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Compromised intestinal barrier function is a prominent feature of inflammatory bowel disease (IBD). However, links

between intestinal barrier loss and disease extend much further, including documented associations with celiac

disease, type I diabetes, rheumatoid arthritis, and multiple sclerosis. Intestinal barrier loss has also been proposed to

have a critical role in the pathogenesis of graft-versus-host disease (GVHD), a serious, potentially fatal consequence of

hematopoietic stem cell transplantation. Experimental evidence has begun to support this view, as barrier loss and its

role in initiating and establishing a pathogenic inflammatory cycle in GVHD is emerging. Here we discuss similarities

between IBD andGVHD,mechanisms of intestinal barrier loss in these diseases, and the crosstalk between barrier loss

and the immune system, with a special focus on natural killer (NK) cells. Unanswered questions and future research

directions on the topic are discussed along with implications for treatment.

INTRODUCTION

The intestinal barrier includes extracellular components, such
as mucin, but ultimately depends on the presence of a
continuous epithelial monolayer. This article therefore focuses
primarily on the epithelial barrier; related topics, including
mucosal immunity, extracellular mucin barriers, and the
microbiome have recently been reviewed in refs. 1–9 and
are not considered further here.

Epithelial barrier loss can occur as a result of direct epithelial
cell damage or through more subtle changes in paracellular
tight junction permeability. These forms of intestinal barrier
loss, when dysregulated, are thought to contribute to the
initiation and propagation of the inflammatory bowel diseases
(IBD), Crohn’s disease and ulcerative colitis.10,11 Graft-versus-
host disease (GVHD), which develops after bone marrow
transplantation (BMT) or, more recently, hematopoietic stem
cell transplantation, shares genetic associations and some
clinical manifestations with IBD.12–14 However, despite
abundant correlative reports, it is only recently that direct
evidence for intestinal barrier loss as a driving mechanism in
GVHD, as well as IBD, has become available.15–18 This barrier
lossmay contribute to or work in concert with alterations in the

gut microbiome in GVHD and IBD.19–23What is perhaps most
striking about the loss of both barrier function and microbial
diversity in GVHD is that, in addition to amplifying intestinal
disease and reducing survival, these factors impact disease in
other target organs, including the liver, skin, and lungs.
Here, we review current understanding of intestinal epithelial
barrier loss and its contributions to the pathogenesis of
immune-mediated disease and address critical unanswered
questions.

IBD AND GVHD: THE SAME, BUT DIFFERENT?

The similarities between IBD and GVHD extend beyond the
presence of epithelial barrier defects: there is also a significant
overlap in clinical and pathological manifestations of these
diseases (Table 1). For example, symptoms of both IBD and
GVHD can include abdominal pain, nausea, malabsorption,
diarrhea, and, likely as a result of these, weight loss. Notably,
the nature of the diarrhea differs, as it is often bloody ormucoid
in IBD, but more watery in GVHD. This reflects marked
differences in mechanism and extent of tissue damage, which is
clearly demonstrated by the intestinal histopathology of these
diseases. GVHD is characterized by crypt-cell apoptosis and
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glandular atrophy. The immune reaction is often sparse, and
both mucosal neutrophil infiltration and ulceration are present
in only themost severe cases. In contrast, disease activity in IBD
is defined by mucosal and intraepithelial neutrophils that
infiltrate and damage the epithelium, forming crypt abscesses.
Typically, these are accompanied by dense accumulations of
lymphocytes, macrophages, and plasma cells within the lamina
propria (Figure 1). Although epithelial apoptosis can be
present in IBD, it is not a prominent histologic feature in patient
biopsies except when induced by certain therapeutic agents
such as mycophenolate. Some experimental models of IBD
induce intestinal epithelial apoptosis via high dose cytokine
treatment or chemical damage, e.g., with dextran sodium
sulfate. These models are most useful in studies of the
inflammatory response to epithelial damage rather than the
more complex interactions at play in human disease. This is, in
part, the reason that many no longer consider dextran sodium
sulfate colitis to be as adequate as a model of IBD.24,25

Ultimately, both GVHD and IBD can lead to mucosal, i.e.,
glandular, atrophy.26 However, the crypt architectural distortion
that results from repeated injury and repair in IBD is not
prominent in GVHD. Overall, some of these pathologic
differences may be explained by contrasting the cycling between
remission and active disease typically observed in IBD patients
with the kinetics of GVHD, which begins after transplantation
and tends to persist, with variable intensity, for months to years.

