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Ultrastable embedded surface plasmon confocal
interferometry

Suejit Pechprasarn1, Bei Zhang1, Darren Albutt1, Jing Zhang1 and Michael Somekh1,2

As disease diagnosis becomes more sophisticated, there is a requirement to measure small numbers of molecules attached to, for

instance, an antibody. This requires a sensor capable not only of high sensitivity but also the ability to make measurements over a highly

localized region. In previous publications, we have shown how a modified confocal microscope allows one to make localized surface

plasmon (SP) measurements on a scale far smaller than the surface plasmon propagation distance. The present implementation

presents a new ultrastable interferometer system, which greatly improves the noise performance. Hitherto, we have used the central

part of the back focal plane to form a reference beam with the reradiated surface plasmons. In the current system, we block the central

part and use the spatial light modulator to deflect s-polarized light into the pinhole to form an interference signal with the surface

plasmons, thus creating an ultrastable interferometer formed with two beams incident at very similar angles. We demonstrate the

superior noise performance of the system in hostile environments and examine further adaptations of the system to further enhance

noise performance.
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INTRODUCTION

In many biological sensing experiments, a measure of the sensitivity of a

label free sensor, such as a surface plasmon (SP) sensor, is given in terms

of the minimum detectable change in refractive index units. This gives

an approximate measure of smallest detectable coverage (in mass per

unit area) of a layer of analyte deposited on the sample; it does not

account for the lateral extent over which the deposited analyte extends.

It is now becoming apparent that many molecules such as cytokines are

extremely powerful indicators of inflammatory response. Measurement

of cytokine response can thus provide a powerful early diagnostic tool

as well as having considerable potential in prognosis. Unfortunately,

even though the relative change in cytokine concentration is large, the

absolute concentration of cytokines is small compared to other species

(by typically 6–8 orders of magnitude compared to commonly occur-

ring plasma proteins).1 A sensor with poor lateral resolution requires a

large number of analyte molecules compared to a sensor with similar

sensitivity in terms of change in local refractive index where the mea-

surement is highly localized. For this reason, there is a strong imperative

to develop sensors with both improved sensitivity and lateral resolution.

For instance, the use of heterodyne interferometry2,3 provides one

approach to achieve this aim. Similarly, Yuan’s group4 has developed

several systems adapted to SP microscopic measurements. More

recently, we have developed variants on confocal microscopy that per-

form in a similar manner to heterodyne interferometry but with simpler

more compact instrumentation. In this paper, we present a microscopic

plasmonic sensor which processes the optical beam paths to form a

tightly focused common path interferometer with excellent immunity

to external noise sources such as microphonics. The results presented in

this paper were obtained on model non-biological samples to illustrate

the operating principles and performance of the new configuration.

The system is operated in a defocused condition to ensure that the

SPs propagate a substantial distance across the sample; however, the

principal region of interaction remains tightly focused as the SPs come

to a focus on the optical axis.5 We have shown previously6 how a

defocused confocal microscope acts as an interferometer in which

two principal optical paths form the two beams of an interferometer,

which are shown as the black rays P1 and P2 in Figure 1a and 1b. These

paths consist of a beam illuminating the sample close to normal incid-

ence and another which is converted to a SP which propagates along

the sample surface reradiating continuously.7 The confocal pinhole

ensures that only the reradiated light that appears to come from the

focus contributes to the detected signal. This confocal arrangement

therefore ensures that the path of the SPs is well defined by the optical

configuration rather than their propagation length. We have shown in

subsequent publications8,9 how a spatial light modulator conjugate

with the back focal plane is effective in allowing for different proces-

sing methods that overcome mechanical scanning or allow the ampli-

tude and phase of the SP to be extracted directly, thus providing an

exceptionally robust means of processing the signal. For instance, the

spatial light modulator (SLM) can be used to change the phase of P1

relative to P2 so that phase stepping may be performed which allows

the phase associated with SP to be extracted directly.

