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Altered interplay between gutmucosa andmicrobiota during treatedHIV infectionmay possibly contribute to increased

bacterial translocation and chronic immune activation, both ofwhich are predictors ofmorbidity andmortality. Although

a dysbiotic gut microbiota has recently been reported in HIVþ individuals, themetagenome gene pool associated with

HIV infection remains unknown. The aim of this study is to characterize the functional gene content of gut microbiota in

HIVþ patients and to define the metabolic pathways of this bacterial community, which is potentially associated with

immune dysfunction. We determined systemic markers of innate and adaptive immunity in a cohort of HIV-infected

individuals on successful antiretroviral therapy without comorbidities and in healthy non-HIV-infected subjects.

Metagenome sequencing revealed an altered functional profile, with enrichment of the genes involved in various

pathogenic processes, lipopolysaccharide biosynthesis, bacterial translocation, and other inflammatory pathways.

In contrast, we observed depletion of genes involved in amino acid metabolism and energy processes. Bayesian

networks showed significant interactions between the bacterial community, their altered metabolic pathways, and

systemicmarkers of immunedysfunction. This study reveals alteredmetabolic activity ofmicrobiota andprovides novel

insight into the potential host–microbiota interactions driving the sustained inflammatory state in successfully treated

HIV-infected patients.

INTRODUCTION

HIV infection is characterized by profound disruption of gut-
associated lymphoid tissue and a chronic inflammatory state
that persists even after restoration of circulating CD4þ T cell
counts under successful antiretroviral therapy (ART).1–3

Although HIV-infected adults (HIVþ ) with access to modern
ART regimens will presumably be able to suppress HIV
replication indefinitely, the profoundCD4þ Tcell depletion in
gut-associated lymphoid tissue is incompletely reversed by

long-term ART and microbial translocation continues long
after peripheral CD4þ T cell restoration.4–6 This residual
activation of both the innate and the adaptive immune systems
during treated HIV infection is also associated with markers of
inflammation and coagulation, and decreased thymic output.
Furthermore, it is an independent predictor of morbidity and
mortality.7–9

The huge amount of metagenomic data generated in recent
years has revolutionized the field of the human microbiome,
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and the gutmicrobiota has been shown to be a complex network
with a critical impact on human biology and pathophysiology.
It is now widely accepted that the gut microbiota is a key factor
for immune homeostasis. For example, the lymphatic and
colonic regulatory T cell repertoire is heavily influenced by
microbiota composition.10 However, the way the immune
system shapes the microbiome and contributes to disease is
poorly understood. Mounting evidence suggests that disrup-
tion of gut immunity in HIV infection also precipitates
dysbiosis of the gut microbial community, which negatively
affects critical pathways for healthy immune homeostasis.11–17

In particular, the extent of dysbiosis correlates with the activity
of the kynurenine pathway of tryptophan catabolism and with
plasma concentrations of the inflammatory cytokine inter-
leukin-6 (IL-6), both of which are established markers of
disease progression.11 Simultaneously, compositional and
functional shifts in the gut microbiota have been described
in most of the illnesses that drive excess of mortality during
treated HIV infection.11 These findings point to a novel link
between the mucosal immunity, the gut bacterial community,
chronic inflammation, and the risk of non-AIDS events. In
other chronic inflammatory diseases, such as inflammatory
bowel disease, metagenomic survey12 and metaproteomic
survey13 have shown that the extent of dysbiosis is not limited
to a shift in commensal organisms, but that it is also associated
with up- or downregulation of pathways related to oxidative
stress, virulence, and secretion, which are increased in the gut
microbiota of patients with inflammatory bowel disease.13

Although analysis of the more than 5,000,000 genes predicted
in the human microbiome14 will enable us to understand the
metabolic influence of the dysbiotic bacterial community in the
maintenance of persistent immune dysfunction during ART,
the issue of whether the HIV-associated dysbiosis is also
associated with a functional shift has not been addressed yet.
Using in silico predictions based on the phylogenetic informa-
tion of the 16S rRNA gene, McHardy et al.15 recently described
a trend of changes in different pathways such as amino acid
biosynthesis and metabolism, CoA biosynthesis, folate bio-
synthesis, and glutathione and selenocompoundmetabolism in
ART-naive HIVþ patients. However, data obtained from
bioinformatics homology search against reference genomes
might not be representative of the whole gut metagenome.

ART-treated HIVþ individuals range from otherwise
healthy persons to patients with multiple chronic comorbid-
ities. In fact, in most of HIVþ individuals on long-term ART,
the risk of non-AIDS disorders,9 which are in turn associated
with a shift in microbiota, is higher than expected. This finding
challenges the investigation of the persistence of intestinal
dysbiosis during well-treated HIV infection, as gut micro-
biota might be an important target for novel nutritional
interventions.

The present study is the first to determine from fecal samples
the functional capacity profile of the intestinal microbiota of
HIVþ patients without comorbidities during effective ART.
We applied metagenome sequencing to identify a unique
gene content that is characteristic of treated HIV-infected

individuals. We also evaluated the relationship between
functional capacity and variables involved in immune dysfunc-
tion and/or clinical progression. We used 16S rRNA gene
analysis to determine the composition of fecal microbiota and
examined its associations with bacterial translocation and
immune activation. Finally, we built a Bayesian network that
integrated the interactions of the main factors in HIV infec-
tion and thus enabled us to identify potential targets for
intervention.

