
Secretion of IL-16 through TNFR1 and
calpain-caspase signaling contributes to
MRSA pneumonia
DS Ahn1, D Parker1, PJ Planet1, PA Nieto 2,3, SM Bueno2,3 and A Prince1,4

Staphylococcus aureus is a major cause of severe pneumonia. Multiple mechanisms of proinflammatory signaling are

activated to recruit immune cells into the airway in response to S. aureus. We found that interleukin-16 (IL-16), a

T cell cytokine that binds CD4, is potently activated by S. aureus, specifically by protein A (SpA), and to a much greater

extent than by Gram-negative pathogens or lipopolysaccharide. IL-16 production involved multiple signals including

ligation of tumor necrosis factor receptor (TNFR) family members or epidermal growth factor receptor, both receptors for

SpA and generation of Ca2þ fluxes to activate calpains and caspase-3. Although human airway epithelial cells, vascular

endothelial cells, THP-1 andJurkat Tcells released IL-16 in response toS. aureus in vitro, in amurinemodel of pneumonia,

CD4þ cellswere themajorsourceof IL-16suggesting the involvementofanautocrinesignalingpathway.Theproductionof

IL-16 contributed to lung damage as neutralization of IL-16 enhanced S. aureus clearance and resulted in diminished lung

pathology in S. aureus pneumonia. Our results suggest that the ability of S. aureus to activate TNFR1 and Ca2þ /calpain

signaling contribute to T cell activation and excessive inflammation in the setting of acute pneumonia.

INTRODUCTION

Staphylococcus aureus, particularly the epidemic USA300
methicillin-resistant S. aureus (MRSA), is a major cause of
pneumonia.1 Common in health care-associated settings,
MRSA is a frequent cause of ventilator-associated pneumonia2

and superinfection complicating influenza.3 Even though there
are antimicrobials with good activity against MRSA, there
remains significant morbidity and mortality associated with
this pathogen.1,4 A substantial literature suggests that specific
staphylococcal virulence factors are directly responsible for
lung injury such as a-hemolysin5 and Panton–Valentine
leukocidin.6 However, much of the pathology associated with
MRSA pneumonia can be attributed to the intensity of the host
inflammatory response. S. aureus activates multiple redundant
proinflammatory signaling cascades and murine models of
S. aureus pneumonia lacking specific components of the innate
immune signaling pathway such as type 1 interferon receptor,7

inflammasome protein NLRP38 and tumor necrosis factor

receptor 1 (TNFR1)9 have improved bacterial clearance.
S. aureus infection is accompanied by a significant TNF
response and the abundant S. aureus surface component
protein A (SpA), directly activates TNFR1 signaling.10

The recruitment of neutrophils and macrophages in
response to chemokine and cytokine expression in the lung
is a critical component of innate immune signaling in response
to S. aureus.11,12 The contribution of T cells in the setting of
acute staphylococcal infection is less well characterized, but is
likely to be important13 as seen in Rag2� /� mice, which
exhibited resistance to S. aureus infection in a sepsis model.14

Not only are T cells essential to coordinate an adaptive immune
response, they can be directly activated by S. aureus super-
antigens and are a major source of proinflammatory cyto-
kines,15 such as TNF. Activated T cells contribute to pulmonary
pathology in the setting of acute lung injury. CXCR3
is preferentially expressed in T helper cells,16 and is increased
in both infectious and noninfectious models of acute lung
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injury.11,12 Overexpression of the T cell chemokine CXCL10, a
CXCR3 ligand, induced airway inflammation16 and infected
CXCL10 knockout mice had decreased lung pathology.11

In acute bacterial infection, multiple T cell chemokines and
cytokines are produced such as IL-1217 and IL-16,18which serve
to recruit T cells and stimulate the expression of surface
receptors that mediate their proliferation and cytokine
production.