Extraintestinal manifestations of IBD and GVHD also
display some overlap. Ulcerative colitis can be complicated
by primary sclerosing cholangitis, in which there is bile duct
loss because of progressive fibrosis, whereas immune-mediated
bile duct damage is common in GVHD. Furthermore, both
GVHD and Crohn’s disease can involve the integument,
although the histopathologies are very different.

Finally, some therapeutic agents are useful in both IBD and
GVHD, likely reflecting the shared pathogenic mechanisms
(Figure 1). These treatments include immunosuppressants and
calcineurin inhibitors, e.g., tacrolimus,27–32 although the sequence
inwhich specific agents are employed differs between the diseases.
In addition, anti-tumor necrosis factor (TNF) biologics, some of
which aremainstays of the IBD therapy,33–35 have been effective in
mouse models of GVHD36–38 and are now being investigated in
patients.39–43 Furthermore, growth factors, including keratinocyte
growth factor (KGF),44–47 epidermal growth factor,48,49 and
R-spondin,50,51whichpromotemucosal healing and restorationof
barrier function, have been shown to be effective in both IBD and
GVHD models and are also being evaluated in patients.

Shared microbial-sensing defects

A likely possibility is that intestinal barrier dysfunction
contributes to disease pathogenesis in IBD and GVHD by
allowing microbes (in the case of epithelial damage), and
microbial products (when paracellular permeability is
increased), to cross the barrier and engage pattern-recognition
receptors (PRRs) on the basolateral surface of epithelial cells, as
well as hematopoietic and non-hematopoietic cells within the
mucosa. PRRs recognize structures that are conserved among
large groups of microbes. Engagement of these sensors elicits
inflammasome activation, pro-inflammatory cytokine release,
chemokine secretion, and antigen-presenting cell maturation,
thereby enabling an effective immune response.52 Conversely,
PRRsmay also dampen the inflammatory responses to promote
resolution or immune tolerance.

In the context of GVHD, preclinical BMT models have
demonstrated roles for several PRRs, including toll-like
receptor (TLR-4), TLR-5, TLR-9, and the intracellular PRR
NOD-2, which recognize lipopolysaccharide (LPS), flagellin,

Table 1 Similarities and differences between IBD and GVHD

Similarities Differences

Genetic associations at
microbial-sensing loci

Polymorphisms of TLR-4, TLR-5 and TLR-9; NOD-2;
ATG16L1

Polymorphisms of TLR2 and TLR6 (IBD)

Immunological aspects Tissue and serum TNF correlate with severity of clinical
and experimental disease
IFN-g and IL-1b are elevated in patients and experi-
mental models
Immunosuppressants (e.g., corticosteroids) and
immunomodulators (e.g., methotrexate) are frequently
helpful in treating disease

Neutrophilic (IBD)
Highly T cell mediated (GVHD)
Antigens are undefined in IBD, but relatively-defined in GVHD
Anti-TNFbiologics arehighly effective in IBD (particularlyCrohn’s
disease) and experimentalmodels of IBD andGVHD, but are not
yet defined in human GVHD

Barrier dysfunction Correlates with disease severity in patients and
experimental models
Required for disease in MHC-matched GVHD experi-
mental model
Proinflammatory milieu modulates tight junction
components

Present in some healthy first-degree relative and may predict
relapse in patients during remission (IBD)
MLCK inhibition limits disease in experimental models of IBD;
has not been reported in GVHD

Gut microbiota Required for disease in most experimental models
Loss of microbial diversity observed in humans

Antibiotics can be preventative in GVHD patients, use in IBD is
controversial

Extraintestinal manifestations Portal inflammation and bile duct damage in liver
Skin involvement

Peribronchialar inflammation and damaged airway epithelium in
the lung (GVHD)

Abbreviations: GVHD, graft-versus-host disease; IBD, inflammatory bowel disease; IFN, interferon; IL, interleukin;MHC,major histocompatability complex;MLCK,myosin light
chain kinase; TLR, toll-like receptor; TNF, tumor necrosis factor.