RESULTS

Differences in the clinical variables between ART-treated
HIVþ individuals and healthy subjects

We included 15 chronically HIV-infected individuals on
suppressive ART and 15 healthy controls. Patients had a
median CD4 T cell nadir of 203 cells/ml, median cumulative
ART exposure of 6 years, good CD4þ T cell reconstitution
(584 cells/ml (466–794)), and had almost reached normal CD4/
CD8 ratios (1,2 (0.9–1.3)). No meaningful differences were
detected in age, body mass index, or glycemic and lipid plasma
profiles, and there were non-statistically significant higher
proportion of women in the control group. As for plasma
biomarkers, only soluble CD14 (sCD14) levels were higher
in patients than in controls (P¼ 0.05). As shown in
Supplementary Table S1 online, ART-treated HIV-infected
individuals displayed lower CD4þ T cell counts and lower
CD4/CD8 ratios than controls and significantly increased
frequencies of CD4þ andCD8þ T cells expressingmarkers of
T cell activation/senescence (HLA-DR/þCD38þ , CD38þ ,
CD25þ ) and senescence (CD57þ ).

Differences in gut microbiota composition between
HIV-infected individuals under ART and healthy subjects

We obtained an average of 5,392 16S rRNA gene sequences per
sample bymultiplex pyrosequencing fromDNAextracted from
fecal samples of a subset of our cohort (12 controls and 9
ART-treatedHIVþ patients). The remaining nine participants
initially consented to participate in the study but then refused to
provide stool samples. Taxonomical assignationwas performed
at operational taxonomic units (OTUs) (97%) and at genus
level, as they allowed a higher discriminatory power between
samples. We used the weighted Unifrac distance and Bray–
Curtis dissimilarity distance for the cluster analysis, because
these metrics gave the optimal cluster configuration (see
Supplementary Methods) at OTU (97%) and genus level,
respectively (Supplementary Figure S1). The clustering
showed that the samples formed two clear groups for both
taxonomic levels (Figure 1 and Supplementary Figure S2).
These clusters and the group category (HIV� vs. HIVþ ) were
validated by an ADONIS test at OTU (97%) and genus level
(P¼ 0.001 and P¼ 0.04 for the cluster analysis and P¼ 0.001
and P¼ 0.01 for the group category, respectively). Figure 1
showed three patients (H14, H18, and H24) located at the
control cluster. The heat map showed in the Supplementary
Figure S3 also revealed two main clusters. One cluster (in red)
was composed mainly of HIVþ individuals, with a high
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abundance of Prevotella (44.1%) and Succinivibrio (14.6%).
Subject C49, who harbored a high proportion of Prevotella
genus, was also included in this cluster. The other cluster
(in blue) was composed mainly of HIV� individuals in whom
Bacteroides (27.5%) and Faecalibacterium (16.7%) were the
most abundant genera (Supplementary Figure S3). Analysis of
the clustering at the genus level showed that the subject H02
clustered with the control group (Supplementary Figure S2).
This patient presented an unusual microbiota composition
with a high abundance of Bacteroides and low level of
Faecalibacterium. Intriguingly, the bacterial community of
HIVþ individuals had a much higher proportion of Gram-
negative bacteria than HIV� individuals (ratio %Gram
negative/%Gram positive: 71/18 vs. 45/44, respectively).

Comparison of richness estimators, ACE andChao1, and the
Shannon index revealed statistically significant differences only
at OTU (97%) level (Supplementary Table S2), being the
bacterial community of HIV� individuals more diverse.
However, the overall bacterial load (expressed as number of 16S
rRNA gene copies) was significantly higher in HIVþ subjects
than in HIV� subjects (Supplementary Table S2).

We used the linear discriminative analysis (LDA) effect size
(LEfSe) biomarker discovery tool to elucidate which genera
were driving divergence between the groups. We found 11
biomarkers for the HIVþ cluster: 7 belonged to the Firmicutes

phylum: Acidaminococcus (P¼ 0.01), Butyrivibrio (P¼ 0.00),
Eubacterium (P¼ 0.02), Mitsuokella (P¼ 0.00), Bulleidia
(P¼ 0.00), Megasphaera (P¼ 0.01), and Catenibacterium
(P¼ 0.00); 3 belonged to the Proteobacteria phylum: Succi-
nivibrio (P¼ 0.00), Trabulsiella (P¼ 0.03), and Desulfovibrio
(P¼ 0.02); and finally, a single genus from the Bacteroidetes
phylum: Prevotella (P¼ 0.00). In the control group, we
observed nine biomarkers: six belonged to the Firmicutes
phylum: Faecalibacterium (P¼ 0.00), Roseburia (P¼ 0.00),
Ruminococcus (P¼ 0.04), Blautia (P¼ 0.00), Coprococcus
(P¼ 0.03), and Anaerostipes (P¼ 0.00); two belonged to
Bacteroidetes phylum: Bacteroides (P¼ 0.00) and Parabacter-
oides (P¼ 0.00); and a single genus representing Proteobacteria
phylum: Escherichia (P¼ 0.00) (Figure 2a). These biomarkers
presented high LDA scores (LDA43.5) and generated sample
clustering similar to those obtained using all taxa (Supple-
mentary Figure S3 and Figure 2b). The Prevotella biomarker
had the highest LDA score (5.2) and was 7.8 times more
abundant in HIVþ subjects than in HIV� subjects (1542.0±
641.9 vs. 196.9±288.2), whereas Succinivibrio (LDA score¼ 4.8)
was not present in HIV� subjects. In control group,
Bacteroides and Faecalibacterium presented the highest
discriminative power (LDA score¼ 5.1 and 4.8, respectively).

In order to elucidate whether specific clinical parameters
might correlate with the extent of dysbiosis, we calculated the
correlations (Spearman rank correlation coefficient (r))
between the first component of the principal coordinates
analysis (PC1) and the CD4þ T cell counts, CD8þ T-cell
counts, CD4/CD8 ratio, CD4nadir, time fromHIVdiagnosis to
ART initiation, and duration of ART. Only the CD4/CD8 ratio
correlated with the PC1 (r¼ � 0.4, P¼ 0.045), although
statistical significance was lost after adjustment for multiple
comparisons (adjusted P¼ 0.117).

