Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute myeloid leukemia

The CXCR4 inhibitor BL-8040 induces the apoptosis of AML blasts by downregulating ERK, BCL-2, MCL-1 and cyclin-D1 via altered miR-15a/16-1 expression

Abstract

CXCR4 is a key player in the retention and survival of human acute myeloid leukemia (AML) blasts in the bone marrow (BM) microenvironment. We studied the effects of the CXCR4 antagonist BL-8040 on the survival of AML blasts, and investigated the molecular mechanisms by which CXCR4 signaling inhibition leads to leukemic cell death. Treatment with BL-8040 induced the robust mobilization of AML blasts from the BM. In addition, AML cells exposed to BL-8040 underwent differentiation. Furthermore, BL-8040 induced the apoptosis of AML cells in vitro and in vivo. This apoptosis was mediated by the upregulation of miR-15a/miR-16-1, resulting in downregulation of the target genes BCL-2, MCL-1 and cyclin-D1. Overexpression of miR-15a/miR-16-1 directly induced leukemic cell death. BL-8040-induced apoptosis was also mediated by the inhibition of survival signals via the AKT/ERK pathways. Importantly, treatment with a BCL-2 inhibitor induced apoptosis and act together with BL-8040 to enhance cell death. BL-8040 also synergized with FLT3 inhibitors to induce AML cell death. Importantly, this combined treatment prolonged the survival of tumor-bearing mice and reduced minimal residual disease in vivo. Our results provide a rationale to test combination therapies employing BL-8040 and BCL-2 or FLT3 inhibitors to achieve increased efficacy of these agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Peled A, Tavor S . Role of CXCR4 in the pathogenesis of acute myeloid leukemia. Theranostics 2013; 3: 34ā€“39.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  2. Estey E, Dohner H . Acute myeloid leukaemia. Lancet 2006; 368: 1894ā€“1907.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  3. Matsunaga T, Takemoto N, Sato T, Takimoto R, Tanaka I, Fujimi A et al. Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med 2003; 9: 1158ā€“1165.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Ayala F, Dewar R, Kieran M, Kalluri R . Contribution of bone microenvironment to leukemogenesis and leukemia progression. Leukemia 2009; 23: 2233ā€“2241.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  5. Burger JA, Peled A . CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia 2009; 23: 43ā€“52.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Rombouts EJ, Pavic B, Lowenberg B, Ploemacher RE . Relation between CXCR-4 expression, Flt3 mutations, and unfavorable prognosis of adult acute myeloid leukemia. Blood 2004; 104: 550ā€“557.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Nervi B, Ramirez P, Rettig MP, Uy GL, Holt MS, Ritchey JK et al. Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood 2009; 113: 6206ā€“6214.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  8. Zeng Z, Shi YX, Samudio IJ, Wang RY, Ling X, Frolova O et al. Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood 2009; 113: 6215ā€“6224.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  9. Cho BS, Zeng Z, Mu H, Wang Z, Konoplev S, McQueen T et al. Antileukemia activity of the novel peptidic CXCR4 antagonist LY2510924 as monotherapy and in combination with chemotherapy. Blood 2015; 126: 222ā€“232.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  10. Kuhne MR, Mulvey T, Belanger B, Chen S, Pan C, Chong C et al. BMS-936564/MDX-1338: a fully human anti-CXCR4 antibody induces apoptosis in vitro and shows antitumor activity in vivo in hematologic malignancies. Clin Cancer Res 2013; 19: 357ā€“366.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Peng SB, Zhang X, Paul D, Kays LM, Ye M, Vaillancourt P et al. Inhibition of CXCR4 by LY2624587, a fully humanized anti-CXCR4 antibody induces apoptosis of hematologic malignancies. PLoS ONE 2016; 11: e0150585.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  12. Tamamura H, Fujisawa M, Hiramatsu K, Mizumoto M, Nakashima H, Yamamoto N et al. Identification of a CXCR4 antagonist, a T140 analog, as an anti-rheumatoid arthritis agent. FEBS Lett 2004; 569: 99ā€“104.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Jacobson O, Weiss ID, Kiesewetter DO, Farber JM, Chen X . PET of tumor CXCR4 expression with 4-18ā€‰F-T140. J Nucl Med 2010; 51: 1796ā€“1804.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Jacobson O, Weiss ID, Szajek LP, Niu G, Ma Y, Kiesewetter DO et al. PET imaging of CXCR4 using copper-64 labeled peptide antagonist. Theranostics 2011; 1: 251ā€“262.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Abraham M, Biyder K, Begin M, Wald H, Weiss ID, Galun E et al. Enhanced unique pattern of hematopoietic cell mobilization induced by the CXCR4 antagonist 4ā€‰F-benzoyl-TN14003. Stem Cells 2007; 25: 2158ā€“2166.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Peled A, Abraham M, Avivi I, Rowe JM, Beider K, Wald H et al. The high-affinity CXCR4 antagonist BKT140 is safe and induces a robust mobilization of human CD34+ cells in patients with multiple myeloma. Clin Cancer Res 2014; 20: 469ā€“479.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Abraham M, Weiss ID, Wald H, Wald O, Nagler A, Beider K et al. Sequential administration of the high affinity CXCR4 antagonist BKT140 promotes megakaryopoiesis and platelet production. Br J Haematol 2013; 163: 248ā€“259.