REVIEW

MucosalImmunology | VOLUME 8 NUMBER 4 | JULY 2015 721



unmethylated cytosine phosphorothioate-guanine, and mur-
amyl dipeptide, respectively. TLR-4 has been the most well-
studied PRR in GVHD, and either LPS antagonism or donors
lacking functional TLR-4 limit the severity of experimental
disease.53–55 Further, TLR-9 knockout in recipients, as well as
TLR-5 blockade both reduce the severity of experimental
GVHD.19,56,57 Conversely, NOD-2� /� mice develop more
severe GVHD following BMT,58 consistent with the unregu-
lated immune activation in response to inflammation that has
been observed in the absence ofNOD-2.59,60 Correlative patient
data are consistent with these data, asTLR-4, TLR-5, andTLR-9
polymorphisms are associated with increased GVHD severity
after allogeneic hematopoietic stem cell transplantation.61–64 In
addition, polymorphisms of NOD-2, which are strongly linked
to Crohn’s disease,65–68 may be one of the most reliable genetic
risk factors for GVHD.62,69–71 In one report, NOD-2 poly-
morphisms in the patient, donor, or both were strongly
associated with more severe GVHD.69

A role for TLRs in experimental IBD is supported by studies
showing that immune cells lacking MyD88, the intracellular
signaling adaptor for all TLRs except TLR-3, fail to cause
adoptive transfer colitis.72,73 Moreover, MyD88 is required for
the development of disease in IL-10� /� mice.74 Studies of
NOD-2 in IBD models complement the findings in GVHD, as
the mice that lack NOD-2 have microbial dysbiosis of the
gut,60,75,76 impaired tolerance to bacterial stimuli,77 defective
T-cell migration,78 and increased susceptibility to small-
intestinal inflammation.59 Like GVHD, NOD-2, TLR-4,
TLR-5, and TLR-9 polymorphisms have all been linked to
Crohn’s disease and, in some cases, ulcerative colitis.79–81

Although not a PRR, ATG16L1, is another locus where
polymorphisms are a well-established risk factor for Crohn’s
disease.82,83 Likewise, when investigated in the context of
hematopoietic stem cell transplantation, it was found that the
T300A ATG16L1 variant increased the risk of GVHD and
treatment-related mortality, whether present in the donor,
recipient, or both.84 Interestingly, a recent study investigating
the role of Atg16L1 in the context of allogeneic BMT found that
the absence of Atg16L1 in host dendritic cells led to alloreactive
T-cell hyperactivation and enhanced GVHD severity.85 Over-
all, it is important to recognize that although compromised
function of these gene products is linked to both IBD and
GVHD, polymorphisms are thought to be associated with
initial disease pathogenesis in the former, but are better
considered to be modifiers of antigen mismatch-driven disease
severity in the latter.

INTESTINAL BARRIER LOSS IN IBD AND GVHD

Views and terms in barrier loss

The current view of intestinal barrier function considers three
non-mutually exclusive permeability routes: the paracellular
pore and leak pathways and the unrestricted pathway. The pore
pathway is a high capacity, charge- and size-selective route
across the tight junction that does not allow macromolecules
with a radii greater than B4Å to pass. In the intestine,
monovalent cations and water are themost commonmolecules
that traverse the pore pathway. The leak pathway, which allows
larger molecules, likely up to a radii ofB60Å, to cross the tight
junction, is not charge-selective. Notably, this size limit is
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Graft-versus- 
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Peribronchiolar inflammation 
and epithelial damage

Skin involvement is common
Can involve skin

Crypt cell apoptosis
Sparse lamina propria infiltrate
Barrier dysfunction required for disease 
  in MHC-matched experimental model
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Figure 1 Comparing and contrasting inflammatory bowel disease and graft-versus-host disease.Weight of arrows indicates therapy usage prevalence
for each disease.
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considerably smaller than bacteria and viruses, but may allow
their products, e.g., LPS, to cross. The leak pathway does not
typically overwhelm the pore pathway because the former is a
low-capacity route.86 Flux across the unrestricted pathway,
which is increased following apoptosis, necroptosis, or
cytotoxic epithelial damage, allows massive flux of ions, water,
macromolecules, and larger materials, including whole bac-
teria. An alternate pathway of transport across the epithelium is
transcytosis, where macromolecules and other antigens are
transported from the apical, i.e., luminal, to the basolateral
surface by vesicular traffic. Like paracellular pathways,
transcytosis can transport material in both directions; however,
transcytosis is an active vectorial process. Transcytosis may be
important for IBD87,88 but has not been studied in GVHD.
Overall, the regulation of transcytosis is quite different from the
pathways discussed here and is likely most relevant in specific
epithelial cell types, such as M cells.89–91

The tight junction forms an apical belt-like structure around
intestinal epithelial cells92 and is the primary determinant of the
paracellular pore and leak pathways. Flux through the pore
pathway is regulated by the composition and stability of
individual tight junction proteins, which in turn respond to the
local cytokine environment. For example, interleukin (IL-13)
can increase cation flux by upregulating expression of the
tight junction pore-forming protein claudin-2.93 IL-13 expres-
sion is increased in ulcerative colitis and, to a lesser extent, in
Crohn’s disease.94,95 IL-13 upregulation is also a reliable
prognosticmarker of GVHD.96 These observations suggest that
the pore pathway may contribute to the pathogenesis of these
diseases.