Impact of total microbiota on immunological predictors of
disease progression

Correlation analysis was performed between the first compo-
nent of the PC1 at OTU level (97%) and markers of bacterial
translocation (bactericidal-permeability increasing protein
(BPI), sCD14), monocyte activation (T cell activation
%HLA-DRþ /CD38þ /CD25þ ) and senescence (%CD57þ ),
thymic function (sj/b-TREC ratio), inflammation (high-
sensitivity C-reactive protein (hs-CRP]) and IL6), and throm-
bosis (D-dimers). PC1 correlated positively with the inflam-
mation marker hs-CRP and with markers of T cell activation,
including %CD4þHLA-DRþCD38þ T cells, %CD4þ
CD25þ T cells, %CD8þHLA-DRþCD38þ T cells, and
%CD8þCD38þ T cells (Figure 3a–e). No significant correla-
tion was observed between PC1 and the markers of bacterial
translocation (sCD14, r¼ 0.2, adjusted P¼ 0.56 and BPI,
r¼ 0.3, adjusted P¼ 0.45), thrombosis (D-dimers, r¼ 0.3,
adjusted P¼ 0.41), inflammation (IL6, r¼ � 0.2, adjusted
P¼ 0.45), and thymic function (sj/b-TREC ratio, r¼ � 0.25,
adjusted P¼ 0.43).

As lipopolysaccharide (LPS) is one of the principal antigens
translocated from the gut to the bloodstream driving chronic
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Figure 1 Comparison of microbiota between HIVþART and uninfected
subjects. Principal coordinates analysis of the bacterial composition in
controls (blue dots) and cases (red dots) at operational taxonomic unit
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immune activation, we assessed the correlation between PC1
and the number of sequences assigned to LPS biosynthesis
pathway (see metagenome analyses below), and we found a
significant positive correlation (Figure 3f).

Differences in microbiota metabolic functions between
HIV� and ART-treated HIVþ subjects

To explore functional hallmarks of the HIV-associated
dysbiotic bacterial community, we analyzed the metagenome
in both groups. Pyrosequencing of the samples yielded a total of
659Mb with an average length of 655±32 bp. All the high-
quality reads (average 18.5Mbper sample)were comparedwith
theKyoto Encyclopedia ofGenes andGenomes orthology (KO)
database at different hierarchical levels (level 1, top level; level 2,
subcategories of the top level; pathway level, and KO, gene
level),16 giving a high functional assignment to 34% of the reads
(49,517 open reading frames per sample).

At level 2, the functional profiles were fairly homogeneous
for all individuals. The most abundant categories were
‘‘carbohydrate metabolism’’ (19.2%), ‘‘amino acidmetabolism’’
(13.8%), ‘‘energy metabolism’’ (9.2%), and ‘‘nucleotide meta-
bolism’’ (8.8%), thus highlighting the importance of the gut
microbiota in these metabolic pathways. Similarly, major
pathways in both groups were related to purine and pyrimidine
metabolism, amino and nucleotide sugar metabolism, alanine,
aspartate and glutamate metabolism, and transport systems.

We used the LEfSe package to identify significant variations
in the functional profile of both groups at different hierarchical
levels. At level 2, HIVþ individuals showed a unique differ-
ential category, i.e., ‘‘infectious diseases’’ (Po0.001), while
‘‘carbohydratemetabolism’’ (P¼ 0.02) and ‘‘endocrine system’’

(P¼ 0.04) were significantly more abundant in the HIV�
group. However, we found 173 KOs that were significantly
different between both groups.We then analyzed pathways that
also had high discriminative power. Figure 4 shows the
biomarkers found at pathway level: 12 in the HIVþ group and
23 in the HIV� group. All biomarkers presented similar per-
centages of sequencing coverage in both groups (Supplemen-
tary Table S3). For HIVþ subjects, the pathways with the
highest discriminative power were the ‘‘ribosome’’ and ‘‘LPS
biosynthesis’’ pathways (LDA score¼ 3.2 and P¼ 0.01 and
LDA score¼ 3.2 and P¼ 0.00, respectively), followed by the
‘‘phenylalanine tyrosine and tryptophan biosynthesis’’ pathway
(ko00400) (LDA score¼ 2.8, P¼ 0.00). In this group,
functional biomarkers were mainly involved in biosynthetic
pathways as ‘‘terpenoid backbone biosynthesis’’, ‘‘fatty acid
biosynthesis’’, ‘‘ubiquinone and other terpenoid-quinone
biosynthesis,’’ and ‘‘zeatin biosynthesis’’. The KO-annotated
genes belonging to pathogenesis processes as ‘‘Legionellosis’’
and ‘‘Vibrio cholerae pathogenic cycle’’ pathways were over-
represented in the HIVþ group. In the HIV� subjects, nine
biomarkers were related to metabolite degradation and eight to
metabolism, with the ‘‘starch and sucrose metabolism’’ pathway
presenting the highest LDA score (LDA score¼ 3.1, P¼ 0.03).
One of the biomarkers in this group, the peroxisome
proliferator-activated receptor signaling pathway (LDA
score¼ 2.6, P¼ 0.01), contained phosphotransferases that
have been related to anti-inflammatory responses.

