmonella enterica*, ⁵² and to rotaviruses, ⁵⁹ through their production of IL-22. They also mediate containment of bacterial symbionts that live within PPs, ⁶⁰ and more generally protect from injury-induced inflammation through the containment of symbiotic bacteria. ^{46,61} The secretion by ILC3s of IL-22 also has a role in the protection of epithelial cells from

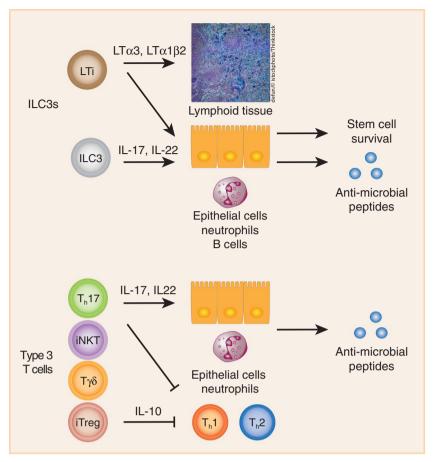


Figure 1 The RORγt $^+$ cells. RORγt $^+$ cells include type 3 innate lymphoid cells (ILC3s) and several subsets of T cells (Th17 cells, invariant NKT cells, Tγδ cells). Not mentioned is a subset of IL-17-producing neutrophils that has been documented in mouse and man (see text). All RORγt $^+$ cells can express the effector cytokines IL-17 and IL-22 to varying degrees, except most RORγt $^+$ regulatory T cells (microbiota-induced or iTregs) that express IL-10. A subset of ILC3s, named lymphoid tissue inducer (LTi) cells, expresses soluble (LTα3) and membrane-bound (LTα1β2) lymphotoxin, as well as TRANCE ligand, which are involved in the development of lymphoid tissues in the fetus and after birth in the intestinal lamina propria, and the activation of B cells. IL-17, as well as LTα1β2, induce the recruitment of neutrophils, IL-22 prevents apoptosis of epithelial stem cells, and both IL-17 and IL-22 induce the production of anti-microbial peptides (AMPs) by epithelial cells. RORγt $^+$ Tregs are induced by the symbiotic microbiota and regulate competing type 1 and type 2 responses.

apoptosis induced by chemotherapy or irradiation in the intestine and the thymus, 62-64 as well as in the protection of hepatocytes from inflammation. 65 Intriguingly, ILC3s are relatively resistant to irradiation and chemotherapy, possibly as a consequence of their low turnover. 12,49,66

On the other hand, ILC3s and IL-22 are involved in the progression of colon cancer, 67 presumably because they protect epithelial cells from apoptosis through the activation of the transcription factor STAT3. $^{62-64}$ In addition, ILC3s contribute to inflammatory pathology through their capacity to co-express IFN γ during *Salmonella* infection in mouse 52 and in patients suffering from inflammatory bowel disease (IBD). 68,69 The expression of IL-17 by ILC3s is involved in obesity-associated asthma induced by high fat diet, 70 possibly as a consequence of a loss of containment of the intestinal microbiota and an induction of ILC3s in adipose tissue by incoming bacteria and bacterial compounds. 71

Another surprising feature of ILC3s is their expression of major histocompatibility complex (MHC) class II, ^{12,14} as well

as of several components of the class II antigen-processing pathway. This feature allows ILC3s to present antigens and repress the activity of specific T cells in the intestine during homeostasis,⁷² and to induce T cell activation in the spleen.⁷³ The relative role of ILC3s, DCs, and macrophages in the MHC class II-restricted activation and regulation of T cells,⁷⁴ at least in the intestine and the lymphoid tissues, remains to be measured.

So, ILC3s are pivotal to many processes in mucosal immunity, from the development of lymphoid tissues and the containment of the microbiota, the early immunity to pathogens and the protection of epithelial cells, to the exacerbation of inflammatory pathology and the progression of cancer. Even though ILC3s depend on RORyt for their development, it remains to be determined whether RORyt is also required for their maintenance, an important consideration when targeting RORyt with agonists or antagonists to regulate type 3 immune responses. A recent report shows that a RORyt antagonist leads to the loss of Th17 cells but not of ILC3s. To

THYMOCYTES AND Th17 CELLS

ROR γ t is required for the survival of immature CD4 $^+$ CD8 $^+$ thymocytes by regulating the level of the anti-apoptotic factor Bcl-x_L. ¹⁰ In the absence of ROR γ t, immature thymocytes spend less time at the CD4 $^+$ CD8 $^+$ stage and therefore, recombination of the genes coding for the TCR α chain is biased towards proximal V α to J α re-arrangements. ⁷⁸ The thymus of a ROR γ t-deficient mouse contains half the number of cells found in the thymus of a wild-type animal. ¹⁰ In the periphery, control of anti-apoptotic genes by ROR γ t has not been reported.

