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Metallic nanostructures for light trapping in
energy-harvesting devices
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Solar energy is abundant and environmentally friendly. Light trapping in solar-energy-harvesting devices or structures is of critical

importance. This article reviews light trapping with metallic nanostructures for thin film solar cells and selective solar absorbers. The

metallic nanostructures can either be used in reducing material thickness and device cost or in improving light absorbance and thereby

improving conversion efficiency. The metallic nanostructures can contribute to light trapping by scattering and increasing the path

length of light, by generating strong electromagnetic field in the active layer, or by multiple reflections/absorptions. We have also

discussed the adverse effect of metallic nanostructures and how to solve these problems and take full advantage of the light-trapping

effect.
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INTRODUCTION

The conversion of solar energy to electricity or heat might be the

ultimate means to help solve the energy crisis when hydrocarbon

resources such as coal and other fossil fuels cannot satisfy the energy

demand. Solar energy is abundant, ,5000 times our current power

consumption.1 The use of solar energy can also reduce the envir-

onmental problems caused by the consumption of fossil fuels by reduc-

ing dusts, noxious gases and greenhouse gases, as well as the resulting

haze, acid rain and global warming. To date, the worldwide installed

capacity of solar harvesting devices is ,60 GW in electric energy and

,300 GW in thermal energy,2 with an annual rapid increase. For the

existing technology, there is room for further improvement by either

enhancing the light absorption or avoiding loss of electricity or heat

after absorption. Recently, new advances in nanotechnology and

material fabrication methods have resulted in an emerging field of

plasmonics by properly introducing metallic nanostructures to manip-

ulate light, enabling light trapping in active layers and thereby enhan-

cing the performance of energy-harvesting devices.3 In addition,

certain highly absorbing surfaces or structures with broadband absorp-

tion promising to extend the working wavelength of the solar energy

spectrum (Figure 1) have been realized. The light-trapping effect, how-

ever, allows the thickness of materials and the costs of solar cells to

decrease, which in turn benefits electricity collection when the minor

carrier diffusion length in the active layer is not sufficiently long.

In this review, we focus on light trapping induced by metallic nano-

structures for solar energy collection. Corresponding applications are

not only for photovoltaics, but also for solar thermal. In fact, solar

thermal has a market with profit even higher than photovoltaics, yet

has not received enough attention. Solar thermal devices can absorb

light from ultraviolet to near infrared (IR) (0.3–2 mm), which is much

broader than the wavelength that any single-junction solar cells can

absorb (Figure 1). The conversion efficiency of solar thermal devices

(such as solar water heaters) is also much higher; for example, an

evacuated tube collector can have an efficiency of approximately

80% in the summer. Such solar water heaters have been widely used

in China and Europe and are quite effective in CO2 reduction.2

PLASMONICS FOR LIGHT TRAPPING IN PHOTOVOLTAICS

Photovoltaic devices can covert solar energy into electricity.

Commercial crystalline silicon (c-Si) solar cell technologies often

adopt a basic etching process to produce pyramids to reflect light back

into silicon and hence improve the absorbance. A silicon nitride layer

is then applied onto the pyramids to act both as a passivation layer and

as an antireflective coating (ARC). The MA Green group at the

University of New South Wales has performed important pioneering

work on thick Si solar cells. This group achieved an efficiency of ,25%

for single c-Si solar cells4,5 and 19.8% for polycrystalline Si solar cells

using the light-trapping structures of inverted pyramids and a hon-

eycomb structure,5 respectively. However, c-Si is not a highly absorb-

ing material and requires a thickness of .100 mm to enable nearly

complete light absorption. While, too thick of a material is not good

for electricity collection because the thickness must be at least several

times smaller than the minority carrier diffusion length. Reducing the

thickness of the active layer can therefore reduce the recombination of

carriers and improve the conversion efficiency. By contrast, thin film

solar cells, which use highly absorbing materials such as amorphous
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silicon (a-Si), GaAs and CuInxGa12xSe2, require a film thickness of only

hundreds of nanometers to microns. Thin film solar cell technologies

can largely reduce the use of semiconducting materials and the cost. In

addition, thin films can be easily deposited onto many inexpensive

substrates including glass, metals, or polymers. If the active layer can

be further reduced to ,10 nm, the semiconductors, especially those are

properly patterned, will be extremely flexible6 such that they can be used

in flexible solar cells, which might act as the power source for electronic

skins and foldable photoelectronics.7 The main problem for thin film

solar cells is that the materials exhibit very small absorbance of near-

bandgap light, and reducing the thickness will further cause a significant

loss of absorption, therefore leading to a limited efficiency.

