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Polymeric photonic molecule super-mode lasers on
silicon

Tobias Grossmann1,2, Tobias Wienhold2, Uwe Bog2, Torsten Beck1, Christian Friedmann3, Heinz Kalt1

and Timo Mappes2,4

Optically coupled microcavities have emerged as photonic structures with promising properties for investigation of fundamental

science as well as for applications. We report on the fabrication and spatially resolved spectroscopy of on-chip photonic molecule

(PM) lasers consisting of two coupled, dye-doped polymeric microdisks on a silicon substrate. We investigate the fundamental lasing

properties with focus on the spatial distribution of modes, the coupling dependent suppression of lasing modes, and in particular the

application-oriented operation of these devices in aqueous environments. By depositing an additional polymer layer onto the

lithographically structured cavities made of dye-doped poly(methyl methacrylate), coupling-gap widths below 150 nm with aspect

ratios of the micro-/nanostructure exceeding 9 : 1 are achieved. This enables strong optical coupling at visible wavelengths despite

relatively small resonator radii of 25 mm. The lasing properties of dye-doped PMs are investigated using spatially resolved

micro-photoluminescence (m-PL) spectroscopy. This technique allows for the direct imaging of whispering-gallery modes (WGMs) in

the photonics molecules. For subwavelength coupling gaps, we observe lasing from delocalized eigenstates of the PMs (termed in the

following as super-modes). Using size-mismatched cavities, the lasing mode suppression for different coupling-gap widths is

investigated. We further demonstrate single-mode lasing operation in aqueous environments with PMs, which are realized on a

low-cost, polymer-on-silicon platform.
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INTRODUCTION

Optically coupled microcavities are attractive devices for the investiga-

tion of fundamental physics, e.g., quantum optics,1–4 as well as for

applications, such as sensing5–9 or telecommunications.10,11 Two or

more coupled microresonators are often referred to as photonic mole-

cule (PM), due to the formation of optical bonding and antibonding

modes in analogy to the electronic states in molecules formed by

atoms.12 In comparison to single microcavities PMs provide additional

degrees of freedom to tailor the optical density of states and the spatial

distribution of modes. This makes PMs especially attractive for lasing

devices, as coupling of size-mismatched resonators can lead to suppres-

sion of laser modes, which has been used for the demonstration of

optofluidic- and capillary-based single mode lasers.13,14 Although the

coupling between two resonators is known to play a major role for the

suppression of laser modes,13 so far no detailed experimental studies

have been performed to investigate the localization of lasing whisper-

ing-gallery modes in PMs and the effect of coupling on the localization

as well as on the suppression of lasing modes.

In addition to lasing devices, PMs provide promising prospects

for applications involving light-matter interactions such as cavity

quantum electrodynamics and sensing, where the possibility to

achieve electric field enhancements in the coupling gap could lead

to enhanced interaction cross-sections. Numerical simulations of

PMs predict improved properties for label-free biosensing such as

an increased sensitivity compared to single microcavities5 and the

possibility to discriminate—in a self-referenced way—between spe-

cific and unspecific binding events,15 which could make PMs applic-

able to complex multi-target environments, where unspecific binding

events add additional noise to the detection of a specific target.

MATERIALS AND METHODS

Sample fabrication

In order to precisely define the geometry of the PMs and to ensure large-

scale production capability and mechanical stability, lithographic fab-

rication is advantageous compared to common manual arrangement of

PMs.16–18 Our polymeric, on-chip PM lasers were fabricated by spin-

coating a 1.2 mm thick PMMA layer (MicroChem PMMA 950k A6)

onto a silicon substrate. To realize active PMs, the laser dye

Pyrromethene 597 (Radiant Dyes) was used as gain medium due to

its high photostability in polymeric host matrices and high quantum

1Institute of Applied Physics and DFG Center for Functional Nanostructures CFN, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany; 2Institute of Microstructure
Technology, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany; 3Institute of Functional Interfaces, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany and
4Carl Zeiss AG, Corporate Research and Technology, 07745 Jena, Germany
Correspondence: Dr T Grossmann, Institute of Applied Physics or Dr T Mappes, Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe,
Germany
E-mail: tobias.grossmann@kit.edu; timo.mappes@kit.edu; URL: www.biophotonic-systems.com