Expression of RORyt by T cells remains confined to immature thymocytes, until Th17 cells develop that require ROR γ t. Naive CD4 + T cells are induced into the Th17 pathway by IL-1 β , 79 IL-23, 17,80 or the combination of IL-6 and TGFB. 81-83 IL-23 and IL-6 induce the phosphorylation of STAT3, which in turn induces the expression of RORyt.⁸⁴ The characterization of Th17 cells was initially reported in the context of EAE as the cells that are induced by IL-23 to express IL-17 and provoke autoimmunity, 17 as well as in arthritis^{85,86} and IBD. 87,88 Therefore, RORyt was first perceived as a public enemy that must be targeted to block the progression of autoimmune inflammation. Another line of research nevertheless showed the importance of Th17 cells in mucosal immunity to pathogens and their role in the containment of the microbiota through both the production of IL-17 and IL-22.89,90 Caught in the middle of these confusing perceptions, IL-17 and IL-22 have been sometimes described as both pro- and anti-inflammatory, which only reflects the homeostatic or pathologic context in which these cytokines were studied. In contrast, ILC3s, also acting both during intestinal homeostasis and pathology, were first characterized in the context of intestinal homeostasis and thus as primarily "beneficial" cells. 39,43 Nevertheless, the distinctive role of Th17 cells and ILC3s in homeostasis, defense and pathology has been difficult to pull apart, as models to ablate Th17 cells or ILC3s, individually, have to be improved. 19,60 On the basis of their innate versus adaptive nature, early responses against pathogens have generally been "assigned" to ILC3s, whereas chronic responses, such as autoimmune inflammation, have been assigned to

The mechanisms by which microbes induce Th17 cells, and more generally type 3 immune responses, remain a hard nut to crack. Whereas it is clear that IL-1 β and IL-23 have a central role in the cascade of events that lead to the generation of Th17 cells, ^{17,79,80,91} the signals that induce IL-23 are not known. It has been shown that ATP, produced by bacteria, activates a subset of intestinal lamina propria DCs through the P2X and P2Y receptors to produce IL-23, ⁹² but this mechanism remains to be validated in the context of bacteria that adhere to epithelial cells, such as segmented filamentous bacteria ^{93,94} and pathogenic strains of *E. coli*, which efficiently induce the generation of Th17 cells. ⁹⁵ The pathway by which these adherent bacteria induce Th17 cells remains unknown.

TYPE 3 TREGs

FoxP3 is the signature transcription factor for regulatory T (Treg) cells. Therefore, it came as a surprise that a significant proportion of intestinal FoxP3 ⁺ T cells also expresses RORγt. ⁹⁶ It was suggested that RORγt⁺ FoxP3⁺ cells are not Tregs, but rather precursor T cells that express both transcription factors until expression of one is promoted over the other to generate Tregs or Th17 cells.83 This hypothesis was derived from the observation that 25% of intestinal Th17 cells had expressed FoxP3 at some stage of their development, as determined by genetic fate mapping of FoxP3 + cells. It was also suggested that Tregs acquire characteristics of effectors cells, induced by the inflammatory state of the tissue.⁹⁷ For example, colitis induces the expression of IL-23 by macrophages and DCs, which in turn induces the expression of RORyt in developing effector T cells as well as in Tregs. This leads to the expression of the chemokine receptor CCR6 on both mature Th17 and RORyt+ Tregs, 96 and thus co-localization of both the effector and the regulator cells to augment the efficacy of immune regulation.⁹⁸ Furthermore, a small proportion of RORγt ⁺ Tregs was found to be "perverted" into genuine effector cells, induced by chronic inflammation into the expression of IL-17.99

Nevertheless, the majority of RORγt ⁺ Tregs produces IL-10 at levels that exceed the levels produced by other subsets of Tregs, and express high levels of other attributes of Tregs, such as ICOS, CTLA-4, CD39, and CD73, ¹⁰⁰ and exert regulatory functions *in vitro* and *in vivo*. ^{96,98} Moreover, IL-10-producing RORγt ⁺ Tregs markedly expand during intestinal and lung inflammation, presumably to avoid exponential growth of the inflammation. ⁹⁶ Nevertheless, it is possible that the phenomenon of Treg "perversion" expands during chronic long-term inflammation, conditions found in the intestine of IBD and colon cancer patients ⁹⁹—but rarely obtained in mouse models.