The emerging area of plasmonics offers new paths for improving the

efficiency of thin solar cells. There are three extensively investigated

plasmonic structures integrated in thin cells that can remarkably

decrease the thickness of photovoltaic materials while maintaining

good absorbance,3,8 as shown in Figure 2. First, metallic nanoparticles

on top of a solar cell can scatter a broad range of sunlight to couple and

trap freely propagating plane waves in the thin film by folding the light

into a thin absorber layer (Figure 2a). In this case, the angular redis-

tribution of the scattered light and back contact reflection also increase

the optical path length and therefore, contribute to light trapping.

Second, embedded metallic nanoparticles can be used as subwave-

length antennas for which the excited localized surface plasmons couple

with the semiconductor, increasing its effective absorption cross-

section (Figure 2b). Third, a patterned metallic back contact of a thin

photovoltaic absorber layer can couple sunlight into surface plasmo-

nic polariton (SPP) modes that are supported at the semiconductor/

metal interface (Figure 2c). Light in the propagating waveguide mode

is absorbed in the plane of the semiconductor, while carrier collection

occurs out of plane, allowing for a reduction in overall thickness.8

Scattering effect of metallic nanoparticles for light trapping

There have been many experiments that prove the light trapping of

metal nanoparticles utilizing the scattering effect. In 2005, Yu and co-

workers9 deposited Au nanoparticles on a thick Si p–n junction diode;

they observed enhancement of optical absorption and photocurrent

via the excitation of surface plasmon resonances in spherical Au nano-

particles. In fact, early in 1998, Stuart and co-workers10 utilized metal-

lic nanoparticle for improved photodetectors. And in photovoltaic

applications, Yu et al.11 also observed that metal nanoparticles with

a modest density could lead to an efficiency enhancement of 8.3%

(corresponding power output increases from 2.77 to 3.00 mW cm22)

in an amorphous Si thin cell for which the active layer was only 240 nm

thick. Green et al.12 investigated the light-trapping effect using Ag

nanoparticles on a 1.25-mm-thick c-Si on an insulator solar cell and

reported a broadband enhancement and a 16-fold enhancement at

1050 nm. Atwater et al.13 demonstrated that GaAs thin cells exhibit

an improvement of 8% for the short circuit current density with

templated high aspect-ratio Ag nanoparticles, and these nanoparticles

not only scatter light, but also decrease the top contact sheet resistance.

The thin cells with Ag nanoparticles yield a significant enhancement

for wavelengths longer than 600 nm (Figure 3).13 When using a peri-

odic array of metal nanoparticles for light trapping, the grating pitch

should be selected to allow higher order diffraction modes for long

wavelengths while maintaining the highest possible fill factor. For

example, a set of optimal parameters for light trapping in Si solar cells

is a particle size of ,200 nm and a pitch of ,400 nm.14

The particle shape, size, distance from the semiconductor and

refractive index of the medium could all affect the coupling effi-

ciency.3,11,15–17 Nanospheres are the most commonly used scattering

centers. Figure 4a and 4b show the normalized scattering cross section

of spherical particles as a function of wavelength and particle size in

both air and Si.17 The plasmonic resonance exhibits an obvious red-

shift effect in silicon (which has a higher refractive index compared

with air). In addition, the resonance peaks redshift and broaden with

increasing particle sizes. This redshift significantly enhances the light

trapping in the red and near-IR region, which is otherwise a low

absorption region for Si. Typically, particles with a size of ,100 nm

can provide the highest scattering efficiency. Particle shape should also

be considered. Cylindrical and hemispherical particles exhibit higher

path length enhancements than spherical particles.3,15,16 This effect is

evidenced in Figure 4c, which reveals the difference in fraction of light

a b c

Figure 2 Three methods that utilize metallic plasmonic nanostructures for light trapping in thin solar cells. (a) Scattering effect and angular redistribution of the

scattered light with metallic nanoparticles on top of a cell. (b) Near-field effect of embedded metallic nanoparticles. (c) Coupling sunlight into SPPs with metallic

nanostructures on the rear contact. Blue: ARC; orange: active layer; gray: metal. Figure reproduced with permission from Ref. 3, � 2010 Macmillan Publishers Ltd.

ARC, antireflective coating; SPP, surface plasmonic polariton.
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scattered into semiconductor substrates with nanocylinder, hemisphere,

sphere and large sphere (scattered light decreases with the same order).