In contrast to IL-13-induced claudin-2 expression-depen-
dent pore pathway regulation, flux across the leak pathway is
most often governed by epithelial myosin light chain kinase
(MLCK) signaling. This can be activated by a variety of stimuli,
including TNF superfamily cytokines.97–100 MLCK-dependent
MLC phosphorylation triggers occludin removal from the tight
junction and is associated with reduced-occludin expression,
both in experimental models and human patients.94,97,98,101,102

Occludin downregulation has also been reported in a mouse
GVHDmodel,16 although the significance of this observation is
not clear.

The data above show that pore and leak pathways can be
governed independently, and it is common to think of these
separately. Nevertheless, there is a substantial overlap in their
regulatory mechanisms. For example, ZO-1 and occludin
anchoring and protein interactions at the tight junction impact
both pore and leak permeability.93,101,103,104 Further, transgenic
intestinal epithelial expression of constitutively active MLCK
triggers increases in mucosal IL-13 expression, epithelial
claudin-2 expression, and pore pathway permeability.93 Con-
versely, colitis-associated claudin-2 expression is reduced in
knockoutmice lacking the longMLCK isoform expressed in the
intestinal epithelia.105 Thus, in addition to shared regulatory
mechanisms, there is crosstalk between pore and leak pathways.

The unrestricted pathway allows flux of nearly all luminal
contents as a result of the epithelial damage. Because tight

junctions are absent in areas of epithelial loss, the unrestricted
pathway is, by definition, tight junction independent. A
previous, less nuanced view of intestinal barrier loss depicted
a binary model in which there was increased flux along the
unrestricted pathway or, alternatively, barrier function was
intact. As appreciation and understanding of the differential
regulation of epithelial paracellular permeability on the basis of
size and charge selectivity grew, the model was adjusted to
include tight junction-mediated pore and leak pathways, as well
as the unrestricted pathway. However, incorrect attribution of
increased permeability to a particular pathway still occurs. For
example, increases in permeability to macromolecular probes,
such as the leak and unrestricted pathway probe FITC-4kD
dextran, are often attributed to increased epithelial claudin-2
expression,106,107 despite clear data that the claudin-2 pore is
exquisitely size selective and cannot accommodate large
macromolecules.93,108 This reflects the limited appreciation
of pore, leak, and unrestricted pathways, as well as the lack of
suitable assays to measure flux across these pathways in vivo.
We can, hopefully, look forward to the resolution of both of
these obstacles as understanding becomes more widespread
and technological advances provide probes of different charges
and sizes that make it possible to distinguish between these
permeability routes in vivo, both in experimental and clinical
settings. This is critical, as different therapies will be required to
limit the intestinal permeability increases or restore the barrier
function, depending on the underlying pathogenicmechanism.

Intestinal epithelial damage in IBD and GVHD

Epithelial damage increases intestinal permeability via the
unrestricted pathway and is an established disease mechanism
in both IBD and GVHD. Early experiments that directly tested
the role of intestinal epithelial damage in vivo relied on
chemically induced injury of the epithelium in rodents with
agents such as dextran sodium sulfate.109,110 These studies
established that intestinal epithelial damage could induce
colitis. Consistent with this, chimeric mice expressing domi-
nant negative N-cadherin, which disrupts epithelial differ-
entiation, adhesion, and, likely, barrier function, resulted in
local inflammation.111,112 However, simple comparison of the
morphology of these experimental models to that of the human
disease indicates thatmassive epithelial injury is unlikely to be a
mechanism of disease initiation in human IBD.26 Since then,
mouse models of IBD that more closely mimic human disease,
including IL-10� /� -, TNFDARE-, and CD45RBhi-adoptive
transfer have been developed.113–116 Each of these includes
a component of barrier loss and epithelial damage, but the
contributions of these to disease pathogenesis is not entirely
clear.117,118 Further, the mechanisms of intestinal barrier loss
likely vary between models. For example, barrier loss in
IL-10� /� mice precedes onset of clinically evident disease, is
unlikely to reflect epithelial damage, i.e., the unrestricted
pathway, and probably reflects increased leak pathway flux
initiated by cytokine signaling. Although barrier loss and
disease onset are nearly simultaneous in TNFDARE mice,
epithelial apoptosis again does not appear to be an initiating
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mechanism and early barrier loss is likely a result of the
increased leak pathway flux. These temporal distinctions are
likely similar to the clinical situation, wherein increased
intestinal permeability is not always present and it has been
difficult to identify a single common etiology. One exception to
this occurs in a subset of healthy relatives of Crohn’s disease
patients, where specific NOD-2 polymorphisms are associated
with increased intestinal permeability.10,65