Recently, it was demonstrated that microbiota- and antigeninduced Tregs express RORyt, whereas microbiota-independent Tregs include a subset expressing Gata3. 100-103 The generation of RORγt + Tregs is dependent on antigen presentation by DCs and macrophages, as well as on the activation of STAT3. 100 Surprisingly, the "pro-Th17" cytokines IL-6 and IL-23, rather than IL-10, activate STAT3 for the generation of ROR γ t ⁺ Tregs. The eventual lineage choice to generate RORγt + Tregs instead of Th17 cells is dependent on the metabolism of vitamin A into retinoic acid (RA), as an absence of vitamin A, or the inhibition of the RA receptor, tips the balance in favor of Th17 cells. 100 This suggests that the normal metabolism of vitamin A by DCs, stromal cells, and neurons, rather than microbes, determines the balance between RORγt⁺ Tregs and Th17, or in other words, between anti- and pro-inflammatory (type 3) responses. I, therefore, propose that RA, required in many physiological processes, is a "normo-signal" used by the immune system to monitor the health state of a tissue. In the context of tissue damage, upon infection or injury, the production of RA is decreased and the balance between RORyt + Tregs and Th17 cells is shifted in favor of Th17 cells. During homeostasis in the intestine, this balance is regulated to the level of effector type 3 immunity required to contain the symbiotic microbiota.

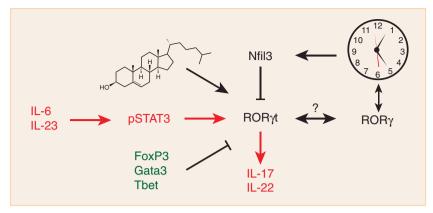


Figure 2 The RORγt molecule. The type 3 inducer cytokines IL-23 and IL-6 induce the phosphorylation of the transcription factor STAT3, which then activates $Rorc(\gamma t)$, the gene coding for RORγt that is essential for the generation of ILC3s and RORγt T cells. RORγt induces the expression of the type 3 effector cytokines IL-17 and IL-22. FoxP3, the signature transcription factor of Treg cells, binds RORγt and generally imposes a regulatory phenotype to FoxP3 + RORγt + (Treg) cells. Similarly, Gata3 and T-bet, the signature transcription factor of type 2 and type 1 lymphoid cells, respectively, block the expression of RORγt. The expression of RORγt is also under control of the circadian rhythm, as Nfil3, regulated by clock genes, represses $Rorc(\gamma t)$. RORγ is involved in the regulation of circadian clocks, but is not normally expressed by hematopoietic cells. Natural ligands of RORγt have recently been identified as oxysterols, the biology of which remains to be fully understood.

In one study, the absence of ROR γ t ⁺ Tregs lead to the increase in Th1 and Th17 cells, and the exacerbation of colitis. ¹⁰¹ However, in another study, ROR γ t ⁺ Tregs were not found to control Th1 and Th17 cells, but rather Th2 cells. ¹⁰⁰ It was proposed that bacteria induce type 3 responses, mediated by Th17 cells and ROR γ t ⁺ Tregs, which collectively repress competing type 1 or type 2 responses, a phenomenon described by the equilibrium model of immunity. ¹⁰⁴ As a consequence, in mice that lack ROR γ t ⁺ Tregs or Th17 cells, anti-helminth responses are increased and allergic inflammation is exacerbated. Thus microbiota regulates allergy through the induction of type 3 responses. ¹⁰⁰ The exacerbated Th17 responses observed in the absence of ROR γ t ⁺ Tregs, reported in the first study, ¹⁰¹ may be the consequence of an intestinal microbiota that is more potently inducing effector type 3 responses than in the second study. ¹⁰⁰

The developmental origin of $ROR\gamma t^+$ Tregs remains debated and is difficult to address. Do they derive from Th17 cells, $ROR\gamma t^-$ FoxP3 + Tregs, or naïve T cells? Genetic fate mapping, using Foxp3 or $Rorc(\gamma t)$, cannot be conclusive, as FoxP3 is continuously expressed in the Treg lineage, whereas $ROR\gamma t$ is already expressed by immature $CD4^+CD8^+$ T cells in the thymus. Resolution of the differentiation pathway of $ROR\gamma t^+$ Tregs requires the transfer in vivo of single T cells, or individual T-cell barcoding.