IL-16 is amultifunctional cytokinewith a single PDZdomain
initially characterized as a product of human peripheral blood
mononuclear cells and described as a lymphocyte chemoat-
tractant19 (previously named lymphocyte chemoattractant
factor). Transcribed as pro-IL-16, its production is regulated
both at the level of transcription and caspase-3-dependent
processing in various cell types.18 IL-16 induces chemotaxis of
CD4þ cells such as lymphocytes, eosinophils, and dendritic
cells by ligating CD4 directly at a site distinct from other
ligands.18,19 Among its multiple functions, IL-16 is a T cell
chemoattractant involved in T helper cell inflammatory
responses and the regulation of both T cell growth, and
responsiveness to regulatory cytokines.20 Chemotaxis of
T cells induced by the supernatant of TNF-stimulated epithelial
cells is inhibited by anti-IL-16 antibody,21 indicating a close
association between IL-16 and TNF signaling. The processing
of pro-IL-16 to its active form is mediated by caspase-322 via
caspase-8. These caspases are activated following ligation of
TNFR1,23 the target of SpA.10 In inflammatory conditions
characterized by excessive TNF signaling, such as inflammatory
bowel disease, IL-16 contributes significantly to pathology,24

thus we postulate that in the setting of robust TNF signaling, as
occurs during S. aureus pneumonia, IL-16 similarly contributes
to pathology.

In the experiments detailed herein, we describe the
participation of IL-16 in S. aureus pneumonia and suggest
that the unique ability of this organism to directly activate
TNFR1, as well as the Ca2þ /calpain/caspase cascade, results in
the release of this T cell cytokine.

RESULTS

S. aureus induces IL-16 in the murine lung

Significantly higher levels of IL-16 were recovered from the
bronchoalveolar lavage fluid (BALF) of wild-type (WT) mice
infected with 107 colony-forming units of USA300 MRSA
(P¼ 0.0001 compared with phosphate-buffered saline) or S.
aureus 502A, a representative methicillin-sensitive strain.
Lower levels were retrieved from mice infected with 107 colony-
forming unit of Gram-negative organisms such as Klebsiella
pneumoniae ST258 and Pseudomonas aeruginosa PAK
(Po0.05 compared with MRSA) (Figure 1a). To determine
if human cells similarly had differential IL-16 responses
to S. aureus vs. Gram-negative stimuli the human
monocytic cells, THP-1s were stimulated with the same
pathogens. IL-16 from THP-1s was 18-fold higher than
the media control after incubation with MRSA (P¼ 0.0001)
and 20-fold after infection with S. aureus 502A. Less IL-16

was measured in response to infection with K. pneumoniae
ST258 or PAK (Po0.05 compared with MRSA)
(Figure 1b).

IL-16 secretion is SpA dependent in specific cell types

The major S. aureus surface component SpA activates TNFR1
signaling,10 a receptor expected to activate IL-16 processing.
The ability of the WT MRSA, a spa null mutant, and purified
SpA to stimulate IL-16 in several cell types was compared
(Figure 2). Induction of IL-16 by the spa null mutant was
significantly decreased as compared with MRSA in human
bronchial epithelial cells (16HBEs) (P¼ 0.028) (Figure 2a),
human umbilical vein endothelial cells (HUVECs) (P¼ 0.002)
(Figure 2b) and T cells (Jurkats) (P¼ 0.06) (Figure 2c); WT
MRSA and the spa null mutant stimulated similar amounts of
IL-16 in monocytes (THP-1s) (Figure 2d). SpA alone induced
IL-16 release from 16HBEs, HUVECs, Jurkats, and THP-1s
(all Po0.05 as compared with media alone). Of note, lipopoly-
saccharide and TNF failed to stimulate IL-16 secretion in any of
the cell types tested, with the exception of TNF-stimulated
Jurkats (Po0.05 as compared with media).