1Institute of Biophysics Imaging and Optical Science (IBIOS), Life Sciences Building University of Nottingham, Nottingham NG7 2RD, UK and 2Department of Electronic and
Information Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong, China
Correspondence: Professor M Somekh, Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong, China
E-mail: mike.somekh@nottingham.ac.uk or mike.somekh@polyu.edu.hk

Received 28 November 2013; revised 9 April 2014; accepted 12 April 2014

OPEN
Light: Science & Applications (2014) 3, e187; doi:10.1038/lsa.2014.68
� 2014 CIOMP. All rights reserved 2047-7538/14

www.nature.com/lsa

www.nature.com/lsa


Although the interference between P1 and P2 provides a relatively

stable interferometer, the system sensitivity will, in many practical

situations, be limited by microphonic noise, since both these beams

hit the sample at different incident angles. Microphonic noise of

amplitude Dz introduces a phase shift given by:

Dw~
4pn

l
coshp1{coshp2

� �
Dz ð1Þ

where Dw represents the phase noise, n represents the refractive index

of the coupling medium and l represents the wavelength of the incid-

ent light in vacuum, and hp1 and hp2 represent the incident angle

associated with paths P1 and P2. From now on we denote hp2 as hp

since it is associated with the angle at which SPs are excited.

In the implementation depicted in Figure 1a, where paths P1 and P2

interfere, hp1 is very close to 0, so that the first term in the brackets of

Equation (1) can be replaced with 1. The idea behind the present

system is to produce an interferometer where the reference and signal

beams are incident at angles which are very close to each other so that

the terms in the brackets disappear or at least become very small. The

system still retains sensitivity to changes in the wave number of the SP,

kp ~
2pn

l
cos hp

Clearly, as the ambient conditions change the value of hp changes, so

that the cancellation will become imperfect; however, in a normal

binding experiment, where the change in hp is small, the cancellation

of microphonics will still be extremely good as quantified later in this

paper.

In our previous publications, we have used linear input polarization

in the back focal plane which gives a continuous variation between p-

polarization and s-polarization as the azimuthal angle changes6,8,9

(Figure 2a). The use of radial polarization incident in the back focal

plane has often been advocated in SP microscopy which means the

light incident on the sample is p-polarized for all azimuthal angles, so

that more energy is coupled in SPs and the focus is tight and circularly

symmetrical.5 Our new interferometer, however, relies on linear

polarization to generate interfering p- and s-polarized beams hitting

the sample at similar incident angles.

Examining Equation (1), we can see that an interferometer formed

between a path generating a SP and one in which the incident light is

primarily s-polarized will allow us to form an interferometer in which

the sample and reference beams are incident on the sample at essen-

tially the same angle of incidence. From Figure 1a, we can see that

when the sample is defocused, the p-polarized light generates SPs,

some of which appear to come from the focus to be collected by the

confocal pinhole. In order to form our common path interferometer

with the sample and reference beams incident at approximately the

same angle, we remove path P1 and create a second path for the

s-polarized light, which forms the reference arm of the interferometer.

From Figure 1a, we see that the ray path corresponding to the s-polar-

ized beam follows the path P19, so that on reflection, it does not

propagate parallel to the optical axis, and will thus miss the pinhole.

If an optical element is inserted into the return path that acts like a

wedge (a linear phase gradient), it can be deflected parallel to the

optical axis and will pass through the pinhole forming the reference

beam of the interferometer. Alternatively, the optical element can be

placed in the path of the incident beam, as shown in Figure 1b, so that

its path follows P19 and hits the sample at point ‘b’ so that on reflection

it also appears to come from focus thus also forming an arm of the

interferometer.6,8,9 In our experimental arrangement, the optical ele-

ment (a spatial light modulator) was applied on the incident beam;

thus corresponding to the scheme associated with Figure 1b.

Figure 2 shows a schematic of the pattern on the back focal plane

used to effect the beam deflection. In positions where the light is

primarily p-polarized, no linear phase gradient is applied as a portion

of the reradiated SPs will appear to come from the focus. On the other

hand, where light is predominantly s-polarized, it will interact with the

wedge, thus ensuring that it follows path P19 of Figure 1b, thus return-

ing to the pinhole. It is, of course, apparent that only along orthogonal

directions is the incident light in a pure polarization state, for all other

angles, there is continuous variation of the relative proportions of

the two polarization states. This does not, however, produce any
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Figure 1 (a) Simplified schematic showing operation of a confocal microscope with SP excitation; the red lines indicate the direct reflection of incident s-polarization.

The azimuthal planes corresponding to pure p- and s- incident polarizations are orthogonal. The reflected s-polarized beam is deflected after interacting with the sample
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fundamental issues. As mention earlier, any incident s-polarization

that does not interact with the wedge will miss the pinhole.