OTHER CELLS EXPRESSING RORYt

ROR γ t is expressed exclusively by lymphoid cells. Or so we thought. Populations of bone marrow and human blood neutrophils express ROR γ t, as well as IL-17 upon stimulation with IL-6 and IL-23. 105 A similar subset of ROR γ t $^+$ neutrophils was identified in mice that expresses IL-17 upon *Aspergillus fumigatus* infection of the lungs. 106 These observations are reminiscent of older data showing that lipopolysaccharides (LPS) induce lung neutrophilia, the recruitment of which is induced by CXC chemokines produced by stromal and

epithelial cells. These chemokines are in turn induced by IL-17 produced by neutrophils and T cells. 107

RORyt AS A MOLECULE

The natural ligand for ROR γ t has remained elusive for long (**Figure 2**). The related ROR α was co-crystallized with cholesterol and cholesterol sulfate. Recently, it was found that cholesterol biosynthetic intermediates, such as oxysterols, are involved in the function of ROR γ t during the development of LNs and the differentiation of Th17 cells and IL-17 T γ 8 cells. Phase sterols are likely to be endogenous metabolites, rather than compounds derived from the microbiota, as LNs and ILC3s develop in germ free animals. Interestingly, 7 α ,27-hydroxycholesterol, is both a ligand for ROR γ t and EBI2, a G protein-coupled receptor involved in the positioning of activated B cells in LNs. The functional link between ROR γ t and EBI2 remains unexplored.

Synthetic inverse agonists of RORyt have been identified that derive from liver X receptor (LXR) agonists⁷⁵ or sterols such as digoxin⁷⁶ and ursolic acid. 110,111 Such compounds trigger intense interests from the pharmaceutic industry as drugs to block type 3 responses during autoimmunity and IBD. Evidently, given the multiple cells and pathways that depend on RORyt, including the containment of the intestinal microbiota and the regulation of competing immune responses such as allergic responses, such a strategy may cause important collateral damage, or be inefficient in the intestine. 46,100 It is possible that for similar reasons, anti-IL-23 treatment is inefficient or even deleterious in the context of IBD, even though it is very efficient in the context of skin disease. 112 Interestingly, it appears that Th17 cells are more sensitive to transient RORyt inhibition than ILC3s,⁷⁷ indicating that partial blockage of type 3 responses can be achieved with RORyt inhibitors that may preserve the activity of ILC3s and some level of microbial containment.

Regulation of ROR γ t also occurs at the protein-protein level. Itch is an E3 ubiquitin ligase that binds ROR γ t and targets it for ubiquitination and degradation. In the absence of Itch, mice develop IL-17-dependent intestinal inflammation and tumorigenesis. Nitric oxide (NO) also regulates the activity of ROR γ t through nitration of tyrosine residues. As a consequence, iNOS-deficient mice develop enhanced Th17 differentiation. At the transcription factor level, FoxP3 binds directly to ROR γ t and appears to impose its anti-inflammatory program in ROR γ t. Tregs over the pro-inflammatory program induced by ROR γ t. Gata3, the signature transcription factor of type 2 responses, directly binds to and inhibits the *Rorc* promoter. Finally, T-bet, the signature transcription factor of type 1 responses, prevents Runx1 to mediate transactivation of *Rorc*. The state of the province of the signature transcription factor of type 1 responses, prevents Runx1 to mediate transactivation of *Rorc*.

An interesting twist in the regulation of ROR γ t expression involves Nfil3. This basic leucine zipper transcription factor is required for the development of NK cells, 116 as well as more generally for the development of ILCs. $^{117-119}$ Nfil3 is negatively regulated by the clock protein Rev-Erb α , and in turn, negatively regulates expression of ROR γ t by directly binding to the *Rorc* promoter. 28 As a consequence, the expression of ROR γ t, and the amplitude of type 3 responses, is regulated by the circadian clock, and disruption of the circadian rhythm leads to increased susceptibility to type 3 inflammatory pathology.

RORyt AND RORy

ROR γ directly regulates the expression of clock genes through binding to the promoter of Cry1, Bmal1, Rev-Erb α , and also Nfil3. Thus, ROR γ regulates clock genes, and one of those clock genes, Nfil3, regulates ROR γ t. However, ROR γ and ROR γ t are not usually co-expressed in the same type of cells. Whereas ROR γ t is expressed in lymphoid cells (and neutrophils) exclusively, ROR γ is not expressed in hematopoietic cells, but in many other types of parenchymal cells, such as hepatocytes and muscle cells. Therefore, it is possible that ROR γ and ROR γ t have similar biology in different cells, both connected to circadian clocks and oxysterol ligands, 29,109 but have different functions through the regulation of distinct set of tissue-specific genes.

Interestingly, the other members of the ROR family, ROR α and ROR β , also have important roles in the circadian rhythms, as both ROR α -deficient mice and ROR β -deficient mice show alterations in circadian oscillations.

CONCLUDING REMARKS

ROR γ t has turned out to be an extraordinary nuclear receptor and transcription factor, which controls type 3 immunity, a critical branch of immune responses that contains the symbiotic microbiota at mucosal surfaces and fights bacterial and fungal pathogens, but also leads to autoimmunity and cancer. The links between ROR γ t, oxysterols, and clock genes makes ROR γ t a potential node connecting immunity with metabolism and circadian rhythms. The biology of ROR γ t blossoms at an exciting time as immunology expands into a

more transversal field of research connecting different physiological systems.