However, nanospheres can be easily synthesized such that they are still

widely used. Figure 4d shows that for a point dipole, the fraction of light

scattered into a semiconductor substrate decreases with increasing dis-

tance to the underlying Si substrate. However, the decrease is not dra-

matic; for example, the fraction of light is 84% when the dipole is 60 nm

away from the substrate.16 It is often not recommended that the nano-

particles be placed directly on the active layer, as this placement causes a

carrier recombination problem. In fact, the effective scattering cross-

section can be increased by increasing the distance between the nanopar-

ticles and the substrate, as this distance prevents destructive interference

effects between the incident and reflected fields, although it comprises the

near-field coupling.3,17 The interference problem can also be solved by

placing the nanoparticles on the rear of the solar cells. In this case, short

wavelength light can be largely absorbed by the semiconducting materials,

while long wavelength light, e.g., IR and red light that reaches the rear of

the cell can be scattered by the nanoparticles and be trapped.18 In addi-

tion, Ag is a better metal than Au as Ag particles yield much higher path

length enhancements than Au particles15 and offer a lower price. In

addition to metal nanoparticles, other structures such as gratings with

ARC could also result in absorption enhancement in ultrathin solar cells

due to improved coupling to guided modes.19

Near-field effect of metallic nanoparticles in solar cells

Another method for light trapping is to make use of the strong local

field of very small metallic nanoparticles. Metallic nanoparticles are

often mixed with or embedded in active materials such that the sur-

rounding active materials can become highly absorbed due to the high

density of states of the phonons and the fact that the nanoparticles can

directly excite charge carriers. Considering the fabrication method,

this mechanism is especially suitable for preparing dye-sensitized solar

cells using solution processes.20 The small particle size and close par-

ticle-to-particle spacing often help to further enhance the near-field

effect; however, the small nanoparticles do not exhibit a great scatter-

ing effect.3 This near-field mechanism works well for materials in

which the carrier diffusion lengths are small, and photocarriers must

thus be generated near the collection junction area. The absorption

rate in the semiconductor must be larger than the reciprocal of the

typical plasmon decay time to avoid dissipation of the absorbed energy

into ohmic damping in the metal.3 The optical thickness of organic

thin films is typically larger than the carrier diffusion length, thus

reducing the thickness while maintaining the absorbance in organic

solar cells is significant. Embedded nanoparticles of Ag could effi-

ciently increase the light absorption in ultrathin organic solar cells

and thereby improve the efficiency.21 By incorporating electrodepos-

ited 13 nm Ag nanoparticles on surface-modified transparent electro-

des, the efficiency of organic solar cells could increase from 3.05% to

3.69% because of the improved absorbance via the strongly enhanced

local electromagnetic field in the vicinity of the Ag nanoparticles.22 Au

nanoparticles could also lead to an efficiency improvement in polymer

bulk heterojunction solar cells.23,24 However, metal nanoparticles may

also degrade the carrier mobility and thus compromise the benefit of

the near-field enhancement.25 Enhanced efficiency or photocurrent
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with the plasmon near-field coupling of nanoparticles has also been

observed in inorganic solar cells including n-CdSe/p-Si heterojunc-

tion diodes26 and dye-sensitized solar cells.20,27–30 In dye-sensitized

solar cells, it is also necessary to consider the negative effects (e.g.,

charging) of the metal nanoparticles in addition to the localized sur-

face plasmon effects.31 This field has been quite attractive with the

development of synthesis processes of metal nanoparticles and assem-

bly technologies.

Note that for some active materials, the near-field mechanism may

not work. For example, a-Si does not benefit from the resonance of Ag

nanoparticles due to the mismatch between the bandgap of a-Si and

the near-field resonance frequency; for c-Si, the global absorption may

not benefit from the local enhanced field due to the weak absorbance of

c-Si and the Ohmic loss in the nanoparticles.32 Therefore, when uti-

lizing the near-field effect, we must carefully select the materials, metal

nanoparticle size, shape, position, etc. to ensure that the enhanced

absorption in the active layer can compensate for the accompanying

negative effects (e.g., absorption in metal, loss of carrier mobility,

increased cost, etc.).

SPPs induced absorption enhancement

SPPs are plasmon modes that propagate along the metal/dielectric

interface. The SPPs can propagate along the interface for a relatively

long distance, but are confined to the subwavelength scale in the per-

pendicular direction. This evanescent wave decay occurs faster in metals

than in dielectric materials, which is beneficial for light absorption in

active layers. Green et al.33 noted that although metal absorption occurs,

this process does not fully compromise the benefit of light trapping in

the active layer in standard systems, especially organic solar cells. The

fabrication of structures with SPPs modes are typically gratings or

grooves in the rear contact, and the active layer should directly contact

the metallic nanostructures. For example, Ferry et al.34 demonstrated

that metal contact with a single 100 nm wide groove covered by a

200 nm Si thin film can enhance absorption by a factor of 2.5 over a

10 mm area for the portion of the solar spectrum near the Si bandgap.

