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 INTRODUCTION 
 Polymorphonuclear leukocytes (PMN), also called neutrophils, 

are the most abundant leukocyte population in the blood, com-

prising 50 – 60 %  of the circulating leukocytes (25 × 10 9  cells). 1  

PMN are critical components of the innate immune response 

that are essential in protecting the host from microbial patho-

gens, while also minimizing deleterious effects mediated by 

dying or injured cells (reviewed in Amulic  et al.  2 ). PMN are 

elegantly adapted to perform a variety of antimicrobial functions 

such as degranulation and phagocytosis ( Figure 1 ).    2 Indeed, 

neutrophils are uniquely capable of forming massive amounts of 

reactive oxygen species and other toxic molecules that effectively 

destroy pathogens. Upon PMN contact with invading microbes, 

reactive oxygen species are generated in an oxidative burst by 

an nicotinamide adenine dinucleotide phosphate (NADPH) 

oxidase consisting of a multi-subunit enzyme complex that is 

assembled on the membrane ( Figure 1 ) (Cross and Segal 3  and 

reviewed in Babior 4  and Petry  et al.  5 ). Another component of the 

PMN antibacterial arsenal consists of different pools of intracel-

lular granules that contain antimicrobial peptides ( � -defensins 

and cathelicidins), myeloperoxidase, hydrolytic enzymes 

(lysozyme, sialidase, and collagenase), proteases (cathepsin G, 

azurocidin, and elastase), cationic phospholipase, and metal 

chelators (lactoferrin) that are released upon contact with 

microbes. 6  Finally, PMN are capable of imprinting the tissue 

with antimicrobial  “ prisons ”  termed neutrophil extracellular 

traps (NETs) ( Figure 1 ).   7  NETs have been extensively inves-

tigated in recent years as it is now appreciated that this newly 

described function is a critical component of the neutrophil kill-

ing arsenal (reviewed in Papayannopoulos and Zychlinsky 8 ). 

Invading microorganisms are sequestered in these NETs com-

posed of nuclear contents (DNA and chromatin) mixed with 

toxic molecules from intracellular granules and the cytosol and 

effectively destroyed. 7,9  Although many of the details under-

lying formation of NETs are still unclear, it appears that NET 

production is linked to disappearance of nuclear and granule 

membranes and production of reactive oxygen species. 8  NET 

production is thus associated with major cellular alterations in 

PMN that include loss of nuclei. This results in a unique form 

of neutrophil cell death termed  “ NETosis ”  that is distinct from 

apoptosis or necrosis. 10,11  

 As highlighted above, PMN are a vital component of the 

innate immune system and comprise a critical component of 

the army of first responsers to sites of inflammation. 1,2  Although 

it is clear that PMN function is essential throughout the body, 

this review will focus on the role of PMN in intestinal inflam-

mation. Specifically, we provide an overview of the differential 

roles of neutrophils in intestinal homeostasis and disease and 

highlight factors known to participate in PMN recruitment 

during intestinal inflammation.   
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 Polymorphonuclear leukocytes or neutrophils play a critical role in the maintenance of intestinal homeostasis. They 
have elegant defense mechanisms to eliminate microbes that have translocated across a single layer of mucosal 
epithelial cells that form a critical barrier between the gut lumen and the underlying tissue. During the inflammatory 
response, neutrophils also contribute to the recruitment of other immune cells and facilitate mucosal healing by 
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about neutrophil function in the gut.        
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 A PARADOX: THE BENEFICIAL AND DETRIMENTAL ROLES 
OF PMN DURING INTESTINAL INFLAMMATION 
 Homeostatic regulation of the intestine is complex and involves a 

delicate equilibrium to limit inflammation despite intimate con-

tact with massive numbers of commensal bacteria present in the 

lumen. Three major components contribute to gut homeostasis, 

including the epithelium, intestinal microbes, and immune cells. 

A single layer of intestinal epithelial cells (IECs) forms a protec-

tive physical barrier against commensal microflora present in 

the lumen. 12  It is now well established that the epithelium works 

in coordination with microflora and immune cells to maintain 

intestinal homeostasis. 13  

 During intestinal inflammation, resident monocytes con-

tribute to the recruitment of neutrophils through production 

of macrophage-derived chemokines. 14,15  Neutrophils present 

in the blood sense the chemoattractant gradient and traverse 

the vascular endothelium to reach the intestinal lamina propria. 

As part of the normal gut inflammatory response, neutrophils 

are recruited to sites of infection or inflammatory stimuli within 

minutes, and the response peaks by 24 – 48 hours. Under cer-

tain physiological or pathological conditions, neutrophils cross 

the epithelium into the intestinal lumen. Upon reaching the 

inflammatory site, neutrophils selectively release monocyte 

chemoattractants, such as CAP18, cathepsin G, and azuroci-

din (reviewed in Soehnlein and Lindbom 15 ). Thus, shortly after 

arrival of PMN to the mucosa, macrophages are recruited for 

a second-wave inflammatory response that ensues for the next 

several days. 

