
Double-negative T resident memory cells of the
lung react to influenza virus infection via CD11chi

dendritic cells
K Neyt1,2, CH GeurtsvanKessel3 and BN Lambrecht1,2,4

Immunity to Influenza A virus (IAV) is controlled by conventional TCRabþ CD4þ and CD8þ T lymphocytes, which

mediate protection or cause immunopathology. Here, we addressed the kinetics, differentiation, and antigen specificity

of CD4�CD8� double-negative (DN) Tcells. DNTcells expressed intermediate levels of TCR/CD3 and could be further

divided in cdTcells, CD1d-reactive type INKTcells, NK1.1þ NKT-like cells, andNK1.1� DNTcells. NK1.1� DNTcells had

a separate antigen-specific repertoire in the steady-state lung, and expanded rapidly in response to IAV infection,

irrespectively of the severity of infection. Up to 10%of DNTcells reacted to viral nucleoprotein. Reinfection experiments

with heterosubtypic IAV revealed that viral replicationwasamajor trigger for recruitment. Unlike conventional Tcells, the

NK1.1� DNTcells were in a preactivated state, expressing memory markers CD44, CD11a, CD103, and the cytotoxic

effector molecule FasL. DNT cells resided in the lung parenchyma, protected from intravascular labeling with CD45

antibody. The recruitment and maintenance of CCR2þ CCR5þ CXCR3þ NK1.1� DNT cells depended on CD11chi

dendritic cells (DCs). Functionally, DNT cells controlled the lung DC subset balance, suggesting they might act as

immunoregulatory cells. In conclusion, we identify activation of resident memory NK1.1� DNT cells as an integral

component of the mucosal immune response to IAV infection.

INTRODUCTION

Mucosal tissues such as the lung are frequently exposed to
pathogens that can cause life-threatening pulmonary infec-
tions. These infectious agents like influenza A virus (IAV)must
be quickly and efficiently controlled by the immune system,
without causing overt damage to the gas exchange apparatus
of the lung.1 Upon IAV infection, CD103þ and CD11bþ

dendritic cells (DCs) take up and process viral particles and
migrate to the mediastinal lymph node where they encounter
naı̈ve CD4þ and CD8þ T cells.2 These T cells undergo a
stepwise process of activation, proliferation, and differentiation
toward a helper or cytotoxic phenotype, respectively, and
migrate back to the lung as effector cells in a process requiring
the chemokine receptors CCR2, CCR5, and CXCR3.3,4

CD8 effector T cells are crucial for viral clearance, but their
effector functions need tight regulation since they can also
cause immunopathology and damage to the lung

microenvironment.5,6 CD4 T cells promote CD8 T-cell and
B-cell responses to IAV infection, although they are not critical
for this process.7–10 Adoptive transfer studies demonstrated
that CD4 T cells are also able to control viral load and exert
direct cytotoxic effector functions in the lung environment,11,12

yet the contribution of CD4T-cell cytotoxicity to viral clearance
in vivo in the lungs is modest.13

As acute infections are cleared, effector CD8 T cells further
differentiate into KLRG-1hi CD127lo short-lived effector cells
and CD127hi memory precursor effector cells capable of
generating long-lived memory CD8 T cells, and a similar
process occurs in CD4 T cells.14,15 Long-livedmemory cells can
recirculate via lymphoid organs as T central memory cells
(Tcm), patrol in and out peripheral tissues as T effector memory
(Tem) cells or reside for prolonged periods in the lungs as
T resident memory cells (Trm), which express high levels of
CD69, CD11a, and/or CD103.15 Triggered by retained antigen
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presented byDCs,CD4Trm andCD8Trmcellswere shown to reside
for months in the lungs of IAV-infected mice and -infected
volunteers, thus providing immunity against reinfection with
the same or heterologous strain of influenza.15–22

Non-conventional T cells that express a functional T cell
receptor (TCR) but lack expression of CD4 and CD8 co-
receptors (therefore called double-negative (DN) T cells) can be
observed in various disease models in human and mice, in
which they were attributed different functions.23 The lungs are
one of the many tissues where DNT cells were described in
steady state and following insults to the lung.24–30 As DNT cells
are defined by exclusion, they are very heterogeneous, arising
either from the thymus or extrathymically. Classical DNT cells
express intermediate levels of abTCR, and are different from
type I CD1d-restricted invariant natural killer T cells and
gdTCRþ T cells that are often found to lack CD4 and CD8
expression, and therefore fall under the DNT definition.31,32

The involvement of the different DNT cells in IAV infection
is currently unknown. We therefore carefully addressed the
phenotype, origin, antigen specificity and TCR repertoire,
kinetics of recruitment and activation, and acquisition of
effector and memory markers of abTCRþ DNT cells, and
conventional T cells during and following infection with the
H3N2 X31 IAV strain or reinfection with the heterosubtypic
H1N1 PR8 IAV strain. We observed a predominant accumula-
tion of NK1.1� abTCRþ DNT cells in the lung after primary
influenza infection, but not after heterosubtypic infection and
these cells had characteristics of Trm cells situated in the lung
interstitium. The induction and maintenance of the NK1.1�

DNT cell response was dependent on lung DCs that caused
DNT accumulation through recruitment. Functionally these
cells may act as immunoregulatory cells by controlling the lung
DC subset balance.