TNFR1 participates in IL-16 secretion

TNFR1 ligation activates caspase 3 signaling,23 important in the
processing of pro-IL-16 to its active form22 and is stimulated by
the IgG binding domain of SpA.10 To establish the importance
of TNFR1 mediated signaling in the induction of IL-16
production, we compared generation of IL-16 in WT and
Tnfr1� /� mice (Figure 3). There was significantly less IL-16 in
the BALF of infected Tnfr1� /� mice compared with WT
controls (Po0.05) (Figure 3a). Protein content in the BALF
was slightly lower in the knockout mice (Figure 3b) with
similar levels of KC/CXCL1 (Figure 3c). Histopathology of
Tnfr1� /� lungs infectedwithMRSA suggested less destruction
of the normal architecture than WT mouse lung (Figure 3d),
consistent with previous reports.10 Numbers of bacteria
recovered in BALF were similar (Figure 3e) and recruited
innate immune cells into BALF and lung were not significantly
different in the WT and Tnfr1� /� mice (Figure 3f–h).
Participation of TNFR1 in IL-16 processing is evident, but
incomplete attenuation of IL-16 production in Tnfr1� /� mice
suggests that other pathways are involved.

Multiple receptors participate in MRSA induced IL-16
secretion

The direct association of SpA and IL-16 shown in stromal and
T cells, indicates that additional SpA receptors may be involved
in the generation of IL-16. Accordingly, we tested the
participation of epidermal growth factor receptor (EGFR), a
receptor for the IgG binding domain of SpA and directly
activated in S. aureus infection.25 In the presence of blocking
antibody to EGFR,MRSA induction of IL-16 secretion in THP-
1s was significantly diminished (P¼ 0.023) as compared with a
relevant IgG control (Figure 4a). Activation of Fas ligand
(CD95), anothermember of the TNFR superfamily,23 also leads
to pro-caspase 8 cleavage,26 which in turn activates caspase 3
from its proform, by Ca2þ influx and calpain activation.27
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Pretreatment of THP-1s with anti-Fas ligand antibody before
infection with MRSA also diminished the release of IL-16
(P¼ 0.0007) (Figure 4b). As Ca2þ fluxes are generated by toll-
like receptor 2 (TLR2) signaling,28 induced by S. aureus,29 we
monitored IL-16 production by THP-1s pre-treated with anti-
TLR2 and found no diminution of IL-16 levels (Figure 4c). In
addition, incubation of THP-1s with the TLR2 agonist
Pam3Cys-Ser-Lys4 did not induce IL-16 production,
indicating that TLR2 by itself is not responsible for IL-16
production. Thus, multiple TNFR effectors, as well as EGFR,
participate in IL-16 secretion.

Calcium, calpains, and caspases are involved in IL-16
processing

Our results suggest that multiple ligands that activate caspase-8
and caspase-3 could participate in the induction of pro-IL-16
processing.22 Given the participation of the Ca2þ -dependent
calpains in caspase activation, we examined the requirement of
Ca2þ fluxes in the induction of IL-16. MRSA induced Ca2þ

fluxes in Fluo-4/acetoxymethyl ester fluorescent dyes-loaded
THP-1s within 10min of exposure to MRSA with attenuation
by pretreatment with 1,2 bis(2-aminophenoxy)ethane-
N,N,N9,N9-tetra-acetic acid (BAPTA) (Figure 5a and
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Figure 1 Staphylococcus aureus (S. aureus) induces interleukin-16 (IL-16) production in vivo and in vitro. (a) C57BL/6 J WT mice inoculated with
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Supplementary Figure S1a,b online). THP-1s in media alone
showed no baseline Ca2þ fluxes and gave significant
fluorescence when treated with thapsigargin (Figure 5b and
Supplementary Figure S1c). IL-16 secretion was stimulated by
ionomycin alone and significantly decreased in the presence
of EDTA (Po0.05 compared with media) (Figure 5c).
Pretreatment of THP-1s with calpeptin, a calpain inhibitor,
resulted in diminished secretion of IL-16 (Po0.05 compared
with dimethyl sulfoxide (DMSO)) (Figure 5d), indicating that
IL-16 processing in THP-1s is calpain dependent, as well as
calcium dependent. Similar differences in Jurkats with calcium
and calpain inhibitors were not seen (data not shown). Caspase 3
involvement was demonstrated when THP-1s preloaded with
Caspase 3/7 Green Detection Reagent were infected with
MRSA, showing an increase in fluorescence over baseline