 Inflammatory bowel diseases (IBDs) such as ulcerative colitis 

(UC) and Crohn ’ s disease (CD) have complex etiologies but are 

simply characterized by chronic active intestinal inflammation 

that waxes and wanes. The main features of these diseases are 

a robust inflammatory response of unknown origin associated 

with mucosal injury and increased epithelial permeability, inva-

sion of commensal bacteria into the subepithelial space or lam-

ina propria, and massive recruitment of neutrophils (reviewed 

in Maloy and Powrie 13 ). The pathogenesis of IBD is thus clearly 

multifactorial and dependent on disruption of the epithelial bar-

rier, dysregulation of the innate immune system responses to 

commensal flora, and defects in the adaptive immune system 

(reviewed in Kaser  et al.  16 ). However, the relative contribu-

tions of PMN to the pathogenesis of IBD is controversial with 

some studies describing a beneficial role, yet, others report-

ing pathological contributions from neutrophils. For example, 

some reports of studies using either rat or mouse models of 

colitis (dinitrobenzene sulfonic acid [DNBS], dextran sulphate 

sodium [DSS], and CD4     +     CD45RB high  transfer) have demon-

strated that neutrophil depletion exacerbates inflammation, 

suggesting that PMN have a beneficial role during colitis. 17 – 19  

In contrast, depletion of neutrophils in the rat using anti-neu-

trophil antibodies have been shown to ameliorate DSS- and 

2,4,6-trinitronitrobenzene sulfonic acid (TNBS)-induced coli-

tis. 20 – 22  However, there are other studies using anti-neutrophil 

antibodies that have failed to demonstrate a role for neutrophils 

in the pathogenesis of particular models of experimental colitis 

in rats (acetic acid and phorbol-12-myristate-13-acetate). 21,23  

A discrepancy pertaining to the role of PMN in colitis has been 

noted in mouse studies where the different conclusions are 

assumed to be related, in part, to the use of anti-Gr1 antibody 

to deplete neutrophils. Specifically, anti-Gr1 antibodies appear to 

have systemic effects and not only bind to neutrophils but also 

to monocytes. 24,25  In addition to differences in methods used 

to deplete neutrophils, it is also important to note that different 

rodent models of colitis are often used that require induction by 

markedly distinct mechanisms. Some models act by direct com-

promise of epithelial integrity (DSS and DNBS / TNBS-induced 

colitis), whereas others are a direct result of dysregulation of 

the immune system (CD45RB  high  transfer). 26  To complicate 

matters further, some epithelial injury – based models such as 

DNBS / TNBS have been reported to mimic chronic intestinal 

inflammation, whereas others recapitulate acute colitis. 27  The 

importance of such differences is highlighted in a neutrophil-

depletion study demonstrating no effect in PMA- and acetic 

acid – induced models, but effective amelioration of colitis 

induced by TNBS. 21  Interestingly, the depletion of intestinal 

mononuclear phagocytes (macrophages and dendritic cells) has 

been reported to increase neutrophil infiltration and increase 

the severity of injury in the DSS-induced colitis model. However, 

when both neutrophils and mononuclear phagocytes were 

depleted, colitis did not worsen, suggesting that neutrophils are 

deleterious in the absence of mononuclear cells during intestinal 

inflammation. Thus, intestinal mononuclear cells clearly have a 
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    Figure 1             Neutrophils contain a potent antimicrobial arsenal. The 
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 
produces reactive oxygen species (ROS), e.g., hydrogen peroxide 
(H 2 O 2 ), hypochlorite ion (OCl     −     ), and superoxide anion (O 2      −     ) in the 
phagolysosome during phagocytosis. Various intracellular granules 
(azurophil or primary, specific or secondary, gelatinase or tertiary, and 
secretory granules) containing potent antimicrobial agents are also 
released in the phagolysosome or in the extracellular space through 
degranulation. Finally, neutrophil extracellular traps (NETs) are also 
produced during polymorphonuclear leukocytes activation. (Adapted 
from Cross and Segal, 3  Papayannopoulos and Zychlinsky, 8  Quinn 
 et al. , 176  and Faurschou and Borregard. 177 )  
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role in regulating neutrophil infiltration during colitis, and these 

observations highlight the interdependence of PMN function 

with other immune cells during colitis. 28  These findings are in 

keeping with current dogma that neutrophils and macrophages 

interact sequentially in the inflammatory process (reviewed 

in Soehnlein and Lindbom 15 ). Although the specific role of 

neutrophils during colitis has not been clearly delineated, it is 

clear that the role of neutrophils in regulating intestinal inflam-

mation depends on the conditions and model used. Thus, addi-

tional studies are sorely needed to better understand neutrophil 

contributions to pathological intestinal inflammation.   

 NEUTROPHIL FUNCTION IN THE INTESTINE DURING 
HEALTH AND DISEASE  
 PMN as an antimicrobial weapon that protects the mucosa 
 The primary function of neutrophils in the gut is to kill luminal 

microbes that translocate across the epithelium and invade the 

mucosa. A good example of the importance of PMN in clear-

ing invading microbes is the enhanced translocation of bacte-

ria observed in colitic mice that have been depleted of PMN. 17  

However, conditions associated with disruption of epithelial bar-

rier leading to increased translocation of commensal bacteria 

into the mucosa does not necessarily predispose individuals to 

pathological intestinal inflammation. Indeed, mice lacking junc-

tional adhesion molecule (JAM)-A, a tight junction-associated 

protein expressed in IECs, have increased epithelial permeabil-

ity and enhanced translocation of bacteria across the intesti-

nal mucosa but do not get spontaneous colitis despite having 

increased levels of PMN in the sub-epithelial space or lamina 

propria. 29  Presumably, increased recruitment of PMN to the 

lamina propria and / or some as yet unknown adaptive immune 

compensatory mechanisms serve a protective role in this situa-

tion. However, such compensatory mechanisms are lost under 

conditions of pathological intestinal inflammation as in IBD. 