RESULTS

Influenza infection induces accumulation of
unconventional CD4�CD8� DNT cells in the lung

Studies on T-cell responses to airway infection with IAV
(H3N2, strain X31) have mainly focused on major histo-
compatibility complex (MHC)-I-restrictedCD8þ andMHCII-
restricted CD4þ conventional T cells, which can be easily
identified within the abTCRþ CD3þ cell population of
a lymphocyte gate (FSClo SSClo) on dispersed lung cells
(Figure 1a, population A and B respectively). Within these
abTCRþ lymphocytes, a CD4�CD8� DN population can be

consistently observed. As this population of DNT cells is
defined mainly by exclusion of CD4 and CD8 expression, we
sought to further define it usingmulti-color flowcytometry.26 A
significant proportion of CD3þ DNT cells expressed a gdTCR
receptor (Figure 1a, population C), consistent with the notion
that pulmonary gd T cells often lack expression of CD4 and
CD8. Another well-known population of unconventional T
cells are NKT cells, sharing some phenotypic markers with NK
cells (NK1.1 expression in C57Bl/6 mice), variably expressing
CD4 depending on tissue residence, and many of which can be
identified by staining with a-galactosylceramide-loaded CD1d
tetramers (TMs). Based on CD1d TM binding and NK1.1
expression, lung DNT cells could be further classified as DN
type I NKT cells (Figure 1a, population D). After gating out gd
Tcells and type INKTcells, the remaining lungDNTcells could
be further divided into NK1.1� CD1d TM� abTCRþ DNT
cells (Figure 1a, population E) and NK1.1þ CD1d TM�

abTCRþ DNT cells (Figure 1a, population F).WhetherNK1.1
expression represents an activation state of some lymphocytes
or a truly different cell population of DN NKT-like cells
remains a matter of debate.33,34 Up to 15% of NK1.1� CD1d
TM� abTCRþ DNT expressed B220, a marker previously
found on peripheral DNT cells (data not shown). All DNT cells
including the NK1.1� CD1d TM� abTCRþ DNT cells
expressed intermediate TCR levels compared with conven-
tional CD4 orCD8T cells, a finding previously also reported for
other DNT cells (Figure 1a, histograms).24

We next analyzed the relative distribution and kinetics of
accumulation of all DNT subsets following IAV or mock
infection. Both in mock- and IAV-infected mice, CD4þ and
CD8þ conventional T cells represented the majority of T cells
in the lung 9 days post infection (d.p.i.), unconventional T cells
each representing less than 2.5% of T cells (Figure 1b). When
absolute numbers of DNT cells were studied over time
(Figure 1c), only the population of NK1.1� CD1d TM�

abTCRþ DNTcells expanded significantly following infection,
in a kinetic that closely resembled the expansion of CD4 and
CD8 conventional T cells (Figure 1e). The more than 20-fold
expansion of NK1.1� abTCRþ DNT cells at the peak of the
response (8 d.p.i.) was followed by a steep contraction phase
also seen in conventional T cells. As the NK1.1� CD1d TM�

abTCRþ population is the only one that is induced after
infection, this is the population that was studied in further
detail and will be called NK1.1� DNT cells throughout the
paper.

Figure 1 ab TCRint double-negative T (DNT) cells accumulate in the lungs of influenza virus-infected mice. (a) Gating strategy used to subdivide the
T-cell populations into conventional CD4þ (population A) andCD8þ (population B) T cells and non-conventional T cells: gdTCRþ DNT cells (population
C), ab TCRþ CD1d TMþ DNT cells (type I NKT, population D), ab TCRþ CD1d TM� NK1.1� DNT cells (population E), and ab TCRþ CD1d TM�

NK1.1þ DNT cells (population F). As an example, plots were generated 9 d.p.i. Histograms show ab TCR expression intensity on lymphocyte subsets:
CD4þ T cells (black), CD8þ T cells (black dashed line), and the total CD4�CD8� T cells population (red) on the upper panel, type I NKT (black dashed
line), NK1.1� DNT cells (gray filled line), and NK1.1þ DNT cells (black). (b) Distribution of conventional and non-conventional T-lymphocyte subsets in
the lungs 9 d.p.i. after X31 (black) or mock (white) virus infection, expressed as % of total CD3þ alive T cells. (c) Kinetics of accumulation of non-
conventional T cells in the lungs of X31 (black) or mock (white) virus-infected mice. (d) Kinetics of accumulation of conventional CD4þ (squares) and
CD8þ (dots) T cells in the lungs of X31 (black) or mock (white) virus-infected mice. (e) CD4 and CD8 expression profiles of ab TCRþ T cells (left) and gd
TCRþ Tcells (right) in the lungsof athymic nudemice (lower row) comparedwith onewild-typemouse (WT;upper row) at 2d.p.i. andabsolute cell number
of conventional and non-conventional T cells. Cells were pregated as singlets, alive, CD19� , and CD3þ . All experiments were performed at least twice
and figures are representative for each separate experiment.
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Origin of lung DNT cells

We next addressed the origin of the DNT cells of the lungs,
which can develop like classical T cells in the thymus or outside
of the thymus. DNT cells of the gut have indeed been described

in thymectomized mice, but the origin of lung DNT cells is less
clear.35–37 We therefore infected athymic nude-Foxn1nu mice
and defined T-cell subsets 2 d.p.i. Some remaining ab and gd T
cells could be observed, and there was a shift toward more
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CD8þ gd T cells in athymic nude-Foxn1nu mice, consistent
with the notion that many gd T cells develop extrathymically.
Some lung CD4þ and CD8þ abTCRþ T cells were still
present, indicative of extrathymic development (Figure 1d).
Unexpectedly, lung DNT cells were almost completely lacking
in Foxn1nu mice. These observations point toward a thymic
origin of the type I NKT, NK1.1� , and NK1.1þ DNT cell
populations during IAV infection.

NK1.1� DNT cells resemble CD8 T cells

As DNT cells are defined by lack of CD4 and CD8, and as the
kinetics of accumulation, and the thymic origin closely
resembled those of conventional T cells, we questionedwhether
some of the DNT cells represent revertant conventional
T cells, losing surface expression of CD4 and/or CD8 after
ligation of the TCR, as previously described.38 NK1.1� DNT
cells and conventional T cells were therefore sorted from lungs
9 d.p.i. T-cell lineage determination is molecularly controlled
by the balance between Thpok (promoting CD4 T cell
differentiation) and Runx3 (promoting CD8 T cell differen-
tiation) transcription factors.39 Like CD8þ conventional
T cells, NK1.1� DNT cells had low expression of the CD4
lineage transcription factor Thpok by quantitative PCR and
were negative for the transcription factor Rorgt that is typical
for Th17 and some subsets of gdT cells (data not shown).
Expression of the CD8 lineage transcription factor Runx3 was
lower in NK1.1� DNT cells than in conventional CD8þ T cells
but higher than in CD4þ T cells. Although the ratio of Runx3
over Thpok suggests that NK1.1� DNT cells are transcrip-
tionally more related to CD8þ T cells than to CD4þ T cells
(Figure 2a), these results do not show a clear bias toward CD4
or CD8 lineage imprinting for the entire NK1.1� DNT cell
population. Intracellular staining for CD8 and CD4 revealed
that 10% of the NK1.1� DNT cells had intracytoplasmic CD8
(but not CD4) expression (Supplementary Figure S1 online) to
the same extent as conventional CD8 T cells, indicating that at
least part of the DNT cells might indeed be revertant CD8
T cells.