Received 18 September 2012; revised 3 December 2012; accepted 26 February 2013

Light: Science & Applications (2013) 2, e82; doi:10.1038/lsa.2013.38
� 2013 CIOMP. All rights reserved 2047-7538/13

www.nature.com/lsa

www.nature.com/lsa


efficiency.19 The dye was directly dissolved into the photoresist, resulting

in a dye concentration of 25 mmol g21 solid content. PMMA microdisks

were then patterned by electron beam (e-beam) lithography. After

development, the silicon was etched isotropically with XeF2, resulting

in the microdisks now located on silicon pedestals (Figure 1a). The

realization of coupling gaps between two microdisks with well-defined

vertical sidewalls is highly limited by the resolution of the fabrication

process. The latter is mainly influenced by the e-beam shape and the

contrast of the resist. With the given microdisk thickness of 1.2 mm the

coupling-gap width can be structured lithographically in PMMA as

small as 340 nm, corresponding to a microstructure aspect ratio of about

4 : 1 (inset, Figure 1a). Narrower coupling gaps could allow for signifi-

cant field enhancements of delocalized (bonding) modes of PMs in the

coupling gap—analogous to the field enhancement in slot waveguides.20

Therefore, a process step was developed, resulting in aspect ratio con-

siderably above the resolution limit of conventional e-beam lithography

in thick PMMA resist. Here, an additional ,100 nm thick layer of

poly(p-xylylene) (PPX) with a functional alkyne group is conformally

polymerized onto the resonators by chemical vapor deposition

(Figure 1b). Details of this chemical vapor deposition process step can

be found elsewhere.21 PPX—often marketed under the name parylene—

is transparent in the visible spectral region22 and thus has negligible

influence on the threshold of the lasers. With this additional fabrication

step coupling gaps below 150 nm were achieved. Figure 1b shows a

scanning electron micrograph of a focused ion beam cut of the coupling

region at the minimal distance between two exemplarily chosen micro-

disks. The aspect ratio of the microstructure with PPX layer is 9 : 1 with a

microdisk thickness of 1.34 mm and is thus increased by more than a

factor of two compared to the uncoated structure.

Micro-photoluminescence (m-PL) spectroscopy

For characterization of the lasing properties of PMs and to analyze the

spatial extent of the lasing whispering-gallery modes (WGMs), m-PL

spectroscopy was performed. The dye-doped PMs were optically

pumped with 10 ns pulses of a frequency doubled Nd:YVO4 laser at

a pump wavelength of 532 nm and a repetition rate of 20 Hz. The

pump pulses were focused onto the PM under an incident angle of 456

with respect to the substrate normal using a lens. The pump spot was

chosen to have a diameter of approximately 150 mm on the sample

surface in order to homogeneously pump both microdisks simulta-

neously. The output emission was collected perpendicular to the PM

with a microscope objective (NA50.4, 203) and either imaged on a

CCD-camera (CCD1) or analyzed in a spectrometer (grating with

1200 lines mm21) equipped with a CCD-camera (CCD2) with an

overall spectral resolution of 60 pm (Figure 2a). In addition to spec-

trally resolving the emission from the sample, the m-PL set-up also

resolves the emitted light spatially along the vertical direction, denoted

as y-axis in Figure 2b. By aligning the spectrometer entrance slit along

the PM’s major axis (compare Figure 2b), the emission from a several

micrometer wide stripe of the central region of the PM is imaged onto

CCD2. This allows for simultaneous recording of the WGM-lasing

from both ends of the PM as well as from the coupling gap, resulting

in separated lasing spectra on CCD2.