Indeed, it has been observed that increased intestinal perme-

ability results in a significantly increased numbers of commensal 

bacteria in the colonic mucosa of IBD patients compared with 

normal individuals. 30  Furthermore, analysis of granulomas in 

CD revealed the presence of  Escherichia coli  DNA in 80 %  of 

patients, suggesting that mucosal-infiltrated bacteria may have 

a role in the inflammatory process. 31  Insufficient numbers of 

functional PMN in the intestine during times of increased bac-

terial invasion might thus predispose to disease. In support of 

this, it appears that the number of PMN required to prevent 

bacterial multiplication in tissues is much higher than in the 

blood. Furthermore, the tissue surveillance capacity of neu-

trophils depends on the density of the neutrophils rather than 

the concentration of bacteria. 32  

 Not only is the density of neutrophils in the tissue critical to 

keep luminal bacteria from gaining access to the body, the  compo-

sition of the microflora also has a critical role in gut homeo stasis 

as disturbance of this balance is associated with pathological 

intestinal inflammation. It is known that alterations in the 

composition of colonic microflora are present in patients with 

IBD (reviewed in Kaur  et al.  33 ). Furthermore, germ-free mice 

lacking these bacteria in the gut have exacerbated acute injury 

during DSS-induced colitis compared with conventionally raised 

mice. 34  Colonization with commensal flora from wild-type 

mice results in the amelioration of colitis symptoms, suggest-

ing that gut microbiota protect against colitis. 34  These findings 

are in keeping with an important function of the microbiota to 

decrease colonization from bacterial pathogens and therefore 

prevent or, at least, diminish pathogen invasion (reviewed in 

Ashida  et al.  35 ). Indeed, alterations in the commensal flora in 

patients with IBD is associated with increased risk of acquiring 

infection from intestinal pathogens. The above observations 

indicate that intestinal bacteria have a key role in regulating the 

inflammatory response, which is critically dependent on PMN, 

not only to keep excess translocation of commensal bacteria in 

check, but also to fight against invasion by pathogens that have 

gained a foothold under conditions of disease. 

 PMN are not only well suited to kill bacteria but the antimi-

crobial arsenal they possess can also contribute to an exacer-

bated inflammatory response. For example, Pentraxin 3, which 

is a component of specific neutrophil granules and NETs, is an 

antimicrobial protein released after PMN activation. It functions 

as a pattern-recognition molecule with opsonic activity involved 

in humoral immunity 36,37  and has been shown to prevent neu-

trophil extravasation and recruitment though interaction with 

P-selectin on endothelial cells. 38  In UC, pentraxin 3 has been 

mainly found in crypt abscesses, and its expression correlates 

with the histological grade of the disease. Although the exact 

role of pentraxin 3 in colitis is not fully understood, it has been 

proposed to participate in the pathology of crypt abscesses. 36  

Elastase is an example of a PMN azurophil granule constitu-

ent that has potent antimicrobial activity as a serine esterase 

and may also contribute to pathological inflammation in IBD. 

Anti-elastase therapy, for example, results in improvement of 

DSS- and TNBS-induced colitis in the rat. 39  Not surprisingly, 

elevated elastase levels have also been reported in stool samples 

of patients with IBD. 40  Another potent antimicrobial function 

of PMN that has been reported to have a role in pathological 

intestinal inflammation is the generation of reactive oxygen 

species from the neutrophil NADPH oxidase. Interestingly, it 

has been reported that mice lacking functional Gp91 phox , one 

of the membrane-bound proteins of NADPH oxidase, exhibit 

less mucosal injury in a DSS-induced model of colitis. 41  By 

contrast, mice lacking Gp47 phox , one of the cytosolic proteins 

of NADPH oxidase, do not exhibit protection compared with 

wild-type mice during DSS-induced colitis, suggesting that these 

two components of NADPH oxidase may have different func-

tions during colitis. 42  From these examples it is apparent that 

PMN can act as double-edged sword in that both contribute 

to intestinal homeostasis through the elimination of unwanted 

pathogens and also participate in harmful inflammatory proc-

esses and can exacerbate the inflammation owing to the release 

of toxic granule contents and pro-inflammatory molecules. 43    

 PMN directly contribute to immune cell recruitment and 
activation in the gut 
 The production of cytokines and mediators involved in inflam-

mation and cellular immune responses by PMN is highly 
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relevant for intestinal inflammatory disease and has been exten-

sively explored in recent years. 44  Neutrophils secrete significant 

amounts of pro-inflammatory cytokines such as CXCL8 and 

anti-inflammatory cytokines, including interleukin (IL)-10 

during intestinal inflammation. 44 – 46  Interestingly, it has been 

recently reported that PMN are capable of producing IL-17, 47  

which has been widely implicated in pathological intestinal 

inflammation. 48  PMN-derived IL-17 has also been implicated 

in murine kidney ischemia-reperfusion injury, 49  suggesting 

that IL-17 production by intestinal PMN may have a role in gut 

inflammation. 

 Neutrophils also produce matrix metalloproteases (MMPs), 

which are involved in the cleavage of chemokine precursors 

that have critical roles in cell recruitment. MMP-9 or gelatinase 

B, present in PMN tertiary granules, is able to cleave several 

chemokines, thereby mediating inactivation (growth-regulated 

oncogene- �  (GRO- � ) and platelet factor 4) or increasing their 

potency (CXCL-1 and CXCL-8). 50  Similarly, MMP-8 produced 

by PMN and macrophages cleaves CXCL-5 and CXCL-8, 

promoting their activation. 51  Thus, PMN can potently affect 

inflammatory conditions through the secretion or modification 

of cytokines and chemokines that have important roles in the 

recruitment of additional effector cells. 

 Another potential contribution of PMN to pathological 

immune cell activation includes the ability to acquire antigen-

presenting function during colitis, an intriguing event previously 

reported during other inflammatory diseases such as rheuma-

toid arthritis. 52  PMN isolated from inflamed colon in a model 

of adoptive transfer of CD4     +      T cells were reported to express 

major histocompatibility complex-II and CD86, usually present 

on antigen-presenting cells such as macrophages or dendritic 

cells but not on PMN. Such neutrophils were capable of inducing 

 in vitro  CD4     +      T cell activation in an major histocompatibility 

complex-II- and antigen-dependent manner. 25  Although these 

findings have not been confirmed in other colitis models or in 

human disease, it is intriguing that PMN might contribute to 

the pathogenesis of colitis by activating T cells.   