TCR repertoire of NK1.1� DNT cells

Following influenza infection, conventional CD8T cells react to
a restricted set of immunodominant epitopes derived from
various antigens, and these CD8 T cells undergo oligoclonal
expansion. Indeed, at 8 d.p.i., close to 40% of the lung
conventional CD8þ T cells had a receptor specific for the IAV
nucleoprotein (NP) peptide ASNENMETM, as revealed by TM
staining using the Kb-ASNENMETM TM (Figure 2b). A
considerable proportion of NK1.1� DNT cells also stained for
this TM, but at the peak of the response, this fraction
represented only 10% of DNT cells followed by a slow
contraction phase (Figure 2b).

To further delineate if there would be oligoclonal expansion
of DNT cells resembling the one seen in CD8 T cells, we
performed amore elaborate profiling of TCRVb usage at T-cell
population level in subsets of lung T cells (Figure 2c). In mock-
infected animals, Vb usage was broad across conventional CD4
and CD8 T cells, whereas in NK1.1� DNT cells, there was an

overrepresentation of Vb 8.1/8.2 cells to 14% of the repertoire.
As previously reported, the entire influenza-specific CD8 T-cell
pool has a TCR Vb repertoire skewed toward TCR Vb8.3, Vb4,
andVb740 and type INKT express an oligoclonal TCR repertoire
(Va 14)41,42 combined with one of three Vb chains (Vb2, Vb7,
Vb8.2). Whereas in CD8 T cells there was enrichment for Vb7
and Vb8.3 in the total pool of CD8 T cells following influenza
infection, therewas no further enrichment inNK1.1� DNTcells
post infection and TCRVb8.1/8.2 and 5.1/5.2 remained themost
prominently expressed TCR Vb in the total NK1.1� DNT
population. In NPASNENMETM-reactive CD8 T cells, there was
strong enrichment for Vb4 and Vb8.3 usage, and the same
phenomenon was seen in NPASNENMETM-reactive NK1.1

� DNT
cells.

Effector functions of NK1.1� DNT cells

As at least some NK1.1� DNT cells were transcriptionally
related to CD8 T cells and shared NP-reactivity with CD8 T
cells, we measured some of the effector molecules involved in
CD8 function. An increase in Granzyme B content of CD4þ ,
CD8þ , andNK1.1� DNTcells was observed in reaction to IAV
infection already 4 d.p.i., compared with mock-infected mice.
The difference in mean fluorescence intensity between mock-
and virus-infected mice was 441, 648, and 773 for CD4þ ,
CD8þ , and NK1.1� DNT cells, respectively (Figure 2d). At
9 d.p.i., however, theGranzyme B contentwas further increased
in all cell types. Conventional CD8þ T cells showed the largest
increase in Granzyme B content with a difference in mean
fluorescence intensity of 5018 compared with mock-infected
mice, whereas the difference in mean fluorescence intensity for
CD4þ T cells and NK1.1� DNT cells was 1,631 and 2,242,
respectively (Figure 2d). Perforin expression did not change
dramatically upon virus infection compared with mock-
infected mice (Figure 2d).

Conventional CD8 T-cell–mediated cell killing is not only
induced via release of intracellular Granzyme B, but it can also
be mediated via surface expression of FasL (CD95L). In mock-
infected animals, NK1.1� DNTcells expressed the highest level
of FasL, followed by CD8þ conventional T cells that expressed
significantly more FasL than CD4þ T cells. After IAV
infection, FasL was upregulated further, but only in CD4 T
cells this reached statistical significance (Figure 2e).

Conventional cytotoxic T cells are a major source of
interferon (IFN)-g during infection. The IFN-g production
was indeed increased in CD8þ T cells after IAV infection. In
NK1.1� DNT cells, however, the capacity to produce IFN-g
was reduced upon IAV infection (Figure 2f). This suppression
of cytokine production might indicate that the NK1.1� DNT
cells have an exhausted phenotype after IAV infection. One of
the signs of T-cell exhaustion is expression of the co-inhibitory
B7 family receptor PD-1 on the cell surface. Upon IAV
infection, PD-1 was expressed on about 60% of CD4 T cells and
70% of CD8 T cells. In contrast, the percentage of PD-1
expression on NK1.1� DNT cells was low (20%) and did not
increase upon infection (Figure 2g). Therefore, NK1.1� DNT
cells are unlikely to become exhausted upon IAV infection.
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Lung NK1.1� DNT cells display an activated phenotype of
resident memory T cells

The high levels of surface FasL and intermediate levels of
intracellular IFN-g present already in mock-infected mice
suggested that lung NK1.1� DNT cells might be in a pre-
activated state before infection. To address this issue further,
we employed a panel of T-cell activation markers. In
mock-infected animals, up to 20% of lung conventional
T cells expressed the memory/effector T-cell marker CD44,
whereas close to 80% of NK1.1� DNT cells expressed CD44
(Figure 3a). At 4 d.p.i., CD44 expression was further induced
on CD8 T cells, and by 9 d.p.i., when the virus was cleared, 60–
80% of conventional T cells expressed CD44 (Figure 3b).
Expression of CD44 on NK1.1� DNT cells remained high at 9
d.p.i. The early activation marker CD69 was induced on all
studied T cells after IAV infection; 25% of NK1.1� DNT cells
expressed CD69, whereas only 15% of CD4 T cells and 5% of
CD8 T cells expressed CD69 at 4 d.p.i. (Figure 3c). Even at 9
d.p.i., the levels of CD69 were still elevated on all subsets
(Figure 3d).