In contrast to IBD, the etiology of the initiating epithelial
damage in GVHD is clear: it is caused by pre-transplant
conditioning, i.e., irradiation and chemotherapy. Thus, peri-
transplant intestinal barrier loss reflects increased flux across
the unrestricted pathway. As discussed below, this increased
permeability is thought to have a critical role in both
establishing the intestine as a target organ and in promoting
ongoing systemic disease. Studies in preclinical BMT models,
as well as human patients, have revealed a positive correlation
between the extent of barrier loss and overall disease
severity.12,15,53,54 Consistent with this, both lower-intensity
conditioning119 and treatment with growth factors that
promote epithelial repair44,51 have been associated with
reduced-GVHD severity. Although these observations are
compelling, it is important to recognize that reduced intensity
conditioning and growth factor therapy have many effects, and
that nearly all the data linking intestinal barrier function to
GVHD are correlative. The results could, therefore, be
explained on the premise that more severe disease results
in a greater intestinal damage and barrier loss. Further, given
that conditioning is required prior to transplant to permit
donor-cell engraftment, it has not been possible to define the
role of initial tissue damage in GVHD pathogenesis.

In order to eliminate the conditioning-associated intestinal
damage prior to BMT, we recently developed a model using
immunodeficient recipients.18 This allowed donor immune-
cell engraftment in the absence of irradiation or chemotherapy.
Surprisingly, we found that intestinal damage was not required
for GVHD pathogenesis when there was a major histocompat-
ability complex (MHC)-mismatch between donor and
recipient—in this setting, GVHD could be initiated without
any preceding intestinal damage. In contrast, intestinal damage
was required for the development of GVHD when donor and
host were MHC-matched, which corresponds to the typical
clinical scenario with HLA-matched donor and recipient.18

However, although the intestinal damage was necessary, it was
not sufficient to induce MHC-matched GVHD. As discussed
below, both intestinal damage and inactivation of recipient
natural killer (NK) cell cytolytic function were required for
MHC-matched GVHD to occur.

We explored the role of intestinal damage and increased
permeability in GVHD initiation in several ways. First, we
found that intestinal damage, even with NK cell depletion, was
insufficient to promote GVHD in antibiotic-treated mice.18

Conversely, a single intraperitoneal dose of LPS was sufficient
to induce MHC-matched GVHD in NK cell-depleted mice
despite the absence of intestinal damage and barrier loss at the
time of disease initiation.18 Although a similar role for LPS has

not been demonstrated in IBD, it is notable that most IBD
models require the presence of intestinal microorganisms and,
in many cases, can be suppressed by broad-spectrum anti-
biotics.120–123 These and other data support a model where a
key contribution of intestinal barrier loss is that it allows an
influx of microbial products, e.g., LPS. We have hypothesized
that this contributes to the development of a pro-inflammatory
cytokine environment that promotes immune activation,
further barrier loss, and disease progression.

Tight junction-mediated barrier loss in IBD and GVHD

In the examples discussed above, early barrier loss in GVHD
reflected increased unrestricted pathway flux, whereas
that in IBD was likely a result of increased tight junction
leak pathway permeability. Although increased leak pathway
permeability cannot initiate experimental IBD in immuno-
competent mice,124 it is sufficient to support MHC-matched
GVHD of limited severity in immunodeficient NK cell-
depleted recipients (Nalle et al., unpublished observations).
These data suggest that either leak or unrestricted pathway
barrier loss can trigger activation of mucosal immune
cells that act to prime a systemic immune response
and initiate disease. The data also suggest, however, that
disease progression associated with barrier lossmay be limited
in the context of intact immunoregulation.