 How neutrophil transepithelial migration participates in the 
pathogenesis of colitis 
 Trafficking of neutrophils out of the circulation towards the 

intestine is a critical component of the inflammatory response. 

Indeed, selectins, integrins, and adhesion molecules have been 

abundantly associated with intestinal inflammation (reviewed 

in Rivera-Nieves  et al.  53 ). To reach the intestinal lumen, PMN 

must first exit the circulation, migrate across the lamina propria 

and finally cross the epithelial barrier. 1,54  We will not focus on 

the proximal event of PMN transendothelial transmigration or 

parameters resulting from microvascular deficits, but rather on 

transepithelial migration, as disease symptoms correlate more 

strongly with migration of PMN across the intestinal epithe-

lium under conditions of pathological intestinal inflammation. 

However, it is relevant to mention that neutrophil transmigration 

across the intestinal epithelium is distinct from that of transen-

dothelial migration. For example, one obvious difference is the 

absence of shear force during transepithelial migration, which is 

a critical component of selectin-mediated interactions between 

PMN and endothelial cells (recently reviewed in Borregaard 55  

and Woodfin  et al.  56 ). Like transendothelial migration, PMN 

migration across the intestinal epithelium is a multistep process 

involving sequential interactions with IECs. In particular, PMN 

first bind to the IEC basolateral surface through interactions 

with the neutrophil  � 2 integrin CD11b / CD18 (also called Mac-1 

or CR3;  Figure 2 ).    57 Although basolateral epithelial ligand(s) 

for CD11b / CD18 have not been defined, proteins decorated 

in sulfated fucose appear to be important. 58  Furthermore, 

it is well appreciated that antibodies against CD11b decrease 

transepithelial transmigration. 57  PMN must next negotiate 

the paracellular space between epithelial cells, which presents 

a vital barrier owing to the presence of well-developed tight 

junctions ( Figure 2 ).   12  Although this aspect of PMN transepi-

thelial migration is poorly understood, a few of the molecular 

interactions are known. For example, the rate of PMN migra-

tion is likely regulated in part by interactions between PMN-

expressed signal-regulatory protein  �  and CD47 expressed on 

the basolateral membrane of IECs. 54,59,60  At the level of the 

tight junction, binding interactions between a PMN-expressed 

JAM-like molecule and a related tight junction protein termed 

Coxsackie and adenovirus receptor partially mediate transmi-

gration across epithelial tight junctions ( Figure 2 ).   61  It should 

be pointed out that this latter step is crucial in the development 

of pathological intestinal inflammation as transmigrating neu-

trophils create microscopic gaps between epithelial cells, leading 

to decreased transepithelial resistance. 62,63  Furthermore, mas-

sive PMN transmigration has been shown to alter cellular levels 

of tight junction proteins, thereby weakening the epithelial bar-

rier and increasing epithelial permeability. 64  Neutrophils may 

also release elastase that partially disrupts E-cadherin-mediated 

cell – cell contacts causing loss of epithelial barrier function. 65  

Loss of E-cadherin has been shown to result in activation of 

 � -catenin signaling and modulation of epithelial repair. 66  

In addition, loss of barrier function secondary to disruption of 

cell – cell junctions worsens inflammation by facilitating trans-

location of bacteria from the lumen to the mucosa and inducing 

further PMN transmigration. 

 PMN transepithelial migration has also been shown to regu-

late expression of the MMP ADAM17, which cleaves the inactive 

precursor of tumor necrosis factor (TNF) �  to form the active 

cytokine. This MMP is regulated by tissue inhibitor of metallo-

proteinase 3 (TIMP3) (reviewed in Scheller  et al.  67 ). Interestingly, 

both neutrophil transepithelial migration and treatment of epi-

thelial cells with TNF �  have been shown to increase epithelial 

ADAM17 and TIMP3 expression. 68  However, there are dis-

tinct differences in the time courses of ADAM17 and TIMP3 

expression during PMN transepithelial migration. In particu-

lar, increased ADAM17 expression is early, rapid, and transient 

after PMN transepithelial migration, whereas increased TIMP3 

expression occurs at later time points. 68  Furthermore, ADAM17, 

but not TIMP3, expression is increased in the inflamed colonic 

mucosa of individuals with active CD. 68,69  This increase corre-

lates with the histological severity of inflammation and number 

of PMN observed in the mucosa. 68  These results suggest that 
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TNF �  activation is promoted during the acute phase of inflam-

mation and may be repressed during the chronic phase. Since 

PMN transepithelial migration is a central component of the 

acute inflammatory process, it likely has an important role in 

ADAM17 activation and production of TNF �  during intesti-

nal inflammation. Thus, PMN transepithelial migration also 

contributes to intestinal inflammation by stimulating the 

production of inflammatory cytokines by means of MMP. 

 After PMN have crossed epithelial tight junctions, a late stage 

in the transepithelial migration response involves interactions 

with luminal or apical surfaces of IECs ( Figure 2 ). Here, PMN 

remain in intimate contact with IECs as part of crypt abscesses 

where they are exposed to both bacteria and a plethora of 

stimuli present in the lumen that result in neutrophil activa-

tion ( Figure 2 ).   54,70  Crypt abscesses, which are a classic feature 

of intestinal infection or active IBD, result from transmigra-

tion of massive numbers of activated neutrophils across tight 

junctions and accumulation within colonic epithelial crypts. 