The heat map obtained using the pathway biomarkers
found for HIVþ patients and controls is shown in Figure 5.
In contrast to that observed in the compositional clustering
analysis, subject C49 (HIV� ) showed a healthy functional

Figure 2 Taxonomic biomarkers. (a) linear discriminative analysis (LDA) effect size LEfSe) analysis between the case cluster (in red) andcontrol cluster
(in blue). LDAscores (log10) for themost prevalent taxa in controls are representedon thepositive scale,whereasLDA-negative scores indicateenriched
taxa in cases. (b) Heat map of genus biomarkers. Biomarkers are represented in red and blue for cases and controls, respectively. In the heat map, the
percentage range of sequences assigned to main taxa (abundance 41% in at least one sample) is represented by a color gradient.
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profile, whereas subject H24 (HIVþ ) clustered with the
HIVþ group and had a dysfunctionalmicrobiota. Only subject
H14 remained clustered with the HIV� group (sample H02
was not included in this analysis). In the HIVþ group, the
microbiota was depleted in genes belonging to main energetic
processes as pyruvate metabolism, glycolysis and gluconeo-
genesis. In addition, a decrease in amino acid metabolism
(glycine, serine, threonine, tryptophan, and histidine) was
identified in this group (ko00260, ko00260, ko00260, ko00380,
and ko00346, respectively). However, we detected enrichment
for pathways involved in the metabolism of cofactors and

vitamins (ubiquinone and other terpenoid–quinone biosynth-
esis, thiamine metabolism and nicotinate and nicotinamide
metabolism) in the dysbiotic bacterial community.

Finally, as inflammation has been associated with
oxidative stress, we investigated pathways that could be
specifically related to this process. Even though the differences
did not reach statistical significance, we observed higher
relative abundance of genes belonging to glutathione meta-
bolism and D-glutamine and D-glutamate metabolism in the
HIVþ group than in theHIV� group (0.66 vs. 0.28%; 0.26 vs.
0.21%, respectively).
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Figure 3 Associations between PC1 andmarkers of immune activation, inflammation, and bacterial translocation. (a–d) Correlation between PC1 and
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Figure 4 Linear discriminative analysis (LDA) effect size (LEfSe) analyses of statistically significant KEGG (Kyoto Encyclopedia of Genes and
Genomes) pathways. Negative LDA scores (red) are enriched in patients while positive LDA scores (blue) are enriched in controls.

Figure 5 Heatmap of the functional biomarkers for patients (in red) and controls (in blue). Over/underrepresentation is depicted by a color gradient. On
the right, ‘‘H’’ identifies those pathways predicted as biomarkers for cases and ‘‘C’’ those pathways predicted as biomarkers for controls. The dendogram
of the pathway abundances is divided in two main groups, a blue cluster (controls) and a red cluster (patients).
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Correlations between markers of innate and adaptive
immunity, and gutmicrobiota metabolic pathways in HIVþ
subjects on effective ART

We explored the correlations between metabolic functions of
the intestinal microbiota and markers of T cell activation/
senescence (% of CD4þ and CD8þ T cells expressing HLA-
DR/þCD38þ , CD38þ , CD25þ , or CD57þ ), bacterial
translocation (BPI and sCD14), inflammation (hs-CRP and
IL6), thrombosis (D-dimers), and thymic function. Different
associations were found (Table 1), although no relation
remained statistically significant after adjusting for multiple
comparisons. Positive correlations were detected between
%CD4þHLA-DRþCD38þ , and the ‘‘LPS biosynthesis’’

and ‘‘glutathione metabolism’’ pathways (Table 1). Intere-
stingly, the‘‘zeatin biosynthesis’’ pathway correlated negatively
with bacterial translocation markers, sCD14 and BPI, as well as
with the sj/b-TREC ratio. hs-CRP and the thrombosis
D-dimers correlated negatively with the ‘‘thiamine meta-
bolism pathway’’ and only the ‘‘glutathione metabolism’’
pathway correlated positively with hs-CRP (Table 1).

Bayesian networks and Markov Blankets estimation

Bayesian networks are probabilistic models in which the nodes
correspond to random variables and the arcs represent causal
relationships.17 With cross-sectional data, the connecting
arrows represent mutual associations rather than causality.18

Table 1 Significant correlation between pathways and clinical variables

Spearman correlation index P-valuea q-valueb

T-cell markers

Ribosome ko03010|CD4 T cells � 0.71 0.06 0.09

Terpenoid backbone biosynthesis ko00900|CD4 T cells 0.67 0.08 0.09

Glutathione metabolism ko00480|%CD4þHLA-DRþCD38þ T cells 0.71 0.05 0.09

Lipopolysaccharide biosynthesis ko00540|%CD4þHLA-DRþCD38þ T cells 0.71 0.05 0.09

D-Glutamine and D-glutamate metabolism ko00471|%CD4þCD38þ T cells � 0.71 0.06 0.09

Nicotinate and nicotinamide metabolism ko00760|%CD4þCD25þ T cells 0.95 0.00 0.00

Ribosome ko03010|%CD4þCD25þ T cells 0.83 0.02 0.09

Glutathione metabolism ko00480|%CD8þCD25þ T cells 0.79 0.03 0.09

Toluene degradation ko00623|%CD4þCD25þ T cells 0.67 0.08 0.09

D-Glutamine and D-glutamate metabolism ko00471|%CD8þCD57þ T cells 0.64 0.1 0.1

Bacterial translocation

Legionellosis ko05134|BPIc 0.86 0.01 0.07

Glutathione metabolism ko00480|BPIc 0.79 0.03 0.09

Lipopolysaccharide biosynthesis ko00540|BPIc 0.71 0.06 0.09

Zeatin biosynthesis ko00908|BPIc � 0.71 0.06 0.09

Zeatin biosynthesis ko00908|sCD14d � 0.86 0.01 0.07

Ubiquinone and other terpenoid quinone biosynthesis ko00130|sCD14d � 0.64 0.10 0.10

Thymic function

Zeatin biosynthesis ko00908|sj/b-TREC ratio � 0.75 0.03 0.09

Thiamine metabolism ko00730|sj/b-TREC ratio � 0.66 0.08 0.09

Inflammation

Thiamine metabolism ko00730|hs-CRPe � 0.65 0.08 0.09

Glutathione metabolism ko00480|hs-CRPe 0.62 0.10 0.10

Thrombosis

Thiamine metabolism ko00730|D-dimers � 0.67 0.08 0.09
aP is probability at a¼ 0.1.
bP-value adjusted by the Benjamini–Hochberg method.
cBactericidal-permeability increasing protein.
dSoluble CD14.
eHigh-sensitivity C reactive protein.
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To unravel the complex interactions between microbiota and
metabolic pathways contributing to T cell activation, thymic
function and bacterial translocation, we fitted a Bayesian
model. This analysis demonstrated a complex network inwhich
most pathways and genera are interconnected. Most of these
variables were associated with at least one genus or pathway,
with the exception of BPI and the %CD8þCD57þ T cells that
exhibited a greater number of interactions with other network
components (Supplementary Figure S4).