MLCK is a well-characterized mediator of tight junction-
mediated barrier loss in response to the physiological and
pathophysiological stimuli.97,105,124–126 Three separate proteins
are encoded by the MLCK gene (MYLK); ‘‘short’’ MLCK,
‘‘long’’ MLCK, and telokin.127,128 Long MLCK is the isoform
expressed in intestinal epithelium and is essential for acute,
TNF-induced tight junction-dependent intestinal barrier
loss.97,129 MLCK-mediated phosphorylation of myosin II
regulatory light chain leads to an increase in leak pathway
flux. Importantly, TNF, IL-1b, and the TNF superfamily
member LIGHT (lymphotoxin-like inducible protein that
competes with glycoprotein D for HVEM on T-cells) which
have all been linked to IBD, increase MLCK expression and
activity.99,100,130,131 It is, therefore, not surprising that colonic
biopsy samples from IBD patients reveal a correlation between
disease activity and epithelialMLCK expression and activity.126

Although MLCK inhibition has not yet been attempted in
patients, long MLCK-deficient mice have delayed barrier loss
and attenuated disease severity in adoptive transfer colitis.105

TNF, LIGHT, and IL-1b have also been in implicated in GVHD
pathogenesis.36,38,132–135 Further, our preliminary data suggest
that MLCK expression and activity in human small-intestinal
epithelium correlates with GVHD severity (Nalle et al.,
unpublished observations). We have also observed that long
MLCK-deficient mice have reduced MHC-matched GVHD
severity at late stages of disease. These data suggest that tight
junction-mediated MLCK-dependent leak pathway perme-
ability increases are a critical factor in the maintenance of
pathogenic activity, as well as progression long after disease
initiation. These findings also suggest that approaches to
specifically limit intestinal barrier loss may be able to reduce
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GVHD severity with fewer side effects than currently available
therapies.

NK cells and barrier loss in IBD and GVHD

Thus far, our epithelial barrier-centric view has not examined
which immune cells influence the barrier and, conversely, are
affected by barrier loss. One immune-cell type that deserves
special consideration here is the NK cell, owing to recent
advances in the understanding of how these cells may have an
unexpected regulatory role in IBD and GVHD.18,136–139

‘‘Conventional’’ NK cells are innate lymphocytes that can
mediate immune responses through direct killing of target cells
or indirectly by secretion of a variety of cytokines, most notably
interferon-g.140 Although NK cells have long been considered
pro-inflammatory, it now appears that they can dampen
immune activation in preclinical models of IBD and GVHD.
This has generated interest in determining if preservation of
NK cell numbers or development of means to augment
their regulatory functions might be therapeutic in IBD or
GVHD.141–143

NK cells have been studied extensively in the context of
transplantation, as seminal work over 25 years ago demon-
strated a role of NK cells in rejecting the MHC-mismatched
transplants.144,145 However, it was only recently demonstrated
that MHC-mismatched donor NK cells could effectively carry
out a graft-versus-leukemia response while causing very little
GVHD.146 The initial explanation for the NK cell-mediated
reduction in GVHD was direct killing of host-derived antigen-
presenting cells.146 Subsequently, it was established that
donor139 or recipient NK cells18,136 are also important for
controlling donor T-cell expansion and target organ infiltra-
tion.18 Both results are consistent with NK cell-mediated
regulation of activated, MHC-matched T-cells, as has been
observed in colitis and viral infection models.137,147–150

However, the mechanism by which NK cells target activated
T-cells is still unclear. The signal could come from the T-cells
themselves, as activated T-cells are known to upregulate ligands
for the NK cell receptor NKG2D, such as members of the Rae1
family.151,152 A non-mutually exclusive explanation is that NK
cell cytoxicity is increased in response to the cytokine milieu
after BMT. Interestingly, a recent study showed that a
recombinant TLR-5 agonist could increase NK cell cytoxicity
in a viral model,153 which could help explain a previous
observation that peri-transplant administration of the bacterial
product and TLR-5 agonist flagellin can reduce the severity of
experimental GVHD.57 It therefore appears that there is an
underappreciated link between NK cell activation, barrier loss,
and GVHD that merits further investigation.