ACKNOWLEDGMENTS

This work has been supported by the Institut Pasteur.

DISCLOSURE

The author declares no conflict of interest.

© 2017 Society for Mucosal Immunology

REFERENCES

- Becker-Andre, M., Andre, E. & DeLamarter, J.F. Identification of nuclear receptor mRNAs by RT-PCR amplification of conserved zinc-finger motif sequences. *Biochem. Biophys. Res. Commun.* 194, 1371–1379 (1993).
- Carlberg, C., Hooft van Huijsduijnen, R., Staple, J.K., DeLamarter, J.F. & Becker-Andre, M. RZRs, a new family of retinoid-related orphan receptors that function as both monomers and homodimers. *Mol. Endocrinol.* 8, 757–770 (1994).
- Giguere, V. et al. Isoform-specific amino-terminal domains dictate DNAbinding properties of ROR alpha, a novel family of orphan hormone nuclear receptors. Genes Dev. 8, 538–553 (1994).
- Hirose, T., Smith, R.J. & Jetten, A.M. RORγ: the third member of ROR/ RZR orphan receptor subfamily that is highly expressed in skeletal muscle. *Biochem. Biophys. Res. Commun.* 205, 1976–1983 (1994).
- Medvedev, A., Yan, Z.H., Hirose, T., Giguere, V. & Jetten, A.M. Cloning of a cDNA encoding the murine orphan receptor RZR/RORγ and characterization of its response element. *Gene* 181, 199–206 (1996).
- Becker-Andre, M. et al. Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily. J. Biol. Chem. 269, 28531–28534 (1994).
- Wiesenberg, I., Missbach, M., Kahlen, J.P., Schrader, M. & Carlberg, C. Transcriptional activation of the nuclear receptor RZR α by the pineal gland hormone melatonin and identification of CGP 52608 as a synthetic ligand. *Nucleic Acids Res.* 23, 327–333 (1995).
- Carlberg, C. & Wiesenberg, I. The orphan receptor family RZR/ROR, melatonin and 5-lipoxygenase: an unexpected relationship. *J. Pineal. Res.* 18, 171–178 (1995).
- He, Y.W., Deftos, M.L., Ojala, E.W. & Bevan, M.J. RORγt, a novel isoform of an orphan receptor, negatively regulates Fas ligand expression and IL-2 production in T cells. *Immunity* 9, 797–806 (1998).
- Sun, Z. et al. Requirement for RORγ in thymocyte survival and lymphoid organ development. Science 288, 2369–2373 (2000).
- Kurebayashi, S. et al. Retinoid-related orphan receptor γ (RORγ) is essential for lymphoid organogenesis and controls apoptosis during thymopoiesis. Proc. Natl Acad. Sci. USA 97, 10132–10137 (2000).
- Eberl, G. et al. An essential function for the nuclear receptor ROR
 γt in the generation of fetal lymphoid tissue inducer cells. Nat. Immunol. 5, 64–73 (2004).
- Mebius, R.E., Streeter, P.R., Michie, S., Butcher, E.C. & Weissman, I.L. A developmental switch in lymphocyte homing receptor and endothelial vascular addressin expression regulates lymphocyte homing and permits CD4 + CD3 cells to colonize lymph nodes. *Proc. Natl Acad. Sci. USA* 93, 11019–11024 (1996).
- Mebius, R.E., Rennert, P. & Weissman, I.L. Developing lymph nodes collect CD4+CD3-LTβ+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. *Immunity* 7, 493–504 (1997).
- Adachi, S., Yoshida, H., Kataoka, H. & Nishikawa, S. Three distinctive steps in Peyer's patch formation of murine embryo. *Int. Immunol.* 9, 507–514 (1997).
- Cua, D.J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).
- 17. Langrish, C.L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).
- Ivanov, II et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17⁺ T helper cells Cell 126, 1121–1133 (2006).