Similarly, any p-polarized light interacting with the wedge will be

deviated beyond the normal and miss the pinhole on the other side.

This does, of course, entail some wastage of light.

We can now summarize the form of the pattern on the SLM. Firstly,

only light close to the angle for excitation of SPs is allowed to pass,

while other angles are blocked simply by setting adjacent pixels in

antiphase as described in Refs. 8 and 9. The wedge is centered around

the azimuthal angle corresponding to predominantly s-incident polar-

ization, in the present work this angle corresponds to 6456. The wedge

angle is controlled by the gradient of the phase shifts and the effect of

varying this value is discussed later in the paper. In addition, we can

phase shift one beam of the interferometer relative to the other by

simply imposing a constant phase shift in the arc region corresponding

to predominant p-polarization.

There are different ways of thinking about this approach, it may be

thought of as generating an ‘artificial’ plasmon in that the spatial light

modulator generates a continuously changing phase shift for the s-

incident polarization that mimics the phase shift imposed by the sam-

ple when a SP is excited.10 Another way of thinking of the system is as a

plasmonic analog of differential phase Nomarski microscopy; in this

method, two adjacent regions on the sample are forced to interfere by

passing through a polarization sensitive optical device.11 In the present

technique, we similarly use the SLM to force two beams to interfere

that would otherwise not interact. On a uniform sample, it is a matter

of convenience whether the SLM is placed on the incident or reflected

beam, although for a structured sample, the respective transfer func-

tions differ. When the SLM acts before the sample, it is more natural to

think of the approach from the ‘artificial’ plasmon viewpoint; since

this is the implementation used in our work, we use the shorthand

‘artificial’ plasmon to describe our system.

It is important to note that confocal interferometry has been

reported in the literature;12 however, this method uses a separate

reference beam to interfere with the beam returning to the pinhole.

In the work reported here and previously,8,9 the interference occurs

between different parts of the illumination beam, so that one portion

of the illumination beam acts as a reference. This approach facilitates

our aim to obtain fine phase measurements between different paths

within the same beam.

MATERIALS AND METHODS

The experimental set-up is essentially the same as described in Refs. 8

and 9 and is shown schematically in Figure 1c; the key difference in

this paper is the manner in which the SLM (model no. BNS 512X512

phase; Boulder non-linear Systems Inc., Lafayette, Colorado, USA) is

used to process the returning light by forming a wedge and perform-

ing the additional phase modulation as shown in Figure 2. Briefly,

apart from the SLM, the key components in the system were the

objective lens (1.45 numerical aperture (NA) oil immersion objective;

Zeiss, Oberkochen, Germany), laser source (632.8 nm He–Ne laser,

10 mW) and charge coupled device (CCD) camera (Sony Digital

Interface XCL-S600C). It should be pointed out that all the experi-

ments reported in this paper were obtained with air as the final med-

ium; if measurements in aqueous media are required, it is necessary to

use a higher NA objective such as the 1.49 NA oil lenses available from
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Figure 3 Schematic diagram of the sample, which consists of five different

thicknesses of ITO layer including zero thickness deposited on uniform gold

50 nm. The thickness of chromium (Cr) adhesion layer was around 2 nm. ITO,

indium tin oxide.
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Figure 2 Amplitude and phase pupil function provided by phase spatial light modulator. (a) Amplitude pupil function and plasmonic dip position (dark band). (b)

Phase gradient on s-polarization provides a wedge that bends the incident of s-polarized light so that its specular reflection passes through the pinhole, whereas there is

no wedge in the path of the p-polarization; the wedge in the figure has an equivalent physical angle of 0.16. Note that the 906 phase steps were provided on the

p-polarization region; (b) also shows 906phase modulation on the p-polarization. The horizontal direction corresponds to pure p-polarization and the vertical to pure s-

polarization.
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Nikon (Chiyoda, Tokyo, Japan). In order to evaluate the system, the

sample shown schematically in Figure 3 was fabricated. Five different

layer thicknesses (including zero) of indium tin oxide were deposited

on the gold substrate used to support the SPs. In order to obtain an

independent measure of the thickness of the layers, these were measured

from the top surface using a spectroscopic ellipsometer (alpha-SE J.