(Figure 5e). We then observed decreased secretion of IL-16
when THP-1s were pretreated with pancaspase inhibitor
Z-VAD-FMK (Po0.05 compared with DMSO with MRSA)
or a caspase-3 inhibitor (Po0.05 compared with DMSO with
MRSA) but not a caspase-1 inhibitor (Figure 5f). Similarly,
IL-16 release was reduced in Jurkats pretreated with caspase-3
inhibitor (Po0.05 compared with DMSO with MRSA)
(Figure 5g). Staurosporine control, an in vitro inducer of
caspase activity,30 showed induction of IL-16 secretion in both
THP-1s and Jurkats.

T cells are a major source of IL-16

Our in vitro data suggest that multiple cells types can produce
IL-16. To determine the major source of IL-16 in the setting of
S. aureus pneumonia, immunohistochemistry was performed
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on lung sections ofWTmice infectedwithMRSA. IL-16 staining
was observed in discrete cells (black arrows) throughout the lung
tissue, and not confined to the respiratory epithelium in MRSA
infection (Figure 6a). Since CD4 itself is a receptor for IL-16, we
predicted that CD4þ cells would participate in an autocrine loop
and were a likely source of the cytokine in the lung.
Cd4� /� and WT mice were infected with MRSA, and at
24 h post inoculation, IL-16 in the BALF was nearly half in the
airway of the Cd4� /� mouse compared with WT counterparts
(P¼ 0.0043) (Figure 6b). The apparent correlation between the
abundance of CD4þ cells and IL-16 production was further
confirmed in MRSA-infected mice with increased numbers of
CD4þ cells. We noted that mice treated with clodronate,
depleted of alveolar macrophages, had a significant increase in
the number of pulmonary CD4þ cells (Figure 6c), but not the
other T cell populations.12 These mice had a correspond-
ing increase in IL-16 in the setting of MRSA pneumonia
(Figure 6d), suggesting CD4þ cells are stimulated by, as well as
generated IL-16 in an autocrine manner.

Neutralization of IL-16 improves clearance of MRSA and
pathology

The exuberant host response to infection is a hallmark of
S. aureus pneumonia and we postulated that neutralization of

IL-16 would dampen its harmful consequences. By directly
affecting CD4þ cells, we hypothesized that we might limit the
excessive proinflammatory response, without compromising
the recruitment of phagocytes essential to clear the infection. As
mice lacking IL-16 production are not available, we pretreated
mice with anti-IL-16 before giving our standard intranasal
inoculumofMRSA, documenting the expected reduction in the
amount of IL-16 in the airway as compared with IgG control
(P¼ 0.04) (Figure 7a). A major effect on MRSA clearance was
observed with a sixfold reduction in colony-forming units
recovered from the airways (P¼ 0.0042) (Figure 7b) and better
preservation of the normal lung architecture, than in the
IgG-treated control (Figure 7c). Decreased amounts of
KC/CXCL1 (P¼ 0.016) were seen in the neutralization group
(Figure 7d), but the cellular populations recruited to the BALF
and lung were unaffected (Supplementary Figure S2a–h). TNF,
IL-6, and protein levels were similar (Figure 7e–g). Thus, IL-16
contributes to lung pathology in MRSA pneumonia.

DISCUSSION

IL-16 has been described in a number of inflammatory and
oncologic conditions since its description by Cruikshank and
co-workers.31 However, despite its importance in the deve-
lopment of T helper cell-mediated inflammation,32 relatively
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little is known about its role in the pathogenesis of bacterial
infection, including S. aureus pneumonia.33 The biology of
murine and human IL-16 is highly conserved,34 thus the
analysis of IL-16 in murine models of infection is likely
applicable in human tissues as well. IL-16, as a ligand for CD4þ

cells, functions in T cell activation as well as proliferation35 and
has biologic activity in both its proform and mature-processed
form.36 We demonstrate that MRSA induces IL-16 acutely in
the lung, where it participates in the exuberant and potentially
damaging inflammatory response to infection.