During the clearance of respiratory virus infection, con-
ventional effector T cells can give rise to different cell fates,
either giving rise to immediate and short-lived effector cells or
giving rise to effector cells with the potential to generate long-
lived memory cells.43 The phenotype and fate of CD44hi

effector T cells can be studied in more detail by using the
markers KLRG1 and CD127 (ref. 14; Figure 3e). Within the
CD8þCD44þ effector memory population (population A),
short-lived effector cells are enriched in the KLRG1þCD127�

cells (population D), whereas memory precursor effector cells
are enriched in the KLRG1�CD127þ population of cells
(population E; Figure 3e). Whereas this staining has mainly
been employed to follow the fate of CD8þ T cells, we also
employed it to CD4þ and NK1.1� DNT cells (Figure 3e). In
mock-infected cells, very few NK1.1� DNT cells expressed
KLRG1 indicative of immediate effector potential, whereas a
major population ofCD127þ memory cells was observed.Viral
infection mainly led to expansion of KLRG1�CD127� early
effector cells (population C; Figure 3e), of which the ultimate
fate is hard to predict.

Memory cells can reside in the central lymphoid organs (as T
centralmemory cells, Tcm) and recirculate via the blood to other
lymphoid tissues. Alternatively, a considerable part of antiviral
memory T cells reside in peripheral tissues as T resident
memory (Trm) cells.44 Trm cells have been identified by
expression of various markers including CD69, CD103, and
CD11a.15,44 In the lung, Trm cells are hard to discriminate from
recirculating blood Tcm or naı̈ve T cells that firmly adhere to
lung capillaries, even after extensive flushing of the lung
capillary bed. To delineate intravascular DNT cells and
conventional T cells simultaneously, we injected an AF700-
labeled antibody to the pan leukocyte marker CD45 intrave-
nously, and obtained blood and lung homogenates 5min after
injection. Using this labeling protocol, 100% of circulating
peripheral blood CD3þ T cells was readily labeled with AF700-
CD45 (Figure 4a). In mock-infected cells (Figure 4b), the

majority of lung CD4 and CD8 T cells were labeled with CD45,
demonstrating thatmost lung lymphocytes were still in the lung
vascular pool, even after extensive exsanguination and flushing.
The majority of lung NK1.1� DNT cells were protected from
CD45 in vivo labeling already in mock-infected mice
(Figure 4b), identifying these cells as tissue resident cells.
At 9 d.p.i., up to 90% of lung conventional CD4 and CD8
T cells were protected from CD45 labeling and these cells also
expressed CD69 (data not shown), as previously described.3,15

Tissue resident lymphocytes express various levels of CD11a
and/or CD103.3,15 Like CD4 and CD8 Trm cells, 10–15% of
CD45� NK1.1� DNT cells co-expressed CD11a and CD103
and around 60–70% expressed CD11a but not CD103
(Figure 4c).

Reinfection with homologous or heterologous virus does
not trigger NK1.1� DNT accumulation

Primary infection with IAV led to induction of an immune
response of antigen-specific conventional T cells and NK1.1�

DNTcells, which acquired Tem andTrmmemory characteristics,
and conventional T cells have been shown to control
heterosubtypic immunity to re-exposure with a heterologous
virus.45 We therefore set up primary infections using X31
(H3N2) followed by reinfection with the same X31 or the PR8
(H1N1) virus to test the reactivity of DNT cells to reinfection
with the same or heterologous virus. X31 usually causes a mild
and self-limiting viral infection, whereas PR8 leads to
progressive infection that ultimately leads to death. We
therefore used a much lower inoculum of PR8 virus to reinfect
(5 TCID50 compared with 1� 105 TCID50 for the X31 virus). In
the mice that first received a mock infection, comparisons
between X31 and PR8 primary infection were possible. Owing
to the low inoculum, PR8 infection initially led to less weight
loss compared with the higher inoculum of X31, but never-
theless caused more weight loss when infection advanced to 8
d.p.i. The amount of NK1.1� DNT cells obtained after
infection with the X31 virus at 8 d.p.i. was not significantly
different from the amount obtained after infectionwith the PR8
(H1N1) virus, despite the observed difference in weight loss at 8
d.p.i. (Figures 5a and b, mock-X31 versus mock-PR8). As
expected, when mice were first infected with X31, re-infection
with X31 did not cause weight loss, as replication and infection
was prevented due to antibody-mediated sterilizing immunity.
There was, however, an increased accumulation of CD8þ and
CD4þ conventional T cells, whereas NK1.1� DNT cells failed
to expand (X31-X31 versus X31-mock). Boosting of cellular
immunity was most likely due to enhanced presentation of
opsonized viral antigens, as antibodies to H3 and N2 are
induced in these mice. Upon reinfection with the heterologous
PR8 virus, heterosubtypic CD8 T cell–mediated immunity has
been described to protect mice from becoming sick46 and
consequentlymice did not looseweight (X31-PR8 versusmock-
PR8). In these mice, there was no boosting of conventional
CD4þ , CD8þ , or NK1.1� DNT cells. When we studied
NP-specific T cells, re-infection of mice led to strong increases
in NP-specific CD8þ conventional T cells in mice reinfected
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with X31 and PR8, but no such increase was seen in NK1.1�

DNT cells (Figure 5c). Together, these observations suggested
that viral replication and/or a strong inflammatory signal is

needed to induce NK1.1� DNT cells. In contrast to conven-
tional CD8 T cells, NK1.1� DNT cells did not mount a recall
response upon the mere presentation of viral antigens.
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Induction and maintenance of the NK1.1� DNT response
depends on chemokine production by conventional DCs

The increased numbers of NK1.1� DNT cells in the lungs of
primary infected, but not reinfected, mice could be due to
increased local proliferation or local recruitment of T cells with
Tem or Trm phenotype. To address this, we injected 5-bromo-2’-
deoxyuridine (BrdU) andmeasured instantaneous cell division

by measuring BrdU uptake in conventional and DNT cells
3.5 h later. Whereas 14% and 24% of conventional CD4 and
CD8 T cells, respectively, were dividing within the 3.5 h
pulse-chase experiment at 6 d.p.i., only a minority of NK1.1�

DNT cells incorporated BrdU (Figure 6a), indicating that
local proliferation is unliklely to be the explanation for
the increase in NK1.1� DNT cell numbers. We next
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infected mice and measured the amount of NK1.1� DNT cells
per 100 ml of whole blood every other day following infection. A
drop early after infection followed by an increase suggested that

increased recruitment from the bloodstream is causing the
increase in pulmonary NK1.1� DNT cells (Figure 6b) after
infection.
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Previously, we and others have found that CD11chi airway
DCs are crucial for the recruitment, restimulation, and retention
of conventional CD4 and CD8 Tem cells to the lungs, by acting as
professional antigen presenting cells for effector T cells, and
by producing chemokines and cytokines involved in T-cell
recruitment and homeostasis.2,47–50 To investigate whether
NK1.1� DNT cells are similarly dependent on CD11chi DCs,
CD11c DTR chimeric mice that carry the diphtheria toxin (DT)
receptor behind theCD11c promotor only in hematopoietic cells
were infected with X31 IAV. As previously reported, admin-
istration of DT efficiently depleted all hematopoietic CD11cþ

cells from the lungs (Supplementary Figure S2).48 DT was
administered either 1 day before infection, 7 d.p.i., or at both time
points andnumbers of conventionalCD4þ andCD8þ Tcells, as
well as NK1.1� DNT cells were analyzed 2 days after the last
treatment (9 d.p.i.). As shown in Figure 6c, the accumulation of
cytotoxic CD8þ T cells was strongly reduced in infected DT-
treated mice, when treatment was given before or after primary
infection. Likewise, the accumulation of NK1.1� DNT cells was
strongly reduced in animals given DT early and late in infection.
However, CD4þ T cells were not reduced byDT treatment early
in infection, and only minor reductions of CD4þ T cells were
seen when DT was given late in infection.

Lung CD8 T cells are recruited by DCs to the lung
interstitium via production of CCL3, CCL4, CCL5, and
CXCL10, acting on chemokine receptors CCR2, CCR5, and
CXCR3. To investigate which DC-derived chemokines could
signal to NK1.1� DNT cells to attract or maintain them in the
lung, CD4þ , CD8þ , and NK1.1� DNT cells were sorted from
the lung 8 d.p.i. Like conventional CD8 T cells, NK1.1� DNT
cells expressed CCR2, CCR5, and CXCR3, suggesting that DCs
might induce recruitment and retention of these cells via these
chemokine receptor interactions (Figure 6d).

NK1.1� DNT cells balance the ratio of DC subsets

We finally wanted to address the potential function of NK1.1�

DNT cells recruited to the lungs by CD11chi cells. In
transplantation and autoimmunity models, it has been
suggested that DNT cells have an immunoregulatory capacity
by controlling DCs,51 and the fact that CD11chi cells attracted
these cells, led us to study the impact of NK1.1� DNT cells on
DCs. We therefore performed an experiment in which we
sorted lung DCs (carefully excluding CD11chi macrophages)
and NK1.1� DNT cells from the lungs of infected mice at 9
d.p.i. and co-cultured them for 36 h. We observed that the
presence of DNT cells stimulated the survival of lung DCs in
culture, whereas in the absence of sorted DNT more apoptotic
and dead cells were present in the culture (Figure 6e). CD11chi

cells of the lungs can be divided in CD103þ cDC1, CD11b
þ

cDC2, and CD64þ monocyte-derived cells. Within the total
population of CD11chi lung cells, only CD11bþ DCs and
monocyte-derived cells had a survival benefit.

DISCUSSION

Before the discovery of NKT cells, CD4�CD8� DNT cells
were found as a major fraction of lung lymphocytes, expressing

an intermediate level of TCR, and representing up to 20–60% of
all lung CD3þ cells.52 However, as NKT cell and gd
TCR-specific antibodies have been used in combination with
the a-galactosylceramide CD1d TM in multi-color flowcyto-
metry, the frequency of classical TCRint DNT cells was found
to be much lower, in the range of 1–2% of lung CD3þ T
lymphocytes.28,32 We found that the only population of DNT
cells that accumulated following IAV infection with X31 or
PR8 infection was characterized by intermediate expression
of abTCR, yet lacking expression of NK1.1. Analysis of
a-galactosylceramide CD1d TMs showed that these cells were
not type I NKT cells. A minor contamination of NKT-like cells
or type II NKT cells in the CD1d TM� NK1.1� DNT cell gate
cannot be excluded as those cells can also lose expression of
NK1.1.53,54

The precise origin of these cells has been unclear, but it has
been suggested that they originate from the thymus by escaping
negative selection.55,56 The fact that the numbers of TCRint

DNT cells are unaffected in the lungs of athymic nude mice, led
to the suggestion that these cells might also arise extrathy-
mically, very similar to the intraepithelial lymphocytes of the
lamina propria of the gut.27,28 However, in our hands, the
number of DNT cells in the lungs was severely reduced in
athymic mice. This suggests that NK1.1� DNT cells develop
via the thymus. In the context of immune activation, some
T cells might downregulate TCR expression after cognate
ligand–MHC recognition and downregulate CD8 membrane
expression, which could also lead to a very similar phenotype of
TCRint DNT cells.38 Intracytoplasmic staining for CD4 and
CD8 did, however, not reveal evidence for selective down-
regulation of membrane CD4 expression and only a small
fraction of NK1.1� DNT cells showed intracellular CD8
expression. The Vb repertoire of the NK1.1� NKT cells was
distinct from the Vb repertoire of CD4 and CD8 T cells.
Furthermore, the Vb repertoire was not skewed toward a
NKT57,58 or MAIT cell58,59 usage. However, staining with a
Kb-NPTMdid reveal someMHCI-restricted antigen specificity
shared with conventional CD8 cytotoxic T cells. Lineage-
specific transcription factor analysis also demonstrated that a
part of theNK1.1� DNTcells weremore related toCD8 than to
CD4 T cells. Together, these data suggest that some 10% of
NK1.1� DNT cells represent antigen-specific CD8 T cells that
have lost surface expression of CD8, while maintaining it in the
cytoplasm. Studies in human systemic lupus erythematosus
patients have shown that DNT cells can originate from CD8 T
cells by upregulation of the CREMa transcription factor that in
turn represses expression of the CD8A and CD8B gene.60,61 As
we found residual cytoplasmic expression of CD8 in 10% of
DNT cells, this is an unlikely scenario.