This process results in deformation of crypt architecture and 

disease symptoms ( Figure 2 ).   70  

 It is known that activated PMN produce abundant levels of 

5 � -adenosine monophosphate, which is converted to adenos-

ine by an ectonucleotidase termed CD73 present on the apical 

surface of the colonic epithelium. 71  Adenosine then binds to 

its epithelial receptor A2B to stimulate electrogenic chloride 

transport and passive water flux. Such water transport is the 

basis of secretory diarrhea, a common feature of inflammatory 

conditions associated with PMN transmigration ( Figure 2 ).   71,72  

Although much remains to be investigated, some of the receptors 

mediating adhesive interactions between PMN and the apical 

epithelial surface have been described. For example, intercellular 

adhesion molecule-1, one of the known ligands for neutrophil 

CD11b / CD18, is expressed primarily on the apical surface of 

IECs under inflammatory conditions ( Figure 2 ).   73  Another IEC 

receptor for transmigrated PMN is CD55 or decay accelerat-

ing factor. Although the function of epithelial CD55 is not well 
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understood, it is abundantly expressed on the apical membrane 

and appears to have a role in the release of apically attached 

PMN, thereby leading to epithelial clearance. 74,75  Similarly, there 

are other complex interactions between transmigrated PMN and 

epithelial ligands on the apical membrane that mediate PMN 

detachment after proteolytic cleavage. Indeed, the v6 variant 

exon-containing form of CD44 is released from the apical sur-

face of epithelial cells during PMN transepithelial migration and 

likely has an important role in regulation of PMN detachment. 76  

Clearly more work is needed to understand the role of these 

events in pathological intestinal inflammation.   

 Role of PMN in mucosal wound healing 
 A major debilitating feature of IBD is the persistence of mucosal 

epithelial wounds / ulcers secondary to an excessive inflamma-

tory response. It is clear that during the acute inflammatory 

phase, PMN have a critical role in cleansing sites of injury 

by eliminating invading microbes. 77  However, the cleansing 

process is associated with tissue injury and, although much 

has been learned about mechanisms of mucosal wounding, a 

similarly important aspect that deserves attention is the healing 

process. After injury, for intestinal mucosal healing to proceed, 

immune cells have a critical role in resolution events that restore 

tissue integrity. 77  

 The resolution of inflammation requires that phagocytes 

exit along with efficient removal of inflammatory mediators 

and cell debris to restore homeostasis. 78  There is now abun-

dant evidence indicating that PMN have a crucial role during 

this particular phase of mucosal inflammation. Indeed, PMN 

produce or contribute to the biosynthesis of growth factors, 

such as vascular endothelial growth factor, and pro-resolution 

lipid mediators, such as lipoxins, resolvins, and protectins, 

that facilitate healing. 77,79  They also participate in the phago-

cytosis of cell debris accumulating at the wound. 80  Although 

PMN synthesize pro-inflammatory mediators, such as leuko-

trienes and prostaglandins, during the acute phase of inflam-

mation, the synthetic pathway is switched to produce the potent 

anti-inflammatory molecule, lipoxin A 4 , during resolution 

( Figure 3 ). 81  Lipoxin A 4  has been shown to inhibit PMN recruit-

ment and transepithelial migration. 82  Interestingly, patients with 

UC do not produce as much lipoxin A 4  and 15-lipoxygenase as 

healthy controls. 83  Furthermore, it has been shown that treat-

ment with lipoxin A 4  analogs decreases the severity of murine 

DSS- and TNBS-induced colitis. 84,85  

 Neutrophils have also been reported to participate in the bio-

synthesis of resolvin E1 from eicosapentaenoic acid by provid-

ing 5-lipoxygenase to catalyze the second enzymatic reaction 

( Figure 3 ).   86  Interestingly, resolvin E1 has been reported to 

associate with the leukotriene B 4  (LTB 4 ) receptor BLT1 present 

on neutrophils, resulting in downregulation of LTB 4  activ-

ity. 87  Similarly, docosohexaenoic acid is converted, through a 

series of enzymatic reactions, to protectin D1, and neutrophils 

contribute to this process with the 5-lipoxygenase involved in 

the second enzymatic reaction as highlighted in  Figure 3 .   88 – 90  

Resolvin E1 and protectin D1 both decrease neutrophil recruit-

ment and enhance the phagocytosis of apoptotic neutrophils. 91  

Furthermore, these two lipid mediators have been shown to 

increase the expression of CC-chemokine receptor 5 on senes-

cent neutrophils, therefore favoring elimination of the inflam-

matory CC-chemokine receptor 5 ligands CCL3 and CCL5. 92  

They also increase the expression of CD55 on the apical surface 

of IECs, resulting in the enhancement of PMN clearance (see 
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Section on transepithelial migration).   93   In vivo  treatment with 