Multiple cell types contribute to the proinflammatory
signaling produced in response to S. aureuswith the production
of nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-kB)-dependent cytokines and chemokines.37 Epithe-
lial, endothelial and immune cells can all produce IL-16 as part
of the immediate response to MRSA. However, in contrast to
the NF-kB dependent cytokines, IL-16 production appears to
be specifically linked to the TNF cascade and dependent upon
both TNF and specific bacterial ligands. Lipopolysaccharide
and TNF alone failed to stimulate IL-16 production, whereas
MRSA and SpA alone were potent stimuli in most of the cell
types examined. The central role of the TNF cascade in the
induction of IL-16 processing, as demonstrated by diminished
IL-16 production in infected mice lacking TNFR1, suggests an
explanation for the enhanced ability of MRSA to activate this
cytokine. In addition to stimulating TNF indirectly through
production of PAMPs and pattern recognition receptors on
immune cells, SpA directly ligates both TNFR1 and EGFR on

multiple cell types to initiate signaling10,25 through redundant
signaling pathways. IL-16 secretion into the airway of infected
mice lacking TNFR1 was not fully attenuated and signaling by
multiple receptors, including EGFR and Fas ligand, were found
to initiate the processing of IL-16 to its active form.

A second stimulus, the generation of a Ca2þ flux sufficient to
activate calpain activity was also required for IL-16 production.
We demonstrated this response in THP-1s, representative of
alveolarmacrophages, the predominant immune cell to initially
encounter respiratory pathogens. We were unable to show this
calcium dependence in Jurkats, as Ca2þ fluxes are readily
activated in T cells,38 which also possess the CD4 receptor for
IL-16. In vivo, these CD4þ cells appear to be the most
responsive to the multiple stimuli apparently required to
initiate IL-16 processing. In vitro, we and others18 have
demonstrated that multiple cell types can produce IL-16.
However, the requirement for TNF signaling or ligation of a
TNFR family receptor plus the need for calpain activity likely
limits the in vivo production of the cytokine to specific cell
types. This requirement for multiple stimuli may also help to
explain why lipopolysaccharide alone, or the Gram-negative
airway pathogens tested were much less capable in stimulating
IL-16 production.

Once T cells are recruited, IL-16-CD4 interactions initiate an
autocrine loop to further induce T cell production of more IL-
16. The ability of S. aureus to directly initiate a T cell cytokine
response may contribute to virulence. The improved MRSA
clearance in mice with decreased IL-16 suggests that T cell
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ELISA. Clodronate (Clod) or PBS liposome-treated mice were given 107 colony-forming units MRSA for 24 h. BALF stained for (c) CD4þ populations
wereanalyzedby flowcytometry and (d) IL-16wasmeasuredbyELISA.Eachdot represents an individualmouseanddata is combined from twoseparate
experiments. Lines represent median values. P-values are shown by Student’s t-test.
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recruitment and activation may contribute to lung damage in
this setting. In our murine model system, we were unable to
detect differences in the number of major immune cells
recruited in mice treated with anti-IL-16 or the isotype
control. Thus, the effects of the anti-IL-16 may be in blocking
further T cell activity and their contribution to cytokine
production.

In several other murine models of bacterial pneumonia, the
ability to clear infection and preserve lung architecture
correlated with decreased cytokine expression and not with
the absolute numbers of inflammatory cells recruited into the
lung.39,40 There aremultiple potential sources of neutrophil and
macrophage chemokines.37,41 Limiting the participation of

IL-16 and its T cell targets did not limit phagocytic influx, but
resulted in decreased production of KC/CXCL1. Of note,
KC/CXCL1 is a major neutrophil chemokine that has been
linked to lung injury in other models of sepsis42,43 consistent
with the hypothesis that cytokines themselves, may be directly
associated with lung damage.