One clear difference between lung CD8þ andNK1.1� DNT
cells was the steady-state activation state in the lung. Indeed, the
majority of lung NK1.1þ DNT cells were CD44hi, whereas a
majority of CD8þ T cells was CD44neg in the mock-infected
lung. Studying lymphocytes in the lung is not straightforward,
as the lung is a highly vascularized organ and houses a major
reservoir of recirculating naı̈ve or Tcm lymphocytes in the lung
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capillaries. These lymphocytes cannot always be removed by
flushing the lung vasculature with phosphate-buffered saline
(PBS) via the pulmonary artery. One way of reliably studying
conventional Trm cells is to in vivo label these cells by
intravenous injection of antibodies to CD4 or to CD8, labeling
mainly the intravascular pool of lymphocytes, followed by ex
vivo staining for other surface markers, labeling all lympho-
cytes.3,62 Because of their tissue residence around large airways,
Trm cells are protected from labeling by intravenously (i.v.)
injected antibody. These studies have been performed using
antibodies to CD4 or CD8, but these antibodies were not useful
for identifying DNT cells in vivo. To delineate intravascular
DNT cells and conventional T cells simultaneously, we
developed an in vivo labeling method employing the pan
leukocytemarker CD45, effectively labeling 100% of circulating
peripheral blood CD3þ T cells and amajority of lung CD4 and
CD8 T lymphocytes, demonstrating that most of the lung
conventional lymphocytes in the resting lung are in the lung
vascular pool, even after extensive exsanguination and flushing.
Only after IAV infection, 90% of lung conventional CD4 and
CD8 T cells were protected from in vivo CD45 labeling and
these cells also variably expressed CD69, CD11a, andCD103, as
previously described for Trm cells and thus validating the use of
CD45 labeling.3,15 On the contrary, the majority of lung
NK1.1� DNT cells were already protected from CD45 in vivo
labeling in the steady-state mock-infected lung, and expressed
high levels of CD11a identifying these cells as Trm cells. This is
also the reason why the levels of CD44 were so different
between CD8þ and NK1.1� DNT cells, as they were
representing the differences between naı̈ve and memory cells,
respectively. The activated phenotype was previously also
reported in human patients with cutaneous leishmaniasis63 and
tuberculosis.64 The memory profile of NK1.1� DNT cells
argues against a MAIT cell phenotype or contamination as
MAIT cell are reported to have a mostly naı̈ve phenotype in
mice65 andMAIT cell activation is not observed in in vitro viral
infection models.66

Heterosubtypic immunity (HSi) to different strains of IAV
that differ in hemaglutinin and neuraminidase is poorly
understood but very desirable if we are to develop a universal
IAV vaccine. It is generally believed to be mediated by T
lymphocytes that reside in the lung as Trm cells, a phenotype
also seen in NK1.1� DNT cells before and following infection.
One striking finding in our study, however, was that reinfection
with heterosubtypic virus did not lead to expansion of lung
NK1.1� DNT cells, despite the fact that these cells expressed
a phenotype of CD44hi, CD11ahi Trm cells, and some had
specificity for viral NP. A lack of further expansion upon
reinfection with heterologous virus does not prove that these
cells have no role in mediating HSI. A study using depleting
antibodies is, however, very difficult to design as NK1.1� DNT
cells are defined by lack of expression of markers. We initially
set up experiments in athymic nude mice so that we could use
depleting anti-CD3 antibodies to deplete DNT cells. Unfortu-
nately, however, lung DNT cells were already depleted in
athymic mice.

Previous studies on the function of DNT cells in lung
immunity have led to conflicting results, possibly due to
differences in models used. In a passive transfer model of DNT
cells to immunodeficient mice, there was no protection offered
against respiratory infection with Rhodococcus equi.67 How-
ever, in a model of Francisella tularensis respiratory infection,
DNT cells were found to be a prominent source of IFN-g and
interleukin-17 early, but not late after infection.30 In our hands,
NK1.1� DNT cells made IFN-g but no interleukin-17 after
restimulation with NPASNENMETM peptide (data not shown) and
IFN-g was downregulated by IAV infection. We have purified
NK1.1� DNT cells and adoptively transferred them to other
mice in an attempt to study the function of these cells that were
recruited to the lungs after IAV infection (data not shown).
Unfortunately, the numbers of cells were too low to perform
conclusive adoptive transfer studies. We can therefore only
speculate on the potential role of NK1.1� DNT cells in IAV,
guided by experiments from the past.

An important consideration is thatNK1.1� DNTcellsmight
have immunoregulatory capacity as they closely resemble the
DNT regulatory cells that control allograft rejection by
specifically killing Ag-specific effector T cells with the same
specificity or by killing DCs in a FasL-dependent manner.51,68

One striking observation was that 20% of the lung NK1.1�

DNT cells expressed high levels of FasL in steady-state lung.
However, when we cultured lung NK1.1� DNT cells together
with lung DCs, we found that the presence of DNT cells did not
kill DCs, but rather led to a higher percentage of DCs in the
culture,mainly attributable to an increased survival of CD11bþ

cDC2 DCs and monocyte-derived cells, whereas CD24þ cDC1

DCs were not affected by the presence or absence of DNT cells.
Thus, interaction of DNT cells with certain DC subsets turns
them less sensitive to apoptosis. As DNT cells were previously
described to interact with other cell types such as CD8 and CD4
T cells, B cells, macrophages, and NK cells,69 it remains an
interesting topic to study the interaction of DNT cells with
several types of immune cells and to determine whether they
can exert different functions depending on the cell type they
interact with.

In human studies, DNT cells are often reported to be
correlated with progression or severity of disease. DNT cells
decrease upon HIV disease progression70 and are inversely
correlated with disease activity in rheumatoid arthritis.71 In
contrast, DNT cells are increased during severeM. tuberculosis
infection compared with non-severe M. tuberculosis infec-
tions64 and during active Sjögren’s syndrome,72 in which the
level of DNT cells correlates with the degree of tissue
inflammation.73 Although the fact that DNT cells contract
quickly after viral clearance (8 d.p.i.) and thus correlate with the
kinetic of disease, we could not confirm a relationship with
severity of infection as there was no significant difference
between the amounts of DNT cells after X31 or PR8 infection
that cause different degrees of weight loss. Future experiments
will have to address whether this subset of lung DNT cells has
an influence on pulmonary immunity and regulates the severity
of immunopathology to variants of IAV.
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In conclusion, we have carefully characterized a subset of
NK1.1� DNT cells that resides as a preactivated Trm-like cell in
the lung parenchyma, protected from i.v. labeling. This
population rapidly expands in response to IAV infection in
a process requiring CD11chi DCs, and has the capacity to
balance the ratio of DC subsets. Future studies, in which these
cells might be depleted selectively using genetic tools will, have
to address whether these cells are beneficial or harmful to the
outcome of IAV infection.