The relevance of NK cells to IBD pathogenesis has not been
clearly defined. In dextran sodium sulfate colitis, antibody-
mediated NK cell depletion leads to more severe inflammation
and markedly decreased survival.138 This may be because NK
cell depletion increased neutrophil infiltration into the
inflamed colon. Although epithelial barrier function was
not examined, it is likely that the enhanced neutrophil recruit-
ment was secondary to heighted translocation of microbial

products owing to epithelial damage and increased flux across
the unrestricted pathway. Two other studies using adoptive
transfer colitismodels have also shown that NK cells can inhibit
the proliferation and activation of CD4þ T-cells, although as
above, neither study examined epithelial barrier function.137,149

Recently, some of the immunoregulatory effects of NK cells in
both the intestine, and the lung, have been attributed to IL-22
production.154–158 This may provide an underlyingmechanism
for some beneficial NK cell effects, as IL-22 has also been
implicated in epithelial barrier homeostasis,159 and exogenous
application of IL-22 is currently being evaluated as a means to
treat several diseases, including IBD, GVHD, and psoriasis.160

EMERGING THERAPIES AND FUTURE DIRECTIONS

Current mainstay GVHD therapies focus on broad immuno-
suppression, which can affect engraftment and, in some
contexts, reduce the desired graft-versus-tumor activity. There
is, therefore, a need for improved therapeutics that target
specific mechanisms in GVHD pathogenesis. Given the
accumulation of data that highlight a critical role for the
intestinal epithelial barrier in GVHD, it stands that treatments
aimed at reducing barrier loss, or alternatively, promoting
epithelial healing, could be an effective therapeutic approach.
Further, the overlap beteween GVHD and IBD in terms of
pathogenic mechanisms suggest that targeted treatments that
have been successful for one could be applied to the other. For
example, anti-TNF is now common for the treatment of IBD,
and is currently being evaluated for efficacy in GVHD. In
addition, tacrolimus, which is used in GVHD therapy, also has
utility in IBD. Other emerging therapies in IBD and GVHD
include modulating cytokine signaling, lymphocyte trafficking,
epithelial barrier function, or NK cell activity.

Modulating cytokine signaling or lymphocyte trafficking

IL-22 is an unusual cytokine in that the IL-22 receptor is not
expressed by immune cells. Although T-cells, innate lymphoid
cells (ILCs), and NK cells are the major producers of IL-22, IL-
22 receptor expression is primarily restricted to epithelial cells
and fibroblasts and it is through these cells that IL-22 acts to
maintain homeostasis of tissue barriers in the intestine, skin,
and lung. In a variety of preclinical models, it has been
demonstrated that IL-22 signaling is important for promoting
wound healing and epithelial regeneration.161,162 In particular,
IL-22 produced by recipient cells is protective in adoptive
transfer colitis and after allogeneic BMT.17,154,163 Thus, it has
been proposed that exogenous IL-22 could help to
restore intestinal barrier function in IBD and GVHD and
thereby reduce the overall disease activity.160 However, the
effect of IL-22 on epithelial barrier function has not been
studied in detail.

Barrier restoration has been attempted using KGF, epider-
mal growth factor, and R-spondin, all of which can be expected
to accelerate mucosal healing.44,48,49,51,85,164–168 In several
studies with GVHD patients, the use of KGF led to a decrease
in oral mucositis, but no reduction in the intestinal damage
or overall GVHD.46,47,169 In one large multicenter study of
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patients with ulcerative colitis, KGF application was safe and
well tolerated but failed to show efficacy in inducing
remission.170 In both instances with human patients, it may
be that KGF induces insufficient intestinal epithelial repair.
Alternatively, barrier restoration alone may be insufficient to
counteract a strong inflammatory response, and application in
conjunction with some form of immunomodulation may be
necessary.

The integrin a4b7 on lymphocytes mediates trafficking to
the intestine through interaction with the MAdCAM-1
(mucosal addressin cell adhesion molecule-1). There is a
strong correlation between a4b7 expression, accumulation of
lymphocytes in the intestine, and inflammation.171 Recently,
there have been a number of encouraging reports in patients
that blocking a4b7 with the antibody vedolizumab is effective
in the induction and maintenance of remission in active
IBD,172–174 and these have led to FDA approval. Whether
vedolizumab will realize this potential in larger populations
outside of the investigational setting remains to be deter-
mined. Mouse models of GVHD also support the view that
a4b7 plays a critical role in regulating intestinal inflammation
and overall disease. Specifically, donor T-cells that lack a4b7
are defective in homing to the intestine after BMT and cause
significantly less disease,175 and administration of anti-
MAdCAM-1 antibody decreases GVHD.176 In T-cells from
patients undergoing allogeneic BMT, the upregulation of
a4b7 correlated with the development of intestinal GVHD.177

On the basis of shared pathogenic mechanisms between IBD
and GVHD, it is possible that vedolizumab or other a4b7
blocking antibodies will help reduce intestinal GVHD and
overall disease in patients.