In the absence of an Il16� /� mouse it is difficult to fully
evaluate the role of this cytokine in the acute response toMRSA
pneumonia. Our data indicate that the capability of MRSA, as
opposed to commensal or opportunistic Gram-negative airway
pathogens, to activate IL-16 and initiate the amplification of
CD4þ T cell participation further contributes to its virulence in
the setting of pneumonia.
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METHODS

Cell culture, bacterial strains, and purified proteins. Human airway
epithelial cells (16HBEs, D. Gruenert, California Pacific Medical
Center Research Institute, San Francisco, CA), HUVECs (B. Hopkins,
Columbia College of Physicians and Surgeons, NewYork, NY), THP-1
human monocytic cells (THP-1s, ATCC, Manassas, VA), and Jurkat
human T cells (Jurkats, E6-1, ATCC) were grown at 37 1C with 5%
CO2. THP-1s were activated with 1 mM phorbol 12-myristate
13-acetate (PMA) and Jurkats were activated with 0.1mM
PMAþ 0.1 mM ionomycin, both for 24 h before infection. Methicillin
resistant S. aureusUSA300 (MRSA),44 isogenic spamutant,7 S. aureus
502A, K. pneumoniae ST258, and P. aeruginosa PAK were grown
in Luria-Bertani broth and resuspended in antibiotic-free media
16HBEs–Bronchiolife (Lifeline Technologies, Frederick, MD)
HUVECs–Vasculife (Lifeline Technologies) or THP-1s/Jurkats–
RPMI 1640 (Corning Cellgro, Manassas, VA), with 10% heat-
inactivated fetal bovine serum, Benchmark (Gemini Bioproducts,
West Sacremento, CA) for infections in vitro. Purified SpA (Cal-
biochem, Darmstadt, Germany) and TNF (Peprotech, Rocky Hill, NJ)
were added at differential concentrations based on the assay. Pam3Cys-
Ser-Lys4 (EMC Microcollections, Tübingen, Germany), thapsigargin
(Invitrogen, Grand Island, NY), ionomycin (Calbiochem), and
staurosporine (Cell Signaling, Beverly, MA) were used as positive
controls in respective assays.

Antibodies and Inhibitors. Antibodies used in vitro were anti-EGFR
(1005; Santa Cruz, Dallas, TX), anti-Fas ligand (NOK1; BD
Biosciences, San Jose, CA), anti-TLR2 (H-175; Santa Cruz), anti-TNFR1
(H-271; Santa Cruz), and anti-IL-16 (ab9563; Abcam, Cambridge, MA).
Respective IgG isotype controls were used for comparison; rabbit
(2027; Santa Cruz) or mouse (2025; Santa Cruz). Inhibitors used
were pancaspase inhibitor Z-VAD-FMK (Santa Cruz), caspase 3
inhibitor (Calbiochem), caspase-1 inhibitor (Calbiochem), calpeptin
(Calbiochem), BAPTA (Calbiochem) and EDTA (Sigma, St Louis, MO).

Mouse studies. In vivo experiments were performed using age- and
sex-matched WT, Tnfr1� /� , and Cd4� /� C57BL/6 J mice (Jackson
Laboratories, Bar Harbor, ME). Mice were anaesthetized with 100mg/
kg ketamine and 5mg/kg xylazine, infected intranasally with MRSA,
S. aureus 502A, K. pneumoniae ST258, or P. aeruginosa PAK
(107 colony-forming units in 50 ml of phosphate-buffered saline),
and killed 18–24 h after infection. To deplete macrophages, 75 ml of
clodronate liposomes or phosphate-buffered saline liposome controls
were inoculated intranasally 24 h before infection with MRSA
as previously described.12 For the neutralization of IL-16, 100mg of
anti-IL-16 antibody (ab9563; Abcam) or IgG isotype (Jackson
ImmunoResearch, West Grove, PA) was injected intraperitoneally 2 h
before infection as previously described.45 Animal experiments were
performed in accordance with the guidelines of the IACUC at
Columbia University (protocol number AAAE5252 and AAAD0624).