A.Woollam (Inc.), Lincoln, Nebraska, USA). We then measured the same

sample with different configurations of the SP microscope. The first set of

SP measurements used the approach described in Ref. 9 where a normally

incident reference beam was used to interfere with the SP waves. Four 906

phase steps were imposed on the reference beam so that a phase stepping

algorithm could be used to extract the phase difference between the

normally incident and the plasmonic contributions. This phase differ-

ence, w, can be plotted against the defocus, z. The mean gradient of this

phase variation can be related to the angle of plasmon excitation, thus:

dw zð Þ
dz

~
4p

l
cos hr{ cos hp

� �
ð2Þ

where hr is the mean incident angle of the reference beam (hp1 of

Equation (1)), which is in this case zero.

RESULTS AND DISCUSSION

Figure 4 shows the measured values of w(z) and from the gradients

measured in the defocus region between 24000 and 22000 nm; we

can obtain a value of hp for each sample region by estimating the mean

gradient of the curve and fitting to Equation (2). Note that negative

values of defocus correspond to moving the sample closer to the

objective relative to the focal point. If we assume the same refractive

index as used to fit the ellipsometric data (n51.8583), we can recover a

film thickness from the SP measurements from the Fresnel equations13

by calculating hp for different layer thicknesses. It should be noted, of

course, that unlike the ellipsometric measurements, the SP measure-

ments are obtained from below the sample surface, that is, through the

gold film. The thickness values obtained are tabulated in the second

and third columns of Table 1.

The agreement in the obtained thickness values between the ellip-

sometry measurements and the phase stepping measurements is good.

Some of the discrepancy between the values arises from fact that the

exact measurement position on the sample may differ.

We then used the ‘artificial’ plasmon to perform similar measure-

ments on the stepped sample. Figure 5 shows the phase variation on

region R2 of the coated sample for different wedge angles or phase

gradients imposed in the back focal plane. The wedge was formed by a

staircase pattern imposed on the SLM; the wedge angle was controlled

by changing the gradient of the staircase. We see that from a defocus of

21000 nm the gradient is much less than that obtained with the

normally incident reference beam. We note, however, that there are

two regions where the phase is stationary with defocus; we can also see

that careful tuning of the wedge angle gives a flat region for a particular

sample region. For regions R3 and R4, similar flat regions are obtained

for larger wedge angles and for R0 and R1 for smaller wedge angles.

The problem is that these regions of flat phase variation do not extend

over large regions of defocus and methods to increase this range are

discussed in the further developments section; nevertheless, this mod-

est range of flat response was adequate to demonstrate the superior

noise immunity of the present system. As we discussed in Ref. 9, the

longer the range of defocus used to calculate the wave vector of the SP,

the more accurate the measurement, on the other hand, reducing the

maximum defocus improves the lateral resolution.5 We used the arti-

ficial plasmon method to measure the local gradient over a narrow

range of defocus corresponding to the flat region from 22400 to

22100 nm. By phase stepping the region with predominant p-polar-

ization, we obtained curves for the variation of w(z) shown in Figure 6

for the five regions of the sample; we see that the R2 curve is approxi-

mately horizontal, whereas R0 and R1 have positive gradients and R3

and R4 have negative gradients as expected. We can use the measured

gradients with Equation (2) with hr equal to hp for the R2 region.

These values are shown in the final column of Table 1, which show

excellent agreement with results involving a normally incident ref-

erence beam.
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thicknesses of the ITO layer. ITO, indium tin oxide.

Table 1 Thickness values obtained by ellipsometric, phase stepping

and artificial plasmon methods

Region Ellipsometry (nm) Phase stepping

(nm)

Artificial plasmon

(nm)

R0 0.00 0.00 0.08

R1 3.31 2.97 2.83

R2 6.32 5.31 5.23
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Figure 5 The phase variation on region R2 of the coated sample for different

effective wedge angles.
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We now consider the issue of noise immunity which we believe is

the principal advantage of the new technique. The results above were

all obtained with our optical table pumped up, to test the noise per-

formance the legs of the optical table were deflated and a large bass

speaker was placed on the table to induce large amounts of micro-

phonic noise. The vibration was measured with a commercial Polytec,

Waldbronn, Germany vibrometer sensor head (OFV 534) and con-

troller (OFV 5000) illuminating the sample holder; when the table was

pumped up and the speaker was off, the root mean square (rms)

vibration was less than 10 nm, while with the speaker on and the table

deflated, the rms vibration was 270 nm with peak to peak excursions

of approximately 760 nm. The response waveform was approximately

sinusoidal at 20 Hz.