METHODS

Mice. C57Bl/6 and athymic nude-Foxn1nu mice (8–10 weeks) were
purchased from Harlan Laboratories (Horst, The Netherlands).
CD11c-DTR Tg (H2-Db) mice were bred and housed in specific
pathogen-free conditions. All experiments were performed on four to
six mice per group, unless mentioned otherwise.

Ethics statement. All experiments were approved by the independent
animal ethics committees ‘‘Ethische Commissie Dierproeven—
faculteit Geneeskunde en Gezondheidswetenschappen Universiteit
Gent’’ (identification number: ECD 13/05) and ‘‘Ethische Commissie
Proefdieren—faculteit Wetenschappen Universiteit Gent en VIB-site
Ardoyen’’ (identification number: EC 2013_002). Animal care and
used protocols adhere to the Belgian Royal Degree of 29 May 2013 for
protection of experimental animals. European guideline 2010/63/EU is
incorporated in this Belgian legislation.

Influenza virus infection. Mice were infected intranasally with 105

TCID50 H3N2 X-31 influenza virus, 5 TCID50 H1N1 PR8 influenza
virus (Medical Research Council, Cambridge, England), or mock
(allantoic fluid of uninfected eggs); all diluted in 50 ml PBS.
For reinfection experiments, mice were infected with 105 TCID50

X-31 or mock virus and were reinfected 30 days later with 3� 105

TCID50 X-31, 5 TCID50 PR8, or mock virus diluted in 50 ml PBS.
Weight loss was monitored daily.

Isolation of lung cells. Mice were killed and bronchoalveolar lavage
was performed by injecting three times 1ml EDTA-containing PBS
through a tracheal catheter before isolating the lungs. For some
experiments, lungs were additionally flushed with 20ml PBS through
the right heart ventricle before isolation. Single-cell lung suspensions

were prepared by digestion in collagenase/DNase solution for 30min
at 37 1C. After digestion, the suspension was filtered over an 100-mm
filter and red blood cells were lysed with osmotic lysis buffer.

Flowcytometry and cell sorting. T-cell staining was done by using
CD3 (PE-Cy7 and eFl450, eBioscience, Temse, Belgium; APC, BD
Biosciences), CD4 (conjugated to PE-TxR, Invitrogen, Gent, Belgium;
PE-Cy5 and FITC, eBioscience, Erembodegem, Belgium), CD8a
(conjugated to efluor450 and PE-Cy7, eBioscience; PerCp, BioLegend,
London, UK; PE-Cy5, BDBiosciences), CD19 (conjugated to APC, BD
Biosciences; AF700 and PE-Cy5, eBioscience), NK1.1 (conjugated to
BV605, BioLegend; PE-Cy7, BD Biosciences), CD1d TM (conjugated
to PE and APC, NIH TM core facility), abTCR (conjugated to APC-
Cy7, BioLegend), gdTCR (conjugated to FITC, BD Biosciences), NP
TM (conjugated to PE, loaded with ASNENMETM peptide, Pelimer,
Sanquin), and a fixable live/dead marker in eFl506 (eBioscience).
Following additional extracellular markers were used: B220 (conjugated
toPE, BDBiosciences;AF700, eBioscience),CD44 (conjugated toAF700,
BD Biosciences), CD127 (conjugated to PE-CF594, BD Biosciences),
KLRG1 (conjugated to APC, eBioscience), CD69 (conjugated to PerCp-
Cy5.5, BD Biosciences), CD103 (conjugated to PE, eBioscience), FasL
(conjugated to PE-Cy7, eBioscience), CD11c (conjugated to PE-TxR,
Invitrogen), PD-1 (conjugated to PE-Cy7, BioLegend), annexin V
(conjugated to PE, BD biosciences), and 7-AAD (BD Biosciences).
Granzyme B (conjugated to PE, Life Technologies, Europe, Paisley, UK)
and perforin (conjugated to APC, eBioscience) was stained intra-
cellularly. The TCR repertoire was analyzed by using themouse VbTCR
screening panel (conjugated to FITC, BDBiosciences) stainingVb 2, 3, 4,
5.1þ 5.2, 6, 7, 8.1þ 8.2, 8.3, 9, 10b, 11, 12, 13, 14, and 17a.
DCsubsetsweredefinedbyusingCD3 (conjugated toPE-Cy5,Tonbo

Bioscience, SanDiego, CA), CD19 (conjugated to PE-Cy5, eBioscience),
CD11c (conjugated to PE-Cy7, eBioscience), MHCII (conjugated to
APC-Cy7, BioLegend), CD11b (conjugated to BV605, BD Bioscience),
CD24 (conjugated to eFl450, eBioscience), FceRI (conjugated to biotin,
eBioscience) combinedwith SAV(conjugated toCF594,BDbioscience),
and a fixable live/dead marker in eFl506 (eBioscience).
Acquisition of 12-color samples was performed on a LSR II or

Fortessa cytometer equipped with FACSDiva software (BD Bios-
ciences). Final analysis and graphical output were performed using
FlowJo software (Tree Star, Ashland, OR).
For soring of T cells, cells were stained as described and cell sorting

was performed on a FACSAria II (BD Biosciences). The purity of
sorted populations was 495%.