When using arrays of Ag nanoridges, a large grating pitch (6 mm) results

in an enhancement similar to the single ridge case because strong inter-

ference does not occur between the SPP waves, whereas a small pitch of

300 nm leads to a higher absorption enhancement that is more sensitive

to wavelength, with narrower spectral features and a wider variation in

enhancement across the spectral range.35 The largest enhancement

could achieve 25 in a narrow wavelength range. SPPs can be excited

only for transverse magnetic polarized light incident on the rear grat-

ings and not for transverse electric (TE) polarized incident light.35

Wang et al.36 demonstrated that a-Si on hybrid gratings of Ag and

indium tin oxide (ITO) exhibits broadband light absorption enhance-

ment, which is related to Fabry–Pérot (F–P) resonance, SPP resonance

and planar waveguide coupling. If a thick dielectric spacer layer is

placed between the metallic gratings and the active layer, light trap-

ping still occurs, but the enhancement is due to the local and guided

modes rather than the SPP modes.37,38 Such textured structure with a

spacer is also promising; for example, self-cleaning nanodome solar
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cells with a 280-nm-thick hydrogenated a-Si:H layer can absorb 94%

of the light with wavelengths of 400–800 nm, which is significantly

higher than the 65% absorption of flat film devices.39

The enhancement with arrays of ridges is reminiscent of surface

wrinkles and folds,40–42 which are spontaneously generated by depos-

iting a metallic film on an elastomeric substrate followed by heating.

Here, the elastomeric layer can be the organic active materials, and the

metallic wrinkles or folds will act as the nanostructured back contact

(Figure 5). The folds might be more efficient than wrinkles because the

structures are sharper. The grating structures prepared using conven-

tional nanofabrication methods on the back contact help to enhance

the absorption; however, this enhancement comes at a price. Surface

wrinkling or folding on the back contact might solve this problem for

organic solar cells in a cost-effective manner. In addition, organic

active materials used in these novel structures yield even better absorp-

tion than Si in the near field.33

ABSORPTION BY METAL/INSULATOR/METAL (MIM)

MULTILAYERED STRUCTURES

Another family of important metallic structures for light absorption is

MIM multilayered systems. Thanks to the advancement of nanotech-

nology, especially in nanofabrication, there has recently been signifi-

cant progress in the development of conventional MIM structures,

which offer different fascinating properties. Since the appearance of

metamaterials approximately one and half decades ago, metal pattern/

insulator/metal multilayered structures have begun to play an impor-

tant role in the field.

FP MIM interferometer

The FP interferometer (etalon) was invented in 1897 43 and typically

consists of a transparent plate with two highly-reflecting surfaces (usu-

ally made of semitransparent metal), forming a MIM structure.

Similar to a conventional ARC, the FP interferometer utilizes the

destructive interference between the reflected waves from the air/metal

and insulator/metal interfaces. When the thickness of the insulator is

odd multiples of l/4n (l is the incident wavelength and n is the

refractive index), the beams reflected from the two interfaces have a

phase difference of p. Thus, reflection at l is greatly reduced and

transmission is accordingly greatly enhanced. At wavelengths other

than l, a high reflection can be observed. This type of structure is

often referred to as a transmission filter in early papers.44,45 One vari-

ation of such FP interferometers is the reflection filter: the exit thin

metal layer is replaced by an opaque metal mirror (Figure 6). The

reflection filter also exhibits a selective reflection property, for which

a low reflection at l and high reflection at wavelengths other than l are

observed.44,45

Metamaterials

Photonic metamaterials are artificially constructed structures com-

posed of subwavelength building blocks with micro- or nano-

structures. The emergence of metamaterials was originally inspired

by the discoveries of very low-frequency effective plasmons of thin

metallic wire grids46 and the effective negative permeability of split

ring resonators.47 Guided by the theoretical and experimental success

of the effective medium theory,48 the field has rapidly developed in

recent years. Many fascinating optical properties and corresponding

devices or structures have been realized, including an invisibility cloak,

perfect absorber and superlens.49–51 There have been many excellent

reviews on the subject,52–55 but here we focus only on those related

MIM structures.

From the electromagnetic viewpoint, a collection of objects whose

size and spacing are much smaller than the wavelength can be

described by an effective permittivity e and permeability m.53 One very

important family of metamaterials is the MIM structure.50,56,57 The

schematic unit cells of one such example are presented in the Figure 7.

The structure consists of two metallic elements: a top metallic nano-

pattern and a bottom ground plane, with an insulating dielectric layer

as the spacer. The metal patterns are a type of electric ring res-

onator49,58 and couple strongly to uniform electric fields but negligibly

to magnetic fields. It was first observed in Ref. 58 that when paired to

the dielectric layer and bottom metallic layer, the magnetic compo-

nent of light couples to both the center section of electric ring resonator

patterns and the ground plane, generating antiparallel currents, which

results in the resonant response. Thus, by changing only the thickness

of the insulating layer, not the geometry of the pattern arrays, the

magnetic response m can be tuned independent of the electric response

e. When the geometry of the entire system is so tuned that e(l)5m(l) is

satisfied, a high absorption at the wavelength l can be achieved.

However, because the electromagnetic response is resonant in a narrow

band, broadband application is quite limited. Some attempts were

made, most of which were realized by combining several resonances

into one desired frequency range or complex pattern designs.59,60 For

example, Aydin et al.60 described an Ag nanopattern (100 nm)/SiO2
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(60 nm)/Ag film (100 nm) super absorber that exhibits an average

absorbance of 71% over the entire visible spectrum.