resolvin E1 has been shown to reduce colonic ulcerations, PMN 

infiltration, and inflammatory cytokine production, such as 

IL-12, resulting in the amelioration of colitis in a murine model 

of TNBS-induced colitis. 94  

 A unique property of neutrophils that have exited the blood-

stream is the cessation of proliferation, resulting in a short 

lifespan of just a few days. During the resolution phase of an 

acute inflammatory response, infiltrated neutrophils undergo 

apoptosis and are subsequently cleared by resident macro-

phages (reviewed in Kennedy and Deleo 95 ). PMN undergoing 

apoptosis have diminished functional capacity but maintain 

membrane integrity and cytoplasmic contents until they are 

phagocytosed by tissue macrophages. 96,97  Under conditions of 

persistent acute inflammation, such as active IBD, neutrophils 

continually accumulate within the intestinal mucosa and can 

overwhelm the capacity of scavenger cells. 98,99  Apoptotic 

neutrophils that are not eliminated by macrophages undergo 

secondary necrosis and release the contents of intracellular 

granules, which can induce pathological tissue damage. 98,99  The 

proper elimination of senescent PMN is therefore an impor-

tant and active physiological process during inflammation, 

particularly during the resolution phase. In the intestine, the 

process of PMN apoptosis can be delayed or accelerated by a 

number of factors. 100  Bacterial lipopolysaccharide and several 

host-derived cytokines, including IL-1, IL-8, interferon- � , 

C5a, and granulocyte-macrophage colony stimulating factor 

(GM-CSF), inhibit PMN apoptosis. By contrast, the cytokines 

IL-10 and TNF �  as well as primary PMN functions, such as 

phagocytosis or respiratory burst, can induce apoptosis. 101 – 107  

Furthermore, transendothelial migration in response to 

the bacteria-derived chemoattractant formyl-methionyl-

leucyl-phenylalanine (fMLF) enhances the effect of pro- or anti-

apoptotic molecules like TNF �  or lipopolysaccharide. 108,109  

Interestingly, PMN transepithelial migration across T84 IECs 

 in vitro  has been shown to prevent PMN apoptosis, likely owing 

to shedding of Fas ligand, which is known to induce PMN 

apoptosis through the FAS (CD95) cell death receptor. 105  

 Because neutrophil apoptosis is delayed in IBD patients, the 

findings described above are particularly relevant for pathological 

intestinal inflammation. 110  It has been suggested that the delay in 

apoptosis observed in colitis is secondary to the abundant release 

of anti-apoptotic cytokines like GM-CSF as well as a decrease 

in caspase expression. 110,111  Indeed GM-CSF production is 

increased during IBD. 112  Intestinal perfusion fluids from individ-

uals with UC have been found to delay PMN apoptosis in a GM-

CSF-dependent manner and enhance PMN migration  in vitro.  113  

Furthermore, these effects are suppressed when patients are 

treated with corticosteroids. 113  Although more mechanistic 

studies are needed, these findings suggest that GM-CSF is a key 

player in the regulation of neutrophil cell death during IBD.   

 Defective neutrophil function is associated with pathological 
intestinal inflammation 
 Although the etiology of IBD is multifactorial, there is consider-

able evidence linking defective neutrophil function to disease 

pathophysiology. For example, neutrophils from individuals 

with CD may have defective superoxide generation and phago-

cytosis. 114 – 117  Such observations would also be expected to be 

associated with reduced clearance of mucosal bacteria, which 

could contribute to an excessive lymphocyte-mediated immune 

response. 117  Furthermore, PMN dysfunction observed in CD 

appears to be associated with a defect in macrophage responses. 

 In vitro  and  in vivo  studies using macrophages from CD patients 

have shown lower production of pro-inflammatory cytokines 

compared with normal cells. 118,119  Interestingly, neutrophil 

recruitment to traumatized skin and intestine in patients with 

CD is lower than in healthy individuals, which is likely due to 

poor production of PMN chemoattractants by macrophages. 119  

It is thus possible that a reduced acute inflammatory response 

with decreased PMN infiltration may contribute significantly 

to the pathological lymphocytic accumulation observed 

in CD. 120,121  

 Primary defects in neutrophil function have been associ-

ated with inflammatory intestinal lesions that are similar to 

those observed in CD. Chronic granulomatous disease is due 

to a lack of a functional NADPH oxidase and results in recur-

rent pyogenic infections that are often life-threatening. 122,123  

Interestingly, this disease is also characterized by abundant 

sterile granulomas in hollow organs such as the intestine. 122  

Indeed, 30 %  of chronic granulomatous disease patients have 

granulomatous colitis that is remarkably similar to what is 

observed in CD. 121,124 – 126  Neutrophils from chronic granulo-

matous disease patients also generate less anti-inflammatory 

mediators, such as prostaglandin D 2 , and are more resistant to 

apoptosis. These findings suggest that PMN in chronic granu-

lomatous disease may persist longer in tissues while producing 

more pro-inflammatory molecules than normal PMN. 127  Other 

rare congenital disorders with abnormalities in neutrophil func-

tion also lead to IBD-like intestinal inflammation (reviewed in 

Yamamoto-Furusho and Korzenik 120 ). For example, glycogen 

storage disease type 1, which is characterized by a deficiency of 

the glucose-6-phosphate hydrolase system, is associated with 

neutrophil functional defects (neutropenia, decreased PMN 

chemotaxis, and reduced intracellular killing) and intestinal 

symptoms similar to those in CD (focal acute and chronic 

inflammation that is sometimes associated with cryptitis and / or 

granulomas). 128,129  In addition, a patient with Chediak – Higashi 

syndrome, caused by a microtubule polymerization defect 

leading to decreased phagocytic activity, developed an 

intestinal complication with multiple ulcerations and stenotic 

lesions. 130  

 An interesting report highlighted an important role for signal 

transducer and activator of transcription (STAT-3) in PMN-

mediated intestinal inflammation. STAT3, which translocates to 

the nucleus after leukocyte activation, is involved in regulation 

of cytokine production and is one of the transcriptional regula-

tors involved in the IL-23 pathway identified as a susceptibil-

ity gene for IBD. 131,132  The specific deletion of STAT3 in PMN 

and macrophages (LysMcre / Stat3 flox /     −     ) has been reported to 

induce spontaneous chronic enterocolitis with increased infil-

tration of inflammatory cells (including PMN), crypt abscesses, 
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mucosal ulcerations without granuloma formation, and thick-

ening of the colon. 133  In LysMcre / Stat3 flox /     −      mice, inflamma-

tory cytokine expression (TNF � , IL-1, interferon- � , and IL-6) 

is increased likely owing to a decrease of IL-10. It has been 

suggested that spontaneous colitis in these mice is due to 

constitutive activation of immune cells, including neutrophils 

and macrophages. 133  

 The diminished expression of the anti-inflammatory cytokine 

IL-10 in the above Stat3-deficient mice supports the known role 

for this cytokine in regulating intestinal homeostasis. 133  Indeed, 

neutrophils and macrophages are constitutively activated in 

IL-10-deficient mice. 134  Although other parameters have 

clearly been implicated in the pathogenesis of spontaneous 

colitis of IL-10     −     /     −      mice, these results imply that PMN and 

macrophages may have a significant role. 133,135,136  It thus 

appears that both functional deficiency and hyperactivation of 

neutrophils lead to colitis, which emphasizes the complex con-

tributions of leukocytes to intestinal disease. 43  Taken together, 

there is abundant evidence highlighting a critical role of active 

(but not over-active) neutrophils in regulating intestinal home-

ostasis while linking PMN dysfunction to pathological intestinal 

inflammation.    