To get an estimate of the noise in thickness measurements, we

measured the noise in the w(z) curves from the deviation of the mea-

sured phase shifts from their best linear fitted results. We then used

this noise variance to generate a new set of data with the same under-

lying statistics; this was then used to get another estimate of w(z) from

which a new estimate of thickness was obtained. This process was

repeated 106 times to get the noise statistics presented in Table 2.

From Table 2, we see a dramatic improvement in noise performance

in the ‘artificial’ plasmon system. Several points emerge from this

table:

. The results for R2, where the wedge angle is best matched to the

expected value of hp, give a noise standard deviation 54 times

smaller compared to the 1000 nm scan and 35 times less compared

to the 2000 nm scan. This improvement was achieved even though

the scan range for the artificial plasmon experiment was only

300 nm. Extending the ‘flat’ artificial plasmon range will improve

the signal to noise even more as demonstrated in Ref. 5 for the

system with the normal reference beam. Approaches to extend the

flat region are discussed below.
. The improvement in noise performance in other regions, while still

good, was not as great as for region R2; this is to be expected at the

wedge angle: in these cases, it is less well matched to hp. The noise in

the normal incidence phase stepping system is approximately con-

stant on each sample region which is a consequence of the fact that

the microphonics are not cancelled.

In a typical biomedical experiment, the values of hp vary by small

amounts so the noise immunity provided by a single wedge angle is

likely to apply to the whole measurement. If this were not the case, the

use of the electronically programmable SLM means that it is easy to

vary the wedge angle interactively as the measurement proceeds. The

system as presented thus has the potential for optimal performance in

terms of sensitivity, spatial resolution and dynamic range. We believe

that these three key characteristics have not hitherto been achieved in a

single system.

Extending the flat slope defocus

Up to this point, we have used a linear wedge in all the measurements

which gives a measurement range with good phase cancellation of
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Table 2 Standard deviation
ffiffiffiffiffi
s2
p

of thicknesses of the sample

Sample region Standard deviation
ffiffiffiffiffi
s2
p

of thicknesses in nm

Phase stepping z defocus distance52000 nm Phase stepping z defocus distance51000 nm Artificial plasmon z defocus distance5300 nm

R0 0.1053 0.1761 0.0098

R1 0.1084 0.1688 0.0032

R2 0.1053 0.1621 0.0030

R3 0.1145 0.1823 0.0089

R4 0.1022 0.1582 0.0132
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around 300 nm. In this section, we will show that this flat region can

be extended by using a ‘curved’ wedge that deviates from the perfect

linear case, such as the one shown in Figure 7. This is represented by

adding a simple cubic term to introduce some curvature as shown in

Equation (3).

w sinhð Þ~a sinh{sinhrð Þzc sinh{sinhrð Þ3 ð3Þ

where a is the gradient of the wedge and the c is the parameter that is

varied to get optimum region with flat phase response. The compar-

ison between the linear wedge and the curved wedge is shown in

Figure 8, where we can see that the curved wedge can extend the flat

region to around 1 mm. These results were obtained using a 1.49 NA

oil immersion objective (Nikon) and laser source (690 nm laser).

CONCLUSIONS

This paper has presented a technique to overcome the microphonic

phase error in a confocal SP microscope, where the reference beam is

provided by direct reflection of s-polarization at an angle similar to the

plasmonic angle. In order to force the s-polarised light into the pin-

hole, we provide a wedge that interacts with the s-polarised light,

achieved conveniently with a phase SLM. This method can be com-

bined with phase stepping to obtain a highly sensitive measure of the

SP wave vector. We have shown that the present technique gives at

least an order of magnitude better noise immunity than the phase

stepping method published in Ref. 9, despite using the same optical

set-up. We have also demonstrated that further optimization in terms

of increased range of noise immunity can be achieved with relatively

subtle, but simply implemented, changes to the patterns imposed on

the SLM. We believe that this is a major step for making robust and

sensitive plasmonic measurements over small local regions, thus ulti-

mately reducing the minimum number of detectable molecules adher-

ing to the surface.
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