- Satoh-Takayama, N. et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29, 958–970 (2008).
- Luci, C. et al. Influence of the transcription factor RORgammat on the development of NKp46 + cell populations in gut and skin. Nat. Immunol. 10, 75–82 (2009).
- Sanos, S.L. et al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat. Immunol. 10, 83–91 (2009).
- 22. Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. *Nature* **457**, 722–725 (2009).
- Spits, H. et al. Innate lymphoid cells–a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149 (2013).
- 24. Spits, H. & Di Santo, J.P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling *Nat. Immunol.* **12**, 21–27 (2011).
- 25. Eberl, G., Colonna, M., Di Santo, J.P. & McKenzie, A.N. Innate lymphoid cells: a new paradigm in immunology. *Science* **348**, aaa6566 (2015).
- Preitner, N. et al. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251–260 (2002).
- 27. Ueda, H.R. et al. A transcription factor response element for gene expression during circadian night. *Nature* **418**, 534–539 (2002).
- 28. Yu, X. et al. TH17 cell differentiation is regulated by the circadian clock. Science **342**, 727–730 (2013).
- Santori, F.R. et al. Identification of natural RORgamma ligands that regulate the development of lymphoid cells. Cell Metab. 21, 286–297 (2015).
- Cyster, J.G., Dang, E.V., Reboldi, A. & Yi, T. 25-Hydroxycholesterols in innate and adaptive immunity. *Nat. Rev. Immunol.* 14, 731–743 (2014).
- 31. Yoshida, H. *et al.* IL-7 receptor α^+ CD3⁻ cells in the embryonic intestine induces the organizing center of Peyer's patches. *Int. Immunol.* **11**, 643–655 (1999).
- 32. Honda, K. et al. Molecular basis for hematopoietic/mesenchymal interaction during initiation of Peyer's patch organogenesis. *J. Exp. Med.* **193**, 621–630 (2001).
- Kim, D. et al. Regulation of peripheral lymph node genesis by the tumor necrosis factor family member TRANCE. J. Exp. Med. 192, 1467–1478 (2000)
- 34. De Togni, P. et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264, 703–707 (1994).
- Rennert, P.D., Browning, J.L., Mebius, R., Mackay, F. & Hochman, P.S. Surface lymphotoxin α/β complex is required for the development of peripheral lymphoid organs. *J. Exp. Med.* 184, 1999–2006 (1996).
- Alimzhanov, M.B. et al. Abnormal development of secondary lymphoid tissues in lymphotoxin β-deficient mice. Proc. Natl Acad. Sci. USA 94, 9302–9307 (1997).
- Dejardin, E. et al. The lymphotoxin-β receptor induces different patterns of gene expression via two NF-kappaB pathways. *Immunity* 17, 525–535 (2002).
- Kanamori, Y. et al. Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit⁺ IL-7R⁺ Thy1⁺ lymphohemopoietic progenitors develop. J. Exp. Med. 184, 1449–1459 (1996).
- Eberl, G. & Littman, D.R. Thymic origin of intestinal αβ T cells revealed by fate mapping of RORγt⁺ cells. Science 305, 248–251 (2004).
- Hamada, H. et al. Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J. Immunol. 168, 57–64 (2002).
- Lorenz, R.G., Chaplin, D.D., McDonald, K.G., McDonough, J.S. & Newberry, R.D. Isolated lymphoid follicle formation is inducible and dependent upon lymphotoxin-sufficient B lymphocytes, lymphotoxin β receptor, and TNF receptor I function. *J. Immunol.* 170, 5475–5482 (2003).
- 42. Tsuji, M. *et al.* Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin a generation in the gut. *Immunity* **29**, 261–271 (2008).
- Bouskra, D. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. *Nature* 456, 507–510 (2008).