 REGULATION OF PMN RECRUITMENT / INFILTRATION 
DURING INTESTINAL INFLAMMATION  
 Inflammatory mediators involved in PMN recruitment 
during intestinal inflammation 
 The production of cytokines and chemokines by intestinal 

cells and other immune cells during intestinal inflammation 

is an important regulator of PMN recruitment and infiltra-

tion. For example, IL-8 is a potent chemoattractant secreted 

by the basolateral surface of IECs and mediates PMN recruit-

ment from the lamina propria to the epithelium 137,138  but not 

across it. 139  Importantly, IL-8 expression is increased during 

IBD where it is a major contributor to the increased num-

bers of PMN found in the mucosa (Ina  et al.  140  and reviewed 

in MacDermott 141 ). Another important PMN chemokine, 

CXCL-1 or GRO- �  has been shown to be essential for PMN 

recruitment during colitis. Indeed, mice lacking CXCL-1 are 

more susceptible to DSS-induced colitis. 142  However, the 

colons in these mice had less PMN in the mucosa than those of 

wild-type mice, indicating that CXCL-1 is an important PMN 

chemoattractant. 142  

 It is now well accepted that Il-17 derived from T helper 17 

(Th17) cells has a significant role in intestinal homeostasis. 

IL-17A and IL-17F contribute to PMN recruitment by stimu-

lating the secretion of chemokines (i.e., CXCL-8, CXCL-1, and 

CXCL-10), cytokines, and growth factors (i.e., TNF � , IL-1 � , 

IL-6, GM-CSF, and G-CSF) from various cell types, includ-

ing macrophages, epithelial cells, and fibroblasts. 143 – 145  

Furthermore, intestinal IL-17 production is increased in 

IBD 146 – 148  and IL-17A     −     /     −      and IL-17R     −     /     −      mice are resistant to 

DSS- and TNBS-induced colitis. 48,149,150  However, others have 

reported that the treatment of mice with anti-IL-17A antibody 

resulted in worse DSS-induced colitis and increased PMN infil-

tration in the colonic mucosa, which suggests beneficial effects 

of IL-17A. 151  A recent immunofluorescence study showed 

co-localization of PMN and Th17 cells in inflamed colonic tis-

sues from CD patients, suggesting that PMN interact closely 

with Th17 cells in this setting. 152  It has also been shown that 

activated Th17 cells are able to directly recruit PMN by secret-

ing CXCL-8. 152  Whether by direct or indirect means, it is thus 

clear that TH17 cells and IL-17 are important in regulating PMN 

function in the intestine. 

 The complement component C5a is another potent PMN 

chemoattractant; however, despite abundant evidence for 

complement activation in IBD, 153  the role of complement and, 

more specifically, C5a during colitis is not fully understood. 

Nevertheless, mice lacking the C5a receptor C5aR are more 

resistant than wild-type controls to acute injury – induced colitis 

from DSS, which correlates with decreased PMN infiltration in 

the colon. 154  Similarly, mice treated with a neutralizing anti-C5a 

antibody have reduced mucosal injury and evidence of decreased 

numbers of colonic PMN (myeloperoxidase activity) during the 

early stages (24 hours) of TNBS-induced colitis. 155  Interestingly, 

in chronic models of DSS-induced colitis, C5aR     −     /     −      mice show 

differences in protection from disease progression depending 

on when measurements are taken. In particular, C5aR     −     /     −      mice 

appear to be more protected from chronic disease during first 

25 days, after which clinical disease and colonic myeloperoxi-

dase levels increase to levels higher than those of controls. 154  

These findings suggest complex roles for C5a during intestinal 

inflammation that involve deleterious effects during the acute 

phases of disease that may switch to a beneficial role during 

chronic disease. 

 Among the lipid mediators that attract PMN, LTB 4  is 

an important chemoattractant in the gut. LTB 4  belongs to 

the eicosanoid family and is synthesized from arachidonic 

acid ( Figure 3 ).   156  Notably, expression of three key enzymes 

involved in the leukotriene pathway ( Figure 3;  5-lipoxygenase, 

5-lipoxygenase-activating protein, and leukotriene A 4  hydro-

lase) is significantly increased in the colonic mucosa of patients 

with active IBD, suggesting that, during IBD, an increase in 

LTB 4  production may contribute to enhanced PMN infiltration. 157  

Furthermore, mice deficient in 5-lipoxygenase or wild-type mice 

treated with the 5-lipoxygenase inhibitor zileuton have a striking 

decrease in neutrophil myeloperoxidase activity in the colon that 

is associated with a significant reduction in colitis induced by 

DNBS and TNBS. 158,159  

 Another arachidonic acid metabolite that is a potent PMN 

chemoattractant is hepoxilin A 3  (HXA 3 ), which is secreted in 

a polarized fashion by epithelial cells ( Figure 3 ).    160 In contrast 

to IL-8, HXA 3  is released from the apical surface of the epithe-

lium in response to invasion by pathogens like  Salmonella . 160  

Although basolateral epithelial release of IL-8 results in PMN 

accumulation in the subepithelial space, the apically-directed 

release of HXA 3  is what serves as a driving force for transepi-

thelial migration of PMN into the lumen. 139  Consistent with the 

polarized release of HXA 3 , inhibition of the enzymatic machin-

ery necessary for its production suppresses HXA 3 -mediated 

PMN transmigration. 160  Thus, HXA 3  is a potent chemoattractant 

that guides PMN through the epithelial layer.   
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 Regulation of PMN recruitment by bacteria-derived products  
 It is well appreciated that bacterial products such as lipopolys-