The set of nodes that predicts the behavior of another node in
a Bayesian network is named the ‘‘Markov Blanket’’.17 We
estimated the Markov Blanket for the subset of nodes that
showed a significant correlation with the immunological
predictors. Three Markov Blankets were selected as follows:
(i) one that included lipopolysaccharide biosynthesis and zeatin
biosynthesis pathways, hereafter referred to as lipopoly-
saccharide–zeatin Markov Blanket (Figure 6); (ii) that

included the %CD8þCD57þ and %CD4þCD38þ
clinical variables, hereafter referred to as %CD8þCD57þ
and %CD4þ 38þ Markov Blanket (Figure 7a); and (iii) the
Markov Blanket of the Coprococcus genus (Figure 7b). The
lipopolysaccharide–zeatin Markov Blanket contained positive
correlations between genera of Gram-negative bacteria and
pathways related to inflammation as Legionellosis, V. cholerae
pathogenic cycle or lipopolysaccharide biosynthesis. Together
with glutathione metabolism, the lipopolysaccharide biosynth-
esis pathway correlated positively with BPI and %CD4þHLA-
DRþCD38þ T cells. The sCD14marker correlated negatively
with the zeatin biosynthesis pathway, and unexpectedly with
Prevotella abundance. Finally, we observed no positive
correlations with the sj/b-TREC ratio (Figure 6). Then, we
explored the Markov Blanket for activated (%CD4þCD38þ )
and senescent (%CD8þCD57þ ) T cells (Figure 7a).
The depletion of Faecalibacterium was associated with an

Figure 6 Lipopolysaccharide–zeatin Markov Blanket. Subgraph of the Bayesian networks represent the relationships between genera abundance
(blue ellipses), pathway abundances (green ellipses) and markers of adaptive immunity, thymic function, and bacterial translocation (pink ellipses)
related to the lipopolysaccharide and zeatin biosynthesis pathways. Taxaandpathwaybiomarkers ofHIVþ groupare in bold. Arrows indicate conditional
dependencies between variables. The Spearman correlation coefficient is indicated next to the lines.
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overgrowth of Eubacterium and higher %CD8þCD57þ T
cells, which in turn correlated positively with the genus Dorea
genus, and D-Glutamine and D-glutamate metabolism
pathway. The %CD4þCD38þ T cells showed a single
negative correlation with the latter metabolic pathway.
For Coprococcus, the Markov Blanket illustrated how a low
abundance of this genus had an impact on different phenotypes
of activated T cells (%CD8þCD38þ , %CD8þHLA-DRþ
CD38þ , and %CD8þCD25þ ). The glutathione metabolism
pathway again correlated positively with markers of T cell
activation (%CD8þCD25þ ) (Figure 7b).

DISCUSSION

Most studies show that despite modern ART, HIVþ
individuals have reduced life expectancy, mainly owing to
the increase in morbidity and mortality associated with non-
AIDS-related diseases, which are driven in part by persistent
inflammation and immune activation.3 Several recent stu-
dies15,19–25 have explored the relationships between gut
microbiota composition and HIV infection using different
sampling techniques (stool, anal swab, biopsy, and sponge
collection) and bacterial classification methods (16Sr RNA
gene PCR, quantitative PCR and microarray). Even though
stool microbiota might not be an exact reflection of the gut-
resident bacterial community,26 amplification of the16S rRNA
gene in stools will probably be sufficiently informative, as it
recovers bacteria frommucosal desquamation and is the easiest
sampling technique to be considered standard for these
investigations. Indeed, our results are congruent with those
of previous studies based on colon biopsies that report similar
dysbiotic microbiota depleted in Bacteroides and enriched in
Prevotella.20,25

Given the broad range of clinical consequences of heightened
immune activation inHIVþ individuals, we focused our study
on HIVþ subjects without comorbidities receiving long-term
effective ART. These patients are probably good candidates for
strategies aimed at shaping the gut microbiome. In our study,
HIVþ individuals presented a distinctive microbiota compo-
sition characterized by high abundance of Prevotella and

Succinivibrio, and depletion of Bacteroides, Faecalibacterium,
and Roseburia. Some of these taxa were recently reported to be
members of the gut-resident microbiota in HIVþ indivi-
duals.15,20,23,24 The Enterobacteriaceae family has been asso-
ciated with bacterial translocation and immune activation,27,28

although, in contrast with Vujkovic-Cvijn et al.23 and
consistent with Lozupone et al.,24 we did not detect a high
prevalence of this bacterial taxon in our HIV-infected cohort.
This discrepancy is most likely due to the use of mucosal
samples rather than luminal samples for these studies.
Vujkovic-Cvijn and Dunham23 examined colonic mucosal
samples, which are widely colonized by Enterobacteriaceae,
whereas Lozupone et al.24 examined stool, as did we. However,
our HIV-infected cohort showed a gut microbiota composition
dominated by Gram-negative bacteria—representing 71% of
the bacterial community—increased bacterial load and
decreased diversity at the OTU (97%) level. Intriguingly,
the two individuals (H14 andH24) with a ‘‘normal’’ microbiota
composition showed the highest CD4/CD8 ratio in the cohort,
and this ratio was the only variable available in clinical practice
that correlated with the extent of dysbiosis, suggesting that
normalization of this biomarker of immunological dysfunction
during ART may also predict normalization of gut microbiota,
at least in terms of composition. InART-treated individuals, the
fact that the CD4/CD8 ratio correlates with activity of the
kynurenine pathway of tryptophan catabolism, an established
marker of disease progression,29 provides indirect support for
the recent observation by Vujkovic-Cvijin and Dunham23, who
suggested that dysbiosis of the gut microbial community affects
negatively this critical pathway in healthy immune system.23