The application of these MIM types of metamaterials is closely

related to the development of nanofabrication techniques and

advances of computational simulation. With the first demonstrations

being realized in the range from microwaves to the far IR in the early

2000s,61,62 applications in visible and even close ultraviolet range have

been easy to find in recent years.63,64

Absorptive material as the insulator

Both F–P MIM systems and the metamaterial MIM systems mentioned

above can function as a single frequency absorber. However, there is vital

difference between the two mechanisms: absorption in the F–P MIM

system is based on phase accumulation, requiring a dielectric spacer on

the order of l/4n; metamaterials, however, are based on electromagnetic

resonance, requiring a thickness of the dielectric layer d,,l. How to

narrow this scale gap and bring the two systems together is an interesting

topic. In one recent scheme, it was demonstrated that if a high index

absorptive material is incorporated into the structure, enhanced absorp-

tion can be achieved with a broad bandwidth.65–67

As described in a classic optics book,68 the reflected electrical com-

ponents from an insulator/metal system can be expressed by the

Fresnel coefficients of corresponding interfaces: if only the first two

partial waves reflected back into air are considered, ~rri~
1{~nni

1z~nni

repre-

sents the Fresnel coefficient of the air/insulator interface and

~rri=m~
~nni{~nnm

~nniz~nnm

represents that of the insulator/metal interface (~nni

and ~nnm are the complex refractive indices of the insulator and the

metal). The combined reflected wave is

~rr~
~rriz~rri=mei2h

1z~rri~rri=mei2h
ð1Þ

where h52p/nil is the single-trip phase change in the dielectric layer.

Thus, the reflectance R in terms of energy is ~rrj j2. Using simple algebra,

to achieve the lowest reflection (r50) in air, one needs ~rri~{~rri=mei2h.

Recently, it was specifically noted in Ref. 66 that if the dielectric med-

ium is absorptive, ~rri and ~rri=m are no longer real numbers and consist of

phase factors. Most importantly, from the definition of Fresnel coeffi-

cients, it can be observed that the phases of ~rri and ~rri=m are not limited

to 0 or p, but depend on that of different ~nni . Under such circumstances, it

is possible that ~rri~{~rri=mei2h can be satisfied at a thickness of d?l/4ni

(2h?p). In extreme cases, if ~rri and ~rri=m are already out of phase, to satisfy

the low reflection condition, d could be much smaller than l. As described

in Ref. 66, to achieve a low reflection of approximately 20% at 500 nm,

only 8 nm Ge is required on a Au film. Such ultrathin structures with high

absorptance are mostly desired for photovoltaic applications.

Dielectric/perforated metal film/insulator/metal (DPIM) structures

In conventional F–P MIM filters, the spacer is usually a lossless dielec-

tric layer. By replacing the lossless material with an absorptive mate-

rial, such as amorphous silicon in the visible range, a similar effect can

be observed: the resonance occurs at a thickness much smaller than the

wavelength. This effect helps narrow the scale gap between the meta-

material MIM scheme and the F–P MIM scheme.65 Wang et al.65

demonstrated that a perforated metal film/absorptive insulator/metal

(PIM) structure satisfies the MIM interference requirements discussed

above. In this structure, the a-Si film is only 15 nm thick, and the top

Ag checkerboard covers ,50% of the a-Si surface. Such a PIM multi-

layer system made of a nanoscopically perforated metallic film and an

ultrathin absorber formed a metamaterial effective medium that exhi-

bits negative refraction in the frequency range of interest. If such a

planar PIM structure is further capped with a dielectric interference

film to tune the phase difference between waves reflected from the top

and bottom surfaces of the PIM structure, the structure can highly

absorb electromagnetic radiation in the entire visible range, as shown

in Figure 8. The absorptance of this structure is sensitive to the thick-

ness of a-Si, but insensitive to the period or feature size of the metallic

nanostructures. The introduction of the self-complementary pattern

removes the electrical resonance in the interested range. The same

effect was also observed in aperiodic perforated metallic films (e.g.,

aperiodic structures in Refs. 69, 70), in which unlike plasmonic struc-

tures, no dependence of periodicity is even required. Simulations were

performed to demonstrate this idea. A 12-nm-thick a-Si on 60-nm Ag

structure capped with a layer of random metallic nanomesh followed

by a 60-nm-thick SiO2 film exhibits quite good absorptance (Figure 8),
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quite close to the result with a periodic structure. This result confirms

that the broadband absorption feature does not depend on specific

perforation geometry, or even aperiodicity; thus, it is possible to fab-

ricate highly absorbed PIM structures with simple and cost-effective

nanofabrication methods.

Compared with the nanoparticle plasmonic photovoltaic structures,

the dielectric/perforated meta film/insulator/metal (DPIM) structures

have an ultrathin a-Si layer of ,10 nm thick, together with two

metal surfaces, and thus are more likely to be used in ultrathin solar

cells. The perforated top patterns can be used as the front contact

with good flexibility and good electrical conductivity;70–72 therefore,

the DPIM structure is potentially a good selection for flexible solar cells.