- 44. Girardin, S.E. et al. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science **300**, 1584–1587 (2003).
- McDonald, K.G. et al. CC chemokine receptor 6 expression by B lymphocytes is essential for the development of isolated lymphoid follicles. Am. J. Pathol. 170, 1229–1240 (2007).
- Lochner, M. et al. Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORγt and LTi cells. J. Exp. Med. 208, 125–134 (2011).
- 47. Aloisi, F. & Pujol-Borrell, R. Lymphoid neogenesis in chronic inflammatory diseases. *Nat. Rev. Immunol.* **6**, 205–217 (2006).
- 48. Mackley, E.C. *et al.* CCR7-dependent trafficking of RORgamma(+) ILCs creates a unique microenvironment within mucosal draining lymph nodes. *Nat. Commun.* **6**, 5862 (2015).
- 49. Sawa, S. *et al.* Lineage relationship analysis of ROR γ t + innate lymphoid cells. *Science* **330**, 665–669 (2010).
- 50. Reynders, A. et al. Identity, regulation and in vivo function of gut NKp46+RORgammat+ and NKp46+RORgammat-lymphoid cells. *EMBO J.* **30**, 2934–2947 (2011).
- Satoh-Takayama, N. et al. The chemokine receptor CXCR6 controls the functional topography of Interleukin-22 producing intestinal innate lymphoid cells. *Immunity* 41, 776–788 (2014).
- Klose, C.S. et al. AT-bet gradient controls the fate and function of CCR6-RORgammat + innate lymphoid cells. Nature 494, 261–265 (2013).
- Crellin, N.K. et al. Regulation of cytokine secretion in human CD127(+) LTi-like innate lymphoid cells by Toll-like receptor 2. Immunity 33, 752–764 (2010).
- Wang, Y. et al. Lymphotoxin beta receptor signaling in intestinal epithelial cells orchestrates innate immune responses against mucosal bacterial infection. *Immunity* 32, 403–413 (2010).
- Kruglov, A.A. et al. Nonredundant function of soluble LTalpha3 produced by innate lymphoid cells in intestinal homeostasis. Science 342, 1243– 1246 (2013).
- 56. Magri, G. et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. *Nat. Immunol.* **15**, 354–364 (2014).
- 57. Fan, X. & Rudensky, A.Y. Hallmarks of tissue-resident lymphocytes *Cell* **164**, 1198–1211 (2016).
- 58. Sun, J.C., Beilke, J.N. & Lanier, L.L. Adaptive immune features of natural killer cells. *Nature* **457**, 557–561 (2009).
- Hernandez, P.P. et al. Interferon-lambda and interleukin 22 act synergistically for the induction of interferon-stimulated genes and control of rotavirus infection. Nat. Immunol. 16, 698–707 (2015).
- Sonnenberg, G.F. et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336, 1321–1325 (2012).
- 61. Sawa, S. et al. RORgammat(+) innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. *Nat. Immunol.* **12**, 320–326 (2011).
- Aparicio-Domingo, P. et al. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage. J. Exp. Med. 212, 1783–1791 (2015)
- 63. Lindermans, C.A. et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. *Nature* **528**, 560–564 (2015).
- 64. Dudakov, J.A. et al. Interleukin-22 drives endogenous thymic regeneration in mice. *Science* **336**, 91–95 (2012).
- Zenewicz, L.A. et al. Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. *Immunity* 27, 647–659 (2007).
- Gasteiger, G., Fan, X., Dikiy, S., Lee, S.Y. & Rudensky, A.Y. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. *Science* 350, 981–985 (2015).
- 67. Kirchberger, S. et al. Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. *J. Exp. Med.* **210**, 917–931 (2013).
- 68. Buonocore, S. et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. *Nature* **464**, 1371–1375 (2010).
- Geremia, A. et al. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J. Exp. Med. 208, 1127– 1133 (2011).

- Kim, H.Y. et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat. Med. 20, 54–61 (2014).
- Burcelin, R., Garidou, L. & Pomie, C. Immuno-microbiota cross and talk: the new paradigm of metabolic diseases. Semin. Immunol. 24, 67–74 (2012).
- Hepworth, M.R. et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature 498, 113–117 (2013).
- von Burg, N. et al. Activated group 3 innate lymphoid cells promote T-cell-mediated immune responses. Proc. Natl Acad. Sci. USA 111, 12835–12840 (2014).
- Mortha, A. et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 343, 1249288 (2014)
- Solt, L.A. et al. Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand. Nature 472, 491–494 (2011).
- Huh, J.R. et al. Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORgammat activity. Nature 472, 486– 490 (2011).
- Withers, D.R. et al. Transient inhibition of ROR-gammat therapeutically limits intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells. Nat. Med. 22, 319–323 (2016).
- 78. Guo, J. et al. Regulation of the TCR α repertoire by the survival window of CD4 $^+$ CD8 $^+$ thymocytes. Nat. Immunol. 3, 469–476 (2002).
- Sutton, C., Brereton, C., Keogh, B., Mills, K.H. & Lavelle, E.C. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. *J. Exp. Med.* 203, 1685–1691 (2006).
- 80. Harrington, L.E. *et al.* Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. *Nat. Immunol.* **6**, 1123–1132 (2005).
- 81. Mangan, P.R. et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441, 231–234 (2006).
- Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006)
- 83. Zhou, L. et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. *Nature* **453**, 236–240 (2008).
- Harris, T.J. et al. Cutting edge: an in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J. Immunol. 179, 4313–4317 (2007).
- Sato, K. et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med. 203, 2673– 2682 (2006).
- Hirota, K. et al. Tcell self-reactivity forms a cytokine milieu for spontaneous development of IL-17 + Th cells that cause autoimmune arthritis. J. Exp. Med. 204, 41–47 (2007).
- 87. Elson, C.O. *et al.* Monoclonal anti-interleukin 23 reverses active colitis in a T cell-mediated model in mice. *Gastroenterology* **132**, 2359–2370 (2007).
- Kastelein, R.A., Hunter, C.A. & Cua, D.J. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. *Annu. Rev. Immunol.* 25, 221–242 (2007).
- 89. Aujla, S.J. et al. IL-22 mediates mucosal host defense against Gramnegative bacterial pneumonia. Nat. Med. 14, 275–281 (2008).
- Khader, S.A., Gaffen, S.L. & Kolls, J.K. Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. *Mucosal Immunol.* 2, 403–411 (2009).
- Sano, T. et al. An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell 163, 381–393 (2015).
- 92. Atarashi, K. et al. ATP drives lamina propria T(H)17 cell differentiation. Nature 455, 808–812 (2008).
- 93. Ivanov, I.I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485-498 (2009).
- 94. Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009).
- 95. Atarashi, K. et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. *Cell* **163**, 367–380 (2015).