In other studies, reduced diversity has been observed in
treatedHIVþ individuals,24,25 indicating that the combination
of HIV infection and its treatment leads to decreased microbial
diversity. This particular microbiota composition, character-
ized by Prevotella enrichment and Bacteroides depletion, has
been described mainly in human populations with a carbohy-
drate-rich diet30–33 and recently in HIV-infected subjects.24

In addition, Lozupone et al. 24 showed that the microbiota of
HIVþ subjects is closer to those of people from agrarian

Figure 7 Network integrating genera, markers of adaptive immunity, andmetabolic pathways. (a) Markov Blankets of the%CD8þCD57þ T cells and
%CD4þCD38þ T cells (b) Markov Blanket of the Coprococcus genus. Bayesian networks show the relationships between genera abundance (blue
ellipses), pathway abundance (green ellipses), and markers of adaptive immunity (pink ellipses). Taxa and pathway biomarkers of the HIVþ group are
indicated in bold. Arrows indicate conditional dependencies between variables. The Spearman correlation coefficient is indicated next to the lines.
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cultures than to that of healthy people from the United States.
All subjects in our cohort followed a similar western diet,
indicating thatHIV infection is the likely factor driving changes
in the gut microbiota. The observed depletion of Faecalibac-
terium and Roseburia, the major butyrate producers, might
result in lower local production of short-chain fatty acids. In the
healthy human gut, short-chain fatty acids such as butyrate,
propionate, and acetate are an important energy source for the
maintenance of homeostasis in the colonic mucosa and display
anti-inflammatory properties.34–36 Alterations in the short-
chain fatty acid ratio have been related to an amplification of
inflammatory responses in diseases that are typically associated
with bacterial dysbiosis, such as ulcerative colitis and bacterial
vaginosis.12,37 In fact, a drastic decrease in the number of genes
involved in glycolysis and pyruvatemetabolismwas observed in
the metagenomes from HIV-infected individuals. Further
short-chain fatty acid quantification should be performed to
address its involvement in the inflammation process. On the
other hand, depletion of the anti-inflammatory commensal
genus Faecalibacterium has been reported in the anal micro-
biota of treated HIVþ patients25 and in patients with Crohn’s
disease.38 Interestingly, the Markov Blankets of the %CD8þ
CD57þ T cells (Figure 7) parallels previous observations in
centenarians, in whom the depletion of Faecalibacterium genus
correlates with an increase in Eubacterium species39 and with
an increase in %CD8þCD57þ T cell, a hallmark of
immunosenescence in HIV infection.8,40 Furthermore, given
that certain Bacteroides species are required for differentiation
of the Th17 T cells, the significant loss of this bacterial genus in
treated-HIV individuals might either aggravate the Th17 loss
secondary to HIV infection or impair their reconstitution
under ART.41

The high number of significantly abundant pathways and
KOs in the bacterial community of HIVþ individuals in our
study revealed a functional dysbiosis that might explain, at least
in part, the situation of chronic inflammation observed during
treated HIV infection. Subject H24 (HIVþ ) had an altered
metabolic profile despite clustering with individuals with a
healthy bacterial composition. The fact that this subject was
overweight (body mass index¼ 29 kgm� 2) suggests that
other pro-inflammatory factors, such as obesity-related
factors, might have a role. In addition, control C49 had an
altered gut microbiota composition dominated by Prevotella
genus ‘Prevotella enterotype’42 but showed healthy functional
capacity.

The significant correlation found between PC1 and the LPS
biosynthesis pathway (P-value¼ 0, adjusted P-value BH¼ 0,
r¼ 0.89) would indicate that Gram-negative-enriched micro-
biota was responsible for the high abundance of KOs belonging
to the LPS biosynthesis pathway in HIVþ individuals. These
lipopolysaccharides are microbe-associated molecular pat-
terns, which are potent immune activators that act via Toll-
like receptor (TLR4) by promoting the inflammatory
response.43 In other gut microbiota-associated diseases and
in silico predictions of the HIV microbiota, an increase in
antioxidant pathways such as riboflavin, glutathione, and

glutaminemetabolismhas been described and interpreted as the
bacterial compensatory mechanism that attenuates the oxida-
tive stress caused by epithelial damage.12,15,36,44 Likewise, the
microbiota of treated HIVþ individuals was functionally
enriched for ubiquinone and other terpenoid–quinone bio-
synthesis, nicotinate and nicotinamide metabolism, glutathione
metabolism, and thiamine metabolic pathways. This latter
pathway correlated negatively with hs-CRP and D-dimers.
These results are congruent with the anti-inflammatory effect of
thiamine that has been described in mammals45,46 and with the
fact that a depletion of this vitamin exists in other gastro-
intestinal illnesses, such as Crohn’s disease.47 Unlike the
observations in a previous study,23 we did not detect differences
in genes involved in the kynurenine pathway of tryptophan
catabolism. This inconsistency could be given by the different
nature of the sample (colorectal biopsies vs. stool samples) or by
the fact that the species capable to perform tryptophan
catabolism are less frequent in the stool microbiota. In our
view, the depletion of genes involved in amino acid metabolism
and energy processes might be upregulating inflammatory
pathways in HIV-infected individuals.