METALLIC NANOSTRUCTURE-ENABLED SELECTIVE SOLAR

ABSORBER

Although much less attention is paid to solar thermal conversion pro-

cesses than photovoltaics, these processes are actually a major route for

harvesting solar radiation by converting sunlight directly to heat with

the use of spectrally selective solar absorbers. The generated heat can

further be converted into electricity. The sunlight can be concentrated

to get a higher temperature and thereby a higher efficiency, known as

concentrated solar power (CSP) plant technology. There is ,300 GW

of installed solar hot water system and ,3 GW of CSP plant world-

wide2,73 which is much larger than the installed capacity of solar pho-

tovoltaic cells. New technologies of solar thermoelectric generators

and solar thermophotovoltaics for CSP plants are currently being

researched, but are not yet commercialized.74 A selective solar absorber

that meets the requirements of the CSP program should have an

absorptance of at least 0.95 and an emittance of less than 0.10 at 400 6C.75

The photothermal conversion efficiency can be determined by the

solar selectivity of the solar selective absorber, which is determined by

the absorptance (as) and emittance (et) of spectrally selective coatings

based on the following equations:76

as hð Þ~
Ð lmax~?

lmin~0
½1{r l,hð Þf �S lð Þgdl

Ð lmax~?
lmin~0

S lð Þdl
ð2Þ

et h,Tð Þ~
Ð lmax~?

lmin~0
1{r l,hð Þ½ �B l,Tð Þf gdl

Ð lmax~?
lmin~0

B l,Tð Þdl
ð3Þ

where l is the wavelength, r(l,h) is the angular dependent (incident

angle h) spectral reflectance, S(l) is the direct normal solar irradiance

(AM 1.5), B(l,T) is the blackbody spectral radiation and T is the

absolute temperature.

Solar water heater systems that apply a solar absorber to heat water

have been widely used in China and Europe. Such systems can be

highly efficient; for example, a commercial evacuated tube collector

can achieve an efficiency of ,80%. However, for electricity genera-

tion, the efficiency is much lower. A recent advance in solar ther-

moelectric generators, in which a selective solar absorber absorbed

light and generated heat, while a pair of thermoelectric elements con-

nected to the solar absorber were used to convert the thermal energy to

electricity (Figure 9), presented a peak efficiency of 4.6% under AM

1.5G condition.74 New designs of a CSP system might further enhance

the entire conversion efficiency to 10%, which is comparable to a-Si:H

cells, with the greatest advantage being that such a system could pro-

vide electricity around the clock by storing the heat, eliminating the

need of a battery for electricity storage. However, improving the effi-

ciency requires a large temperature difference between the two ends of

the thermoelectric elements. A recent study reported that at an emit-

tance of 0.05 and a solar concentration 10 times the AM 1.5G spec-

trum, the optimal transition wavelength is observed to be 1.28 mm and

have a 957 K equilibrium temperature.77 Therefore, good thermal

stability at high temperatures is required.

The high absorptance and low emittance can result in a high photo-

thermal conversion efficiency of solar selective coatings. An ideal solar

absorber should have zero reflectance over the solar spectrum and zero

emittance in the middle IR region (Figure 10), which allows complete

absorption of solar energy without thermal radiation. However, in

reality, such an absorber does not exist; absorbers with 95% absorp-

tion and 5% emittance are realistic. The first practically useful coatings

were proposed by Tabor in 1955.78 Then, various spectrally selective

surfaces, such as black chrome coatings, Ni–Al2O3 cermet-based sur-

faces, Cr/CrxOy/Cr2O3 multilayer absorber coatings and paints includ-

ing organic black carbon and inorganic pigment FeMnCuOx, were

extensively investigated.78–84 According to the film configuration

and absorption mechanism, solar absorbers can be categorized into

six types.75 Among these types, most of the practically useful absor-

bers, including multilayer absorbers, cermet-based absorbers and tex-

tured surfaces, have metallic nanostructures. The metal component,

particle size, orientation, coating thickness and metal volume fraction

in the matrix have a strong effect on the solar selectivity.

In solar selective coatings with metallic nanostructures, metals play

an important role. First, a thick bottom metal layer is used as an IR

reflector due to its low emissivity in the mid- and far-IR range and its

high thermal conductivity. Most of the commercialized spectrally

selective coatings are supported on copper or aluminum substrates

to maximize the photothermal conversion efficiency. In addition to

the thick metal layer, metallic nanostructures, such as thin metal films,

metal nanoparticles and metal islands, are often employed in solar

selective surfaces. The thin metal film (several nanometers) is used

as a semitransparent reflective layer in multilayer absorbers. The metal

nanoparticles embedded in a dielectric matrix are used to adjust the

optical properties of the cermet layer. Metallic nanostructures, how-

ever, may cause some durability problems at high temperature. Here,

we focus only on multilayer absorbers and cermet-based absorbers to
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discuss the function of metallic nanostructures in multilayer and cer-

met coating solar absorbers using several examples.