BALFAssays. BALF was obtained by instilling 1ml aliquots of sterile
phosphate-buffered saline with calcium and magnesium into a
cannulated trachea three times. Serial dilutions for bacterial enu-
meration were performed on the BALF before centrifuging. IL-16
mouse ELISA (R&D Systems, Minneapolis, MN), TNF mouse ELISA
(eBioscience, San Diego, CA), KC/CXCL1 mouse ELISA (R&D
systems), IL-6mouse ELISA (Biolegend, SanDiego, CA), andBradford
Assay (Thermo Scientific, Waltham, MA) for protein content were
performed on the BALF supernatant.

Analysis of immune cell populations. Analysis of cell populations in
BALF or single cell suspension of lung homogenate was conducted as
before.46 Cells were labeled with a combination of phycoerythrin (PE)-
labeled anti-NK 1.1 (PK136; eBioscience), fluorescein isothiocyanate
(FITC)-labeled anti-Ly6G (RB6-8C5; eBioscience), allophycocyanin
(APC)-labeled anti-MHCII (M5/114.15.2; eBioscience), PerCP-Cy5.5-
labeled anti-CD11c (N418; Biolegend), or phycoerythrin (PE)-labeled

CD4 (RM4-5; Biolegend) alone. Polymorphonuclear neutrophils were
defined as Ly6Gþ /MHCII� , macrophages as CD11cþ /MHCIIlow-mid

and dendritic cells as CD11cþ /MHCIIhigh. Fc block (anti-mouse
CD16/32)was also added to each sample (93; eBioscience).Uniform-dyed
microspheres (Bangs Laboratories, Fishers, IN)were added to calculate
the concentration of cellular components. Samples were run on FACS
Calibur (Becton Dickinson, Franklin Lakes, NJ) and analyzed on
FlowJo (Tree Star, Ashland, OR).

Histopathologyand Immunohistochemistry.Wholemouse lungwas
fixed with 4% paraformaldehyde for 24 h, 70% ethanol for 24 h, and
then prepared in paraffin blocks. Hematoxylin and eosin stain staining
was performed on 5mm sections for gross pathology. For immuno-
histochemistry, 5mm sections on glass slides were rehydrated with
xylene alternative (Safe Clear Protocol, Fischer Scientific, Pittsburg,
PA) and ethanol. Antigens were presented using an acidic buffer
(sodium citrate 10mM, 0.05% Tween 20, pH 6) at 60 1C overnight.
Sections were additionally permeabilized with Tween 20 0.5% for
10min and quenched with 0.3% H2O2 for 10min. Detection of IL-16
by immunohistochemistry with peroxidase staining was performed
using the Immunocruz ABC Staining kit (Santa Cruz) using anti-IL-16
antibody (ab9563, Abcam). Controls were performed with secondary
antibody only.

Calcium Imaging. THP-1s were loaded with acetoxymethyl ester
fluorescent dyes/Fluo-4 (Invitrogen) with PowerLoad concentrate
(Invitrogen) before imaging and stimulation. Fluorophores were excited
with a 103Wmercury short arc HBO lamp (Osram, Munich, Germany)
with the illumination directed through appropriate interference filters.
Fluorophore exposureswere controlled by a filter wheel (LAMBDA10-2;
Sutter Instrument, Novato, CA). Cells were then imaged on anOlympus
IX81 Inverted microscope (Central Valley, PA). Images were analyzed
and videos made using Metamorph software (Ver. 7.5.3.0, April, 2008),
Molecular Devices, Dowington, PA).

Caspase 3/7-detectionAssay. THP-1s were preloaded with CellEvent
Caspase 3/7 Green Detection Reagent (Invitrogen) 30min before
infection. Cells were stimulated and then read at absorption/emission
maxima of 502/530 nm every 10min for 2 h on a Tecan Infinite 200
(V2.11, April, 2008, Tecan Infinite 200, Seestrasse, Germany).

Statistics. All statistical analysis was performed using GraphPad
Prism Version 6.0c (21 March 2013, La Jolla, CA). Samples with
normal distributions, were analyzed by Student’s t-test.Mouse samples
were compared using the nonparametric Mann–Whitney test. For
multiple comparisons, an analysis of variance was then followed by a
post hocDunnett’s test to compare with the control group. Differences
in groups were considered significant if Po0.05.
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