Altogether, we propose a complex network that integrates
the different interactions between gut microbiota, metabolic
functions, and host immunity. Although no relationship was
found between microbial composition and sCD14, we found a
correlation between bacterial translocation markers (sCD14
and BPI) and the zeatin biosynthesis pathway. As zeatins
belong to a class of phytocytokine involved in the complex cell-
signaling pathway, this observation suggests that the interac-
tion between the microbiota and bacterial translocation could
occur indirectly by cytokine signaling. Importantly, we detected
a strong correlation between bacterial genera composition
and the LPS pathway, suggesting that the abundance of
Gram-negative bacteria in the dysbiotic microbiota of HIV-
infected subjectsmight contribute to the burden of translocated
bacterial antigens and, consequently, to chronic immune
activation. This hypothesis is also supported by the significant
association between the LPS biosynthesis pathway and
both BPI and T-cell activation (%CD4þHLA-DRþCD38þ
T cells). Similarly, pathways related to bacterial antioxidant
response, glutathione metabolism, and D-glutamine and
D-glutamate metabolism correlated with different immune
activation markers.

Considering our findings and current knowledge in the field,
we believe that the profound disruption of gut-associated
lymphoid tissue secondary to HIV infection would generate a
dysbiotic microbiota, both in terms of its composition—Gram-
negative bacteria enrichment—and in terms of its altered
metabolic profile with many genes involved in the LPS
biosynthesis pathway, pathogenic pathways, and processes
related with oxidative stress. This compositional and functional
dysbiosis seems to fuel chronic innate and adaptive immune
dysfunction and may be a viable target for interventions.
Further longitudinal studies should be performed to provide
evidence of causality in the correlations. A larger sample size
and the inclusion of HIVþ patients with a different
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immunological response will be necessary to obtain a
comprehensive understanding of the role of dysbiotic micro-
biota in HIV infection.

METHODS

Study design, participants, setting, and eligibility. We conducted a
case–control study in 30 participants (15 cases and 15 controls). Cases
were HIVþ patients attending the HIV clinics of two University
hospitals inMadrid, Spain (UniversityHospital Clı́nico SanCarlos and
University Hospital Ramón y Cajal). The inclusion criteria were
serologically documented HIV infection, age 18 years or older, at least
2 years under ART-mediated HIV RNA suppression with a regimen
containing at least three antiretroviral drugs, and a CD4þ T cell count
Z350 cells per ml. The controls were healthy non-HIV-infected
volunteers (mostly staff working in either institution), who were
recruited to form an age-matched control group. The exclusion criteria
were use of concomitant medications, use of systemic antibiotics
during the previous 3 months, and any acute or chronic condition
other than chronic HIV infection, including gastrointestinal symp-
toms (constipation, bloating, or diarrhea) or co-infections by hepatitis
B or C viruses. We were only able to collect fecal samples from 12
controls and 9 HIVþ patients.
This study was conformed to the principles of the Declaration of

Helsinki and the Good Clinical Practice Guidelines, and was approved
by the Independent Ethics Committees at both recruiting institutions
(University Hospital Clı́nico San Carlos ceic.hrc@salud.madrid.org
and University Hospital Ramón y Cajal, ceic.hrc@salud.madrid.org).
All patients and healthy donors provided written informed consent.

Nucleic acid purification. Fecal samples were stored in RNAlater
solution (Life Technologies, Carlsbad, CA) at � 801C until use. Total
DNA was extracted as described elsewhere.48 Briefly, samples were
diluted (dilution 1:2) in phosphate-buffered saline solution before
being centrifuged at 2,000 r.p.m. at 4 1C for 2min to remove fecal
debris. The supernatant was centrifuged at 13,000 r.p.m. for 5min to
pellet the cells. Total DNA was extracted from pelleted cells using
QIAamp DNA Stool Kit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions.

Amplification of the 16S rRNAgene. For each sample, a region of the
16S rRNA gene was amplified by PCR with the universal primers E8F
(50-AGAGTTTGATCMTGGCTCAG-30) and 530R (50-CCGCGGC
KGCTGGCAC-30). The E8F primer included a sample-specific
multiplex identifier to be multiplexed and sequenced simultaneously.
The amplified region comprises hypervariable regions V1, V2, andV3.
PCR products were purified using the NucleoFast 96 PCR Clean-Up
Kit (Macherey-Nagel, Düren, Germany). The pooled PCR products
were pyrosequenced directly following GS FLXþ emPCR amplifi-
cation manual available at www.454.com/my454.

Pyrosequencing. Metagenomes and 16S rRNA gene amplicons were
pyrosequenced using a Roche GS FLX sequencer and titanium
chemistry at the Centre for Public Health Research (FISABIO-Salud
Pública, Valencia, Spain). All sequences were deposited in the public
European Nucleotide Archive server under accession number
PRJEB5185.

Microbial quantification by quantitative PCR. Quantitative PCR
conditions are detailed in Supplementary Materials.

16S RNA: Phylogenetic analysis, biodiversity and clustering.
Amplicon data from the 16S rRNA gene were analyzed following the
recommendations of the metagenomic state-of-the-art pipeline
QIIME (v 1.6).49 Detailed methods for the analysis on the amplicon
data are described in Supplementary Materials.

Metagenome analysis. Sequence trimming, dereplication and
removal of host sequences were performed using the MG-RAST

pipeline (Release version 3.2) (default parameters) (http://
metagenomics.anl.gov/).50 Functional assignments were obtained
from the MG-RAST pipe line using BLAT software (https://
genome.ucsc.edu/FAQ/FAQblat.html) (e-value e� 5, minimum
identity 60%, and minimum alignment length 15 amino acids) against
the KO database for each hierarchical level (Level 1, Level 2, Pathway
level, and KO group).