RESULTS AND DISCUSSION

To determine the coupling-dependent properties of the PM lasers,

size-mismatched cavities with radii of 20 and 25 mm and coupling-

gap widths varying from 0 to 200 nm in steps of about 25 nm were

investigated. The spatially resolved lasing spectra of the coupled

microcavity lasers with a coupling gap of around 200 nm are depicted

in Figure 2b, where the sample was pumped with an energy of 30 nJ

per pulse. A comparison of the lasing spectra from both ends of the

PM in Figure 2b clearly shows that both microcavities support differ-

ent lasing modes with differing gain spectra (marked by dashed rec-

tangles) and differing cavity modes. Two examples of cavity modes

which are localized in solely one of the microdisks are marked by solid

white rectangles in Figure 2b. These lasing modes with high intensity

in one cavity only show weak photoluminescence intensity in the

other cavity. Despite optical coupling between the resonators, no

significant field build-up in the other microdisk occurs. This can be

attributed to the different cavity sizes and hence differing resonance

wavelengths of both resonators. The weak coupling to the other re-

sonator can therefore be considered as an additional loss mechanism.

Decreasing the coupling-gap width leads to an increase of coupling

loss and hence to a decrease of the Q factor of the WGMs. This causes

an increase of the lasing thresholds which is expected to lead to sup-

pression of modes and is often referred to as Vernier effect.13,14 A

quantitative analysis of the suppression of lasing modes of the PMs

was performed by counting the total number of laser modes in the

spectrum acquired by pumping PMs with coupling gaps varying from

0 to 200 nm with an energy of 30 nJ. These PMs with varying coup-

ling-gap widths were all fabricated on a single substrate. The effect of a

decreasing coupling gap on the number of lasing modes of the PM is
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Figure 1 (a) Scanning electron micrograph of a photonic molecule consisting of

two coupled microdisk resonators with radii of each 25 mm and a coupling-gap

width of 340 nm structured by e-beam lithography, standing on silicon pedestals.

(b) Deposition of an additional layer of PPX after the lithographic structuring can

significantly decrease the coupling-gap width below 150 nm. The inset shows a

scanning electron micrograph of the cross-section of the coupling region at the

minimal distance between the microdisks fabricated by a focused ion beam cut.

PPX, poly(p-xylylene).
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depicted in Figure 2c, where the number of lasing modes includes the

modes of both microdisks. For coupling-gap widths above 150 nm,

the number of lasing modes is almost constant and no suppression of

laser modes can be observed. Below 150 nm, a significant decrease

in the number of lasing modes was observed. Comparing the number

of modes for the largest and smallest coupling-gap width shows a

decrease up to a factor of five. This indicates that efficient suppression

of laser modes in size-mismatched cavities only occurs above a certain

coupling strength and seems to have a threshold-like behavior. This

observation can be explained by considering the degree of coupling

between the resonators, which can be analyzed analytically by calcula-

tion of the coupling constant k. An analytic expression for calculation

of k was presented by Little et al.23 The coupling constant was found

to increase monotonically for decreasing coupling-gap size. For the

size-mismatched PMs investigated in this work (microdisks with radii

of 25 and 20 mm and a resonance wavelength of 580 nm), the coupling

constant was found to take on values significantly above zero for

coupling-gap widths smaller than 300 nm. This is consistent with

the above discussed observation of weak photoluminescence of the

modes, which are mainly localized in one of the resonators, in the

other cavity (compare Figure 2b). For values of the coupling-gap

width below 150 nm, the coupling constant takes on values above

0.03. This value of k seems to be a threshold value where the losses

induced by coupling become dominant compared to the other loss

mechanisms of the modes, such as surface scattering losses. The

Vernier effect observed in the PMs presented in this work therefore

only occurs for coupling-gap widths below 150 nm.

Besides a reduced number of modes, lasing modes with equal inten-

sities at both ends of the PM were observed for coupling-gap widths

smaller than 150 nm. An example for this case is depicted in Figure 2d,

where the coupling-gap width of the size-mismatched PM is 120 nm.

Here, a lasing mode (marked by a solid white rectangle) with high relative

intensities in both cavities was observed and can thus be considered as

delocalized super-mode which extends over both resonators and arises

from the strong optical coupling between the two microdisks. This is

therefore consistent with the observation of enhanced lasing mode sup-

pression in this regime, where the number of lasing modes is about a

factor five lower compared to regime of weaker coupling. For delocalized

modes, the inter-cavity coupling does not lead to additional losses, as

both resonators support the same resonance wavelength. Therefore, delo-

calized lasing modes were found to have a lower threshold compared to

localized modes due to the absence of coupling losses.