accharide, lipopoproteins, and DNA have potent effects on 

many intestinal cell types that result in a multitude of Nod 

and Toll-like receptor-mediated responses contributing to 

both homeostasis and pathological intestinal inflamma-

tion (reviewed in Cario 161  and Werts  et al.  162 ). Bacteria also 

secrete products capable of directly attracting and / or activat-

ing PMN. The peptide fMLF is a potent PMN chemoattract-

ant, and expression of this peptide receptor (N-formyl peptide 

receptor) has been reported to be increased in CD patients. 163  

Other peptides produced by both bacteria and viruses have 

been shown to activate N-formyl peptide receptors present at 

the surface of PMN (reviewed in Rabiet  et al.  164 ). Furthermore, 

bacteria also produce short-chain fatty acids, such as acetate 

and butyrate, which are recognized by G-protein-coupled 

receptor 43 expressed on PMN and epithelial cells. 165,166  Short-

chain fatty acids are potent PMN chemoattractants  in vitro ; 

however, the role of G-protein-coupled receptor 43 for PMN 

infiltration during colitis is less clear  in vivo , as results differ 

between studies. 34,167  Nevertheless,  Gpr43      −     /     −      mice exhibit 

increased mortality in acute and chronic models of DSS-

induced colitis, and the use of bone marrow chimeric mice 

confirmed that immune cells, and not epithelial cells, were 

responsible for this effect. 34,167    

 Epithelial-derived metalloproteinases regulate PMN 
recruitment through activation of chemokines 
 MMPs produced by IECs are zinc-dependent endoproteases 

that, in addition to degrading extracellular matrices, are also 

crucial for the proteolytic processing of PMN chemokines. 168  

Indeed, the expression of some MMPs is strikingly increased 

during intestinal inflammation. 169 – 171  Treatment of IL-1 � -

stimulated Caco-2 cells (human colon carcinoma cell line) with 

MMP-3 results in enhanced PMN, but not monocyte migra-

tion. 172  This MMP-3-mediated chemotactic effect is due to 

the cleavage and activation of CXCL-7 (neutrophil-activating 

peptide 2). CXCL-7 is produced by IECs as the inactive pre-

cursor platelet basic protein and subsequently processed by 

MMP-3. 172,173  Interestingly, both mRNA and protein levels of 

platelet basic protein / CXCL-7 are enhanced in patients with 

UC but not with CD. 172  

 Another MMP, MMP-7 (matrilysin), is mainly produced by 

the intestinal epithelium and is known to generate  � -defensin. 174  

Mice lacking MMP-7 have delayed but sustained mucosal insult 

in an acute epithelial injury – induced model of DSS colitis. 175  

Furthermore, the amount and localization of PMN in colons of 

mice lacking MMP-7 are distinct from that in normal controls. 175  

In particular, PMN infiltration in wild-type mice was abundant 4 

days post DSS, whereas only a few PMN were observed in colons 

of mice lacking MMP-7. Furthermore, MMP-7     −     /     −      mice showed 

PMN infiltration localized primarily to the submucosa, whereas 

PMN from normal mice were distributed throughout the entire 

mucosa. 175  The impaired PMN trafficking was determined to 

be secondary to decreased levels of key PMN chemoattractants, 

including macrophage inflammatory protein-2 and CXCL-8. 

Indeed, transiently increased levels of CXCL-8 and macrophage 

inflammatory protein-2 found in lumenal lavage fluids from 

wild-type mice were not observed in MMP-7     −     /     −      mice. 175  These 

results suggest that MMP-7 regulates recruitment of PMN by 

modulating gradients of particular chemokines. How MMP-7 

regulates macrophage inflammatory protein-2 and CXCL8 in 

the context of pathological intestinal inflammation requires fur-

ther studies. Taken together, these examples highlight important 
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roles for MMPs in trafficking of PMN to the intestinal mucosa 

by regulating activity of chemokines.    

 CONCLUDING REMARKS 
 Although our knowledge of the roles of PMN during intestinal 

inflammation has increased considerably during recent years, 

the beneficial and detrimental contributions of PMN to this 

complex process remain controversial. Indeed, neutrophils 

are critical for mucosal homeostasis as it appears that disease 

is aggravated under certain conditions of PMN depletion. 

However, it is also clear that PMN directly contribute to disease 

pathology where excessive recruitment and activation leads to 

release of toxic products and massive transepithelial migration, 

resulting in crypt abscesses and extensive mucosal injury. The 

paradoxical yin and yang of PMN function during the intesti-

nal inflammatory response is determined by crucial parameters, 

including the type of stimulus and generation of chemoattract-

ants, which regulates the amount of PMN recruitment, the inter-

action of PMN with other immune cells that modulates PMN 

function, and the ability of the immune system to clear senescent 

PMN to effect resolution and healing ( Figure 4 ). Thus, microbes 

and a multitude of cell types in the intestine serve to modulate 

PMN function under normal and inflammatory conditions. 

A better understanding of this complex interplay might pro-

vide new avenues for manipulating neutrophil function to treat 

pathological intestinal inflammation.     
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