- 96. Lochner, M. *et al.* In *vivo* equilibrium of proinflammatory IL-17 + and regulatory IL-10 + Foxp3 + ROR γ t + T cells. *J. Exp. Med.* **205**, 1381–1393 (2008).
- 97. Wohlfert, E. & Belkaid, Y. Plasticity of T reg at infected sites. *Mucosal Immunol.* **3**, 213–215 (2010).
- 98. Yang, B.H. *et al.* Foxp3(+) T cells expressing RORgammat represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation. *Mucosal Immunol.* **9**, 444–457 (2016).
- Blatner, N.R. et al. Expression of RORgammat marks a pathogenic regulatory T cell subset in human colon cancer. Sci. Transl. Med. 4, 164ra159 (2012).
- 100. Ohnmacht, C. *et al.* The microbiota regulates type 2 immunity through RORgt + T cells. *Science* **349**, 989–993 (2015).
- Sefik, E. et al. Individual intestinal symbionts induce a distinct population of RORgamma(+) regulatory T cells. Science 349, 993–997 (2015).
- 102. Schiering, C. et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. *Nature* **513**, 564–568 (2014).
- 103. Wohlfert, E.A. et al. GATA3 controls Foxp3(+) regulatory Tcell fate during inflammation in mice. J. Clin. Invest. 121, 4503–4515 (2011).
- Eberl, G. Immunity by Equilibrium. Nat. Rev. Immunol. 16, 524–532 (2016).
- Taylor, P.R. et al. Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORgammat and dectin-2. Nat. Immunol. 15, 143–151 (2014).
- Savers, A. et al. Infection-mediated priming of phagocytes protects against lethal secondary aspergillus fumigatus challenge. PLoS One 11, e0153829 (2016).
- 107. Ferretti, S., Bonneau, O., Dubois, G.R., Jones, C.E. & Trifilieff, A. IL-17, produced by lymphocytes and neutrophils, is necessary for lipopoly-saccharide-induced airway neutrophilia: IL-15 as a possible trigger *J. Immunol.* 170, 2106–2112 (2003).
- 108. Kallen, J.A. et al. X-ray structure of the hRORalpha LBD at 1.63 A: structural and functional data that cholesterol or a cholesterol derivative is the natural ligand of RORalpha. Structure. 10, 1697–1707 (2002).
- 109. Soroosh, P. et al. Oxysterols are agonist ligands of RORgammat and drive Th17 cell differentiation. Proc. Natl Acad. Sci. USA 111, 12163–12168 (2014).
- Xu, T. et al. Ursolic acid suppresses interleukin-17 (IL-17) production by selectively antagonizing the function of RORgamma t protein. J. Biol. Chem. 286, 22707–22710 (2011).
- Huh, J.R. & Littman, D.R. Small molecule inhibitors of RORgammat: targeting Th17 cells and other applications. *Eur. J. Immunol.* 42, 2232–2237 (2012).
- Teng, M.W. et al. IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nat. Med. 21, 719–729 (2015).
- Kathania, M. et al. Itch inhibits IL-17-mediated colon inflammation and tumorigenesis by ROR-gammat ubiquitination. *Nat. Immunol.* 17, 997–1004 (2016).
- Jianjun, Y. et al. Tcell-derived inducible nitric oxide synthase switches off Th17 cell differentiation. J. Exp. Med. 210, 1447–1462 (2013).
- Lazarevic, V. et al. T-bet represses T(H)17 differentiation by preventing Runx1-mediated activation of the gene encoding RORgammat. Nat. Immunol. 12, 96–104 (2011).
- 116. Gascoyne, D.M. et al. The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat. Immunol. 10, 1118–1124 (2009).
- Geiger, T.L. et al. Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens. J. Exp. Med. 211, 1723–1731 (2014).
- 118. Seillet, C. et al. Nfil3 is required for the development of all innate lymphoid cell subsets. J. Exp. Med. 211, 1733–1740 (2014).
- 119. Xu, W. et al. Nfil3 orchestrates the emergence of common helper innate lymphoid cell precursors. Cell Rep. 10, 2043–2054 (2015).
- Takeda, Y., Jothi, R., Birault, V. & Jetten, A.M. RORgamma directly regulates the circadian expression of clock genes and downstream targets in vivo. Nucleic Acids Res. 40, 8519–8535 (2012).
- 121. Kojetin, D.J. & Burris, T.P. REV-ERB and ROR nuclear receptors as drug targets. *Nat. Rev. Drug. Discov.* **13**, 197–216 (2014).