Biomarker discovery. The LEfSe algorithm51 was used to
identify specific taxa and functions as biomarkers for cases and
controls. We fixed an a-value o0.05. The bacterial taxa, or function,
with significant differences between samples were used to build
the LDA model and to estimate its effect as a discriminant
feature between them. The threshold used to consider a discriminative
feature for the logarithmic LDA score was set at 42. The bio-
marker discovery was performed at the genus level and for all
hierarchical functional levels.We considered sampleH02 as an outlier,
owing to its bacterial and functional composition, and excluded it from
these analyses.

Correlation analyses. We assessed correlations between markers of
innate and adaptive immune activation, markers of innate immunity,
and the first component of the principal coordinates analysis , as
described elsewhere.23 Linear regression coefficients (library ‘‘stats’’,
function ‘‘lm’’) were calculated for all correlations with a significant P-
value (ao0.05) in the Spearman correlation index (library ‘‘stats’’,
function ‘‘cor.test’’). Correlation analyses were also performed
between clinical variables and metabolic pathways. All P-values were
adjusted using the Benjamini–Hochberg correction (library ‘‘stats’’,
function ‘‘p.adjust’’).
Functional pathway abundances predicted by the shotgun 454

pyrosequencing sequences in the fecal samples from the controls and
cases (metagenomes) were correlated using the Spearman correlation
index (library ‘‘stats’’, function ‘‘cor.test’’) with a P-value cutoff of
ao0.1, and themarkers of innate and adaptive immune activation and
innate immunity.

Immunological predictors of disease progression. Markers of
innate immune activation and bacterial translocation. A sample of
fasting venous blood was obtained to determine concentrations of
glucose, IL-6, total cholesterol, high-density lipoprotein cholesterol,
and triglycerides using standard enzymatic methods. Plasma viral load
was measured using the Cobas Taq-Man HIV-1 assay (Roche
Diagnostics Systems, Branchburg, NJ). Plasma levels of hs-CRP were
measured using nephelometry (VISTA System, Siemens Healthcare
Diagnostics, Deerfield, IL). D-dimers were measured using turbidi-
metry (Beckman-Coulter, Munster, Germany). Cryopreserved plasma
was assessed by immunoassay for BPI protein (Hycult Biotech, Uden,
The Netherlands) and soluble CD14 (sCD14, BioVendor, Brno, Czech
Republic).
Markers of adaptive immune activation. T-cell immunophenotyping:
Fresh anticoagulated whole blood was used to analyze CD4þ
and CD8þ T cells with the following antibody combination:
CD3-eFluor450, CD4-peridinin chlorophyll protein complex,
CD8-phycoerythrin-Cy7, CD38-Horizon V500, CD25-allophycocya-
nin (APC), HLA-DR-APC-Cy7, and CD57-fluorescein isothi-
ocyanate. Antibodies were from Becton Dickinson (Becton
Dickinson, Franklin Lakes, NJ) and unstained controls were
performed for all samples. Cells were collected using a Gallios flow
cytometer (Beckman-Coulter, Munster, Germany) and analyzed with
Kaluza software (Beckman-Coulter) to quantify the percentage of
CD4þ and CD8þ T cells expressingmarkers of activation (CD25þ ,
CD38þ , HLADRþ , or CD38þ /HLA-DRþ ) and senescence
(CD57þ ).
sj/b-TREC ratio quantification: Thymic function was indirectly
calculated in peripheral blood mononuclear cells DNA using the
sj/b-TREC ratio, as previously described,52 with minor modifications
(see Supplementary Materials).
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Bayesian network. The statistical R package ‘‘Bayesian network
learning and inference’’ (bnlearn)53was used to estimate a probabilistic
graph model between bacterial genera, functional composition and
markers of innate and T-cell activation variables, thymic function,
and bacterial translocation. The network topology was created using a
hill-climbing score-based learning algorithm. The algorithm states the
optimal network and in consequence the ‘‘father’’ to ‘‘child’’ node
relationships as that which maximizes the Bayesian information
criterion.
For the analyses in HIV-infected individuals, the input variables

were as follows: markers of adaptive immunity, thymic function, and
bacterial translocation (clinical variables); biomarker genera and taxa
with relative abundance above 0.5% (bacterial genera); and pathways
biomarkers, glutathione metabolism pathway (ko00480), and the
D-glutamine and D-glutamate metabolism (ko00471) (metabolic
functions). We did not include the sample H02 in the network
estimation given that it was the most dissimilar in terms of genus
composition.
The underlying graphical structure of the network and the

conditional probability given the model parameters were estimated
using the hill-climbing algorithm with Bayesian information criterion
as the criteria of model selection (function ‘‘hc’’, package ‘‘bnlearn’’).
The option blacklist (R Package ‘‘bnlearn’’ function ‘‘hc’’) was used to
define the set of arcs not included in the model, excluding those
variables with a correlation P-value above 0.1 (R Package ‘‘stats’’,
function ‘‘cor’’, method ‘‘Spearman’’). Similarly, arcs with significant
correlations that were not included in the final graph were
incorporated by means of the whitelist option (function ‘‘hc’’, package
‘‘bnlearn’’). Function mb (R Package ‘‘bnlearn’’ function ‘‘mb’’) was
used to estimate the Markov Blanket from the lipopolysaccharide
biosynthesis, zeatin biosynthesis, Coprococcus, and the markers of
immune activation/senescence CD4þCD38þ T cells and CD8þ
CD57þ T cells.

Statistical analysis. Additional statistical methods are described in
Supplementary Materials.

SUPPLEMENTARYMATERIAL is linked to the online version of the paper

at http://www.nature.com/mi
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