In addition to the above presented operation of PM lasers in air,

lasing properties were investigated in aqueous environment to de-

monstrate the potential use of these devices for sensing applications.

The reduced refractive index contrast between cavity and aqueous

solution has the advantage that less-confined modes, such as higher

order radial modes of the microdisks, have a lower Q factor and higher

lasing threshold due to increased radiation losses. Therefore, these

modes do not contribute to lasing oscillations at moderate pump

powers and the overall number of lasing modes is reduced compared

to the situation in air. Furthermore, the evanescent fields of the WGMs

are extended further into the aqueous medium leading to a stronger

coupling between the resonators. In water, this results in delocalized

lasing modes for coupling-gap widths already from 300 nm and below.

Furthermore, pronounced single-mode lasing could be achieved. A

lasing spectrum showing single-mode operation is depicted in

Figure 3a, recorded at a pump energy of 84 nJ. The single-mode lasing

was observed in a PM with a coupling-gap width of around 250 nm.

The single-mode lasing was still apparent at higher pump energies,

indicating a very efficient suppression of lasing modes. The inset of

Figure 3a depicts a lasing spectrum at a pump energy of 215 nJ, which

is more than three times the value of the lasing threshold of 65 nJ,

determined from the input-output characteristics of the laser mode at

579 nm (Figure 3b). Although several side modes appeared at high

pump energies, the intensity of the dominating lasing mode was still

more than six times higher than the most intense side mode. This

indicates that almost all pump energy is transferred into the dominat-

ing mode due to the effective suppression of side modes.

CONCLUSIONS

In summary, we presented a method which allows for the fabrication

of on-chip WGM PMs with coupling-gap widths below 150 nm by
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Figure 2 (a) The experimental setup for the investigation of PM lasing modes. The

CCD camera CCD1 is used for the two-dimensional imaging of the spectrally inte-

grated photoluminescence. CCD2 detects the spectrally resolved photolumines-

cence with a spatial resolution in the vertical dimension. (b) Images made by

both CCDs of the lasing WGMs in size-mismatched PMs with a coupling gap of

200 nm. The emitted lasing spectra of both cavities vary due to their different size

(disk radii: 20 and 25 mm) and weak inter-cavity coupling. The modes are localized

in either of the cavities. The unequal spacing of the modes originates from mode

competition in the presence of gain in the active microcavities. (c) The number of

lasing modes is significantly decreased for coupling-gap widths below 150 nm. (d)

Section of the lasing spectrum of a PM with a coupling gap of 120 nm, showing that

for increased intra-cavity coupling delocalized lasing modes (marked by a solid

white rectangle) exist. PM, photonic molecule; WGM, whispering-gallery mode.
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combining lithography with the subsequent deposition of an addi-

tional PPX polymer layer via chemical vapor deposition. In order to

resolve the spatial distribution of lasing WGMs, m-PL spectroscopy

was used to determine the localization of the modes. By varying the

coupling-gap width between size-mismatched microdisks, we deter-

mined that suppression of laser modes only occurs above a certain

coupling strength and showed a threshold like behavior. In the regime

of strong optical coupling, we observe super-modes which are delo-

calized in both microcavities. Furthermore, the PMs were operated in

aqueous environments, where they showed distinctive single-mode

lasing even at pump powers well above the lasing threshold.

The presented lithographic fabrication method for PMs could allow

for realization of large arrays of strongly coupled, on-chip cavities with

precisely defined coupling-gap sizes, which is of great interest for

applications in quantum optics. The additional PPX layer not only

reduces the coupling gaps, but also provides chemical end-groups on

the PM surface and the surrounding silicon and can thus serve as

starting layer for the surface functionalization for the label-free detec-

tion of target molecules as well as for solventless adhesive bonding of

additional microfluidic elements onto the silicon substrate, making

our presented approach highly interesting for the realization of inte-

grated optofluidic devices.
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Figure 3 (a) Single-mode lasing from size-mismatched PMs in aqueous envi-

ronment. (b) The lasing threshold for the laser mode is around 65 nJ. The coup-

ling-gap width of the PM in this case was around 250 nm. PM, photonic molecule.
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