Multilayer absorbers

Multilayer absorbers consist of alternating metal and dielectric layers.

The absorption mechanism of multilayer absorbers uses the multiple

reflections at the layer interfaces. A bottom semitransparent metal

layer (D) serves as a reflective layer that separates the two quarter-

wave dielectric layers. This layer has high reflectance in the IR region

and is slightly less reflective in the visible region. The top dielectric

layer (C) acts as an ACR for the metal layer (D) and reduces the visible

reflectance. The thickness of this dielectric layer determines the shape

and position of the reflectance curve. Another dielectric/metal (A/B)

bilayer further reduces the reflectance in the visible region and broad-

ens the absorption region (Figure 11a).75 The thickness of the dielec-

tric layer has a large effect on the solar selectivity. The stability of this

type of solar absorber strongly depends on the materials used. Metallic

nanofilms with high melting points, high nitriding or oxidation re-

sistance and low diffusion are promising candidates.

The thermal emission of a one-dimensional metallodielectric peri-

odic structure was analyzed by Narayanaswamy and Chen.85 Their

simulation indicated that the emissivity of the periodic structure con-

sisting of 11 unit cells with 10 nm silver and 150 nm of vacuum in the

IR range could be reduced by more than two orders of magnitude

compared with that of a bare 10-nm silver film. Several multilayer

absorbers based on different metallic nanofilms (Al, Pt, Cr, Ti) and
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dielectric layers (Al2O3, AlN, Cr2O3, SiO2) were developed for solar

thermal conversion application. In 2009, Barshilia demonstrated that

AlxOy/Al/AlxOy multilayer absorbers exhibit a high absorptance of

0.95–0.97 and a low emittance ranging from 0.06 to 0.08 at 82 6C.86

This coating on a Cu substrate was stable at up to 400 6C in air, and

degradation occurred when the temperature exceeded 450 6C due to

the diffusion of Cu. Replacing Cu with a Mo substrate, the solar

absorber was stable up to 450 6C in air and 800 6C in vacuum.86

Other systems such as AlxOy/Pt/AlxOy,
87 SiO2/Ti/SiO2/Al,88 AlN/Ti/

AlN,89 and HfOx/Mo/HfO2 were also investigated.90 The colored solar

selective coatings in the Ti/AlN multilayer structure were obtained by

adjusting the layer number and thickness.89 The prepared surfaces

display black, purple, yellowish green, red and yellowish orange,

among which the purple surface exhibited the best solar selectivity,

with a high absorptance of 0.94 and a low emittance of 0.05.89

Commercial solar absorbers often display a purple or blue color

instead of black; we should consider the light trapping not only in

the visible region, but in the entire solar spectrum as well as emission

in the IR region. HfO2 is a dielectric material with a high reflective

index, wide bandgap (5.5 eV) and good mechanical, chemical and

thermal stability. The HfOx/Mo/HfO2 system can be stable up to

500 6C in air. The HfO2 layer acted as an antireflection layer, and light

was largely absorbed in the HfOx and Mo layers. The addition of a Mo

layer between the Cu substrate and the HfOx layer could suppress the

diffusion of Cu and thereby enhance the thermal stability.90

Cermet-based solar absorbers

Cermet is a metal–dielectric composite in which metal nanoparticles

are imbedded in the dielectric matrix. The coatings strongly absorb

solar light due to inter-band transitions in the metal in combination

with small particle resonance, while the coatings are almost transpar-

ent in the IR region.75 The low emission mainly stems from the metal

substrate, and the high absorbance is related to the cermet coating and

the ARC. To date, cermet coatings have been extensively investigated

for mid- and high-temperature solar thermal applications due to their

high absorptance in a large solar region, low emittance in the IR region

and good thermal stability. The solar selectivity of cermet-based solar

absorbers can be affected by the coating thickness, metal volume frac-

tion in the composites and particle size, shape and orientation. A

typical and simple configuration comprises a metal layer for the IR

reflector, a cermet layer and an antireflection coating, as illustrated in

Figure 11b. The absorbing cermet coating may have an inherently

high-temperature material layer of either a uniform or graded metal

content or double layers with different metal contents.