Restoring the epithelial barrier

The appeal of targeted modulation of epithelial tight junction
function is ostensibly that disease can be treated with fewer side
effects than currently available immunosuppressive and
immunomodulatory therapies. Models of acute intestinal
inflammation and analyses of knockout mice have been
instrumental in identifying the potential pharmacological
targets. One exciting candidate whose targeted inhibition
could improve the epithelial barrier function is MLCK. In
models of acute, cytokine-driven diarrhea, pharmacological or
genetic MLCK inhibition prevented barrier loss and diar-
rhea.98,125 These interventions also prevented internalization of
the tight junction protein occludin. In vitro data suggest that
occludin removal from the tight junction results in increased
leak pathway permeability.97,101,178 Consistent with this, mice
that overexpress occludin within the intestinal epithelium are
partially protected from barrier loss and completely protected
from diarrhea following TNF administration,101 suggesting
that preventing occludin internalization may be a viable
alternative toMLCK inhibition. A third potential tight junction
target is claudin-2, whose expression enhances pore pathway
flux.93,94,103 Although untested, it remains possible that a
specific claudin-2 inhibitor could prevent intestinal barrier loss
and limit progression of IBD or GVHD.

Toxicity is a concernwith each of these tight junction targets.
In particular, it is important to recognize that tight junction
barrier function is physiologically regulated during intestinal
absorption of water and nutrients, and that inhibitionmay lead
to substantial gastrointestinal complications. Perhaps in part
owing to this concern, pharmacological inhibition of tight
junction dysregulation in IBD and GVHD has not been
reported. Further studies will be needed to identify the optimal
targets, delivery systems, and dosing regimens.

NK cell transfer

Given the emerging regulatory role of NK cells in IBD and
GVHD, it is possible that NK cell transfer could be an effective
therapeutic approach in both diseases. The feasibility of
purifying large numbers of NK cells, either by direct isolation
or ex vivo expansion, has been demonstrated.141,179 Several very
important questions related to this therapeutic approach
remain unanswered. Conceptually, although it has been
demonstrated that the absence of NK cells results in more
severe inflammation and disease in models of IBD and GVHD,
the converse, that the presence or addition ofNKcells will result
in reduced disease, is still unknown. Another more practical
question relates to timing and dosing of NK cells. Finally, NK
cells from the blood are not homogenous, and include a variety
of specialized subsets.180 Thus, purification of an empirically
definedNK cell ‘‘regulatory’’ subsetmay yield themost effective
results in the context of IBD and GVHD treatment.

CONCLUSIONS

Advances that define immunoregulatory processes, mechan-
isms of intestinal barrier loss, and genetic associations in IBD
and GVHD have shown us that these diseases have more in
common than was previously thought. As a result, it is possible
to envision a spectrum of novel therapeutic approaches that
have significant advantages over current treatments for IBD
and GVHD and do not rely on broad immunosuppression.
Both fundamental and practical questions must be addressed if
these therapies are to reach patients. Novel approaches,
including methods to reduce tight junction leak and pore
pathway permeability, as well as means to transfer or expand
NK cells and activate their immunoregulatory functions, will
need to be developed. The development of effective approaches
using epithelial growth factors to promote healing and seal the
unrestricted pathway may only require improved delivery
vehicles or formulations, and may, therefore, be an accessible
therapeutic goal. However, the potential of growth factors to
stimulate growth or development of neoplasia cannot be
disregarded. In addition, it will be important to consider
mechanisms of barrier loss. Use of preclinical models that
closely resemble the human pathologies, including MHC-
matched BMT for GVHD, and naive T-cell adoptive transfer or
genetically modified mice for IBD, will be essential. Finally, just
as the development of anti-TNF agents for treatment of
rheumatoid arthritis was a great boon to IBD patients, it will be
critical to evaluate the ability of new IBD treatments to benefit
GVHD patients, and vice versa. Given the similarities between
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IBD and GVHD in terms of genetic links, clinical manifesta-
tions, and pathogenic mechanisms, there is a hope that novel
treatment approaches will be applicable, and potentially
successful, in both diseases.
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