Table 1 Q-PCR primer probe pairs

Target Ensemble transcript Fwd primer (50-30) Rvs primer (50-30) Probe #

CCR1 ENSMUST00000026911 GGACAAAATACTCTGGAAACACAGA TGTGAAATCTGAAATCTCCATCC 73

CCR2 ENSMUST00000165984 TGTAAAGTAAGTGACAGTTTGCCTTT GCTTGTTGCTATGTACAAACTGC 12

CCR3 ENSMUST00000039171 CATGCTCTAAGAATGAATATCTTTGGT TGATTCCTGAGTAGCAGATAACCAT 55

CCR4 ENSMUST00000054414 TGTCCTCAGGATCACTTTCAGA GGCATTCATCTTTGGAATCG 2

CCR5 ENSMUST00000111442 GAGACATCCGTTCCCCCTAC GTCGGAACTGACCCTTGAAA 106

CCR7 ENSMUST00000103134 CAGGGAAACCCAGGAAAAAC TCATCTTGGCAGAAGCACAC 77

CXCR1 ENSMUST00000053389 GGCATCTGGGGTCTATCTTTG GTTTATATGCCTGGCGGAAG 13

CXCR2 ENSMUST00000106899 CCTGCTCTGTCACCGATG CAGGGCAAAGAACAGGTCAG 62

CXCR3 ENSMUST00000056614 AAGCAGGGCAGCACGAGAC GCATCTAGCACTTGACGTTCAC 3

Thpok ENSMUST00000107435 CTTTGCCTGTGAGGTCTGC CAGTGGGGGCACGAGTAG 2

Runx3 ENSMUST00000056977 GCCATCAAGGTCACTGTGG AGGCCTTGGTCTGGTCTTCT 29

Hprt ENSMUST00000026723 TCCTCCTCAGACCGCTTT CCTGGTTCATCATCGCTAATC 95

L27 ENSMUST00000088784 TGAAAGGTTAGCGGAAGTGC CATGAACTTGCCCATCTCG 3

Abbreviation: Q-PCR, quantitative PCR.

ARTICLES

MucosalImmunology | VOLUME 9 NUMBER 4 | JULY 2016 1011



Cytokine staining: in vitro restimulation. Lung single-cell supsen-
sions were restimulated with NPASNENMETM peptide (10 mgml� 1,
AnaSpec, Seraing, Belgium) for 5 h at 37 1C in the presence of Golgi
stop (BD Biosciences, 1/1,500) at a concentration of 5� 106 cells per
ml. After restimulation, cells were washed and stained extracellular,
washedwith PBS, and fixed with 2% paraformaldehyde, permeabilized
with 0.5% saponin, and stained intracellularily for IFN-g (Conjugated
to PerCp-Cy5.5, eBioscience).

In vivo CD45 labeling. Mice were injected i.v. with 3 mg of anti-CD45
antibody (AF700, eBioscience) and were killed 5min later, blood was
collected immediately before performing broncheoalveolar lavage. To
remove blood from the capillary bed of the lungs, the lungs were
flushed by injecting 20ml PBS through the right ventricle. To protect
the in vivo CD45 staining, lungs were dispersed mechanically instead
of enzymatically by smashing them through an 40-mmfilter before lysis
of red blood cells.

BrdU incorporation assay. Mice were injected i.p. with 200ml of
10 mgml� 1 BrdU (Sigma, Diegem, Belgium, 2 mg total per mouse) 6
d.p.i. and were killed 3.5 h after BrdU treatment. Lung cells were
isolated as described above. Extracellular stained T cells were fixed and
permeabilized by using the BrdU Flow Kit (BD Biosciences) according
to the manufacturer’s protocol in combination with an eFl450-labeled
anti-BrdU antibody (eBiosciences).

Depletion of CD11chi cells. C57Bl/6 mice were irradiated sublethally
(9Gy) and reconstituted with 2� 106 bone marrow cells i.v. from
CD11c DTR transgenic donor mice 4 h after reconstitution. Mice were
used for experiment at least 10 weeks after reconstitution. CD11c DTR
chimeric mice were injected intraperitoneally with 200 ng diphteria
toxin (DT) diluted in 200ml PBS or with PBS 24 h before infection or 7
d.p.i. Lungs were analyzed 9 d.p.i.

Real-time quantitative reverse transcription PCR. Quantitative
reverse transcription PCR for Thpok, Runx3, Ccr1, Ccr2, Ccr3, Ccr4,
Ccr5,Ccr7,Cxcr1,Cxcr2, andCxcr3were performed on cDNA samples
obtained from sorted lung T-cell subsets. Total RNA was extracted
using Tripure reagent (Sigma) according to the manufacturer’s
protocol. RNA was resuspended in Diethyl-polycarbonate
(Sigma)-treated water. A total of 1 mg RNA was used for reverse
transcription using the Transcriptor High Fidelity Reverse
Transcriptase kit (Roche, Vilvoorde, Belgium) according to the
manufacturer’s protocol.
The subsequent target amplification on triplicates of each cDNA

sample was performed using the Universal Probe Library system from
Roche (that contains fluorescent hydrolysis probes of eight loked
nucleic acids. Primers were designed with the help of the web-based
application Probefinder (https://qpcr.probefinder.com) and a mini-
mum of two primer pairs per target were analyzed. Primers were
validated first using the LC480 SybrGreenI Master (Roche) with
melting curve analysis (TM calling) in the LC480 Software and then
using the LC480 ProbesMaster. Aspecific primer pairs were discarded.
Table 1 shows a comprehensive view of the primer/probe
combinations chosen. PCR conditions were: 50 pre-incubation at
95 1C followed by 45 amplification cycles of 10’’ at 95 1C, 10’’ at 60 1C,
and 20’’ at 72 1C using a Lighcycler 480 (Roche). PCR amplifications
for the housekeeping genes encoding Hprt or L27 were performed
during each run for each sample to allow normalization between
samples.

Pulmonary DC-DNT co-cultures. Pulmonary DCs were sorted from
the lungs of IAV-infected mice at 9 d.p.i. as lineage� , alive, CD11cþ

MHCIIþ cells. DNT cells were sorted from lungs of infected mice at 9
d.p.i. as previously described and co-cultured with DCs in a 3.5:1 ratio
in cell culture medium containing 10% fetal calf serum for 36 h.

Statistical analysis. All experiments were performed using four to six
animals per group, unless mentioned otherwise. All experiments were
performed at least two to three times. The difference between groups

was calculated using the Mann–Whitney U-test for unpaired data
(Prism version 6; GraphPad Software, La Jolla, CA). Data are depicted
as mean±s.e.m. Differences were considered significant when
Po0.05.
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