An early commercialized cermet solar absorber, black chrome (Cr–

Cr2O3) prepared by electroplating demonstrated a solar selectivity

(ratio of absorptance to emittance) of 9.18.84 When the annealing

temperature increased to 400 6C, the amorphous Cr2O3 phase became

crystallized, and the phase further evolved to Cr3O4 as the temperature

increased to 500 6C.91 Optimized coatings exhibited long-term

stability, with the samples remaining stable after years of operation

at 300 6C in air. The graded Cr–Cr2O3 layers on Cu substrates exhibited

a higher absorptance in the range of 0.90–0.94 and a lower emittance of

0.04.80 Al2O3 was then widely used as the dielectric material because of

its high thermal and chemical stability. Sputtered Ni–Al2O3 selective

coatings were extensively investigated for mid- and high-temperature

applications. Ni–Al2O3 cermet-based solar selective surfaces were

also prepared using other methods including dual-electron-beam

evaporation and a solution-chemical method.83,92 The solar selectivity

of Ni–Al2O3 coatings was further improved by adding an ARC, and the

solar absorptance was increased while keeping the thermal emittance

unchanged.93 Other metals such as Co, Ti, Mo, W and Pt were also

used as the metal component in Al2O3-based cermet. Although the

Mo–Al2O3 and W–Al2O3 cermets were expected to be suitable for

high-temperature application, difficulties still occurred because dif-

fusion or a phase change of the metallic nanoparticles at high temper-

ature results in degradation of the coatings.94,95

Double-layered coatings were also developed. In a double-layered

cermet film, solar radiation is absorbed internally through phase inter-

ference in double-cermet solar coatings. Simulations indicated that

the double layer cermet film exhibits a higher conversion efficiency

compared with the uniform cermet or graded cermet film.96 The

double-cermet layer structure consisting of a AlN top layer, a cermet

layer with a low metal volume fraction, and another cermet layer with

a high metal volume fraction exhibited a high solar absorptance of

0.953 and a near-normal emittance of 0.051 for W-AlN cermet97 and

0.933 and 0.025, respectively, for SS-AlN cermet.98 The W- and SS-

AlN cermet films offer the advantage of the high reactivity of alumi-

num with nitrogen.97,98 The coatings with double absorption layers of

high metal volume fraction and low metal volume fraction prepared

by co-evaporation exhibited a high absorptance of 0.911 and a low

emittance of 0.0196 at 50 6C.99 Double-layered cermet films are also

stable. For a SS-AlN cermet structure, only a small change was

observed in the reflectance spectra after heating at 500 6C for 1 h.98

Generally, cermet-based solar absorbers exhibit good overall perfor-

mances of high absorptance, low emittance, and good thermal stability

and, therefore, have been used in CSP systems.75 Compared with mul-

tilayer solar absorbers, cermet coatings may be prepared using cost-

effective chemical solution approaches, although vacuum deposition

such as sputtering remains the mainstream preparation method.

Novel design of solar absorbers

Very recently, a work on a solution-processed plasmonic Ni nanochain–

Al2O3 cermet coating (Figure 12) revealed that unlike conventional mul-

tilayer graded-index cermet coatings, the SPP-enhanced solar absorption

in these nanostructures is tailored by the lengths of the Ni nanochains

instead of the cermet layer thicknesses, thus eliminating the requirement

of costly vacuum deposition for stringent thickness control.100 This cer-

met coating exhibited an absorption of .0.9 and an emittance of ,0.1.

In Figure 13, we propose a new structure of a selective solar absor-

ber. The structure consists of a top metallic nanofilter, a middle

absorbing layer, and a bottom metal substrate. The mesh size of the

metallic nanofilter, w, can be optimized such that it is highly trans-

parent in the region where the absorbing layer works well (visible and

near-IR region) but highly reflective to light with a wavelength much

larger than the mesh size (e.g., IR light .2 mm).101,102 With the

development of nanotechnology, the top metal network structures

are already available in a cost-effective manner,69,103 while the middle

absorbing layer can be sprayed graphite or other inexpensive materials

with a modest thickness. Without a top metallic nanofilter, the emit-

tance of the structure may reach a considerably high level, and hence,

the photo-thermal conversion efficiency is low.

CONCLUSIONS AND OUTLOOK

This article reviewed the applications of metallic nanostructures for

light trapping in solar energy-harvesting structures and devices from

thin film photovoltaic cells to solar thermal structures and devices.

The light trapping effect with metallic nanoparticles in photovoltaic

devices can stem from far-field scattering or from strong near-field

scattering surrounding the metallic particles. The coupling of light
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into the SPP mode can significantly enhance light absorption in the

long wavelength region near the back contact. These structures can

significantly decrease the thickness of the active layer. The MIM struc-

ture, a structure with a top metallic nanopattern and a thin dielectric

on a metal substrate, is especially suitable for ultrathin photovoltaic

devices, for which light can be highly absorbed in an ,10 nm thick

active layer. Such ultrathin structures not only offer high efficiency

and low cost, but can also potentially be used as flexible solar cells.

We also briefly discussed metallic nanostructures in solar absorbers,

which are used for converting solar energy into heat and potentially for

further converting this heat into electricity. Such solar absorbers

require both high photo-thermal conversion efficiency and good dur-

ability at high temperature for CSP systems. We also proposed a novel

metallic filter nanostructure that may significantly simplify the process

of fabrication of solar absorbers and decrease the cost.
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