    CASĀ  PubMedĀ  Google ScholarĀ 

  18. Beider K, Begin M, Abraham M, Wald H, Weiss ID, Wald O et al. CXCR4 antagonist 4ā€‰F-benzoyl-TN14003 inhibits leukemia and multiple myeloma tumor growth. Exp Hematol 2011; 39: 282ā€“292.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Beider K, Ribakovsky E, Abraham M, Wald H, Weiss L, Rosenberg E et al. Targeting the CD20 and CXCR4 pathways in non-Hodgkin lymphoma with rituximab and high-affinity CXCR4 antagonist BKT140. Clin Cancer Res 2013; 19: 3495ā€“3507.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Beider K, Darash-Yahana M, Blaier O, Koren-Michowitz M, Abraham M, Wald H et al. Combination of imatinib with CXCR4 antagonist BKT140 overcomes the protective effect of stroma and targets CML in vitro and in vivo. Mol Cancer Ther 2014; 13: 1155ā€“1169.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Fahham D, Weiss ID, Abraham M, Beider K, Hanna W, Shlomai Z et al. In vitro and in vivo therapeutic efficacy of CXCR4 antagonist BKT140 against human non-small cell lung cancer. J Thorac Cardiovasc Surg 2012; 144: 1167ā€“1175.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Kelly PN, Strasser A . The role of Bcl-2 and its pro-survival relatives in tumourigenesis and cancer therapy. Cell Death Differ 2011; 18: 1414ā€“1424.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  23. Vaux DL, Cory S, Adams JM . Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 1988; 335: 440ā€“442.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Pekarsky Y, Croce CM . Role of miR-15/16 in CLL. Cell Death Differ 2015; 22: 6ā€“11.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2005; 102: 13944ā€“13949.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  26. Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L et al. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 2008; 14: 1271ā€“1277.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  27. Gao SM, Yang J, Chen C, Zhang S, Xing CY, Li H et al. miR-15a/16-1 enhances retinoic acid-mediated differentiation of leukemic cells and is up-regulated by retinoic acid. Leuk Lymphoma 2011; 52: 2365ā€“2371.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Ricciardi MR, McQueen T, Chism D, Milella M, Estey E, Kaldjian E et al. Quantitative single cell determination of ERK phosphorylation and regulation in relapsed and refractory primary acute myeloid leukemia. Leukemia 2005; 19: 1543ā€“1549.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. Quentmeier H, Reinhardt J, Zaborski M, Drexler HG . FLT3 mutations in acute myeloid leukemia cell lines. Leukemia 2003; 17: 120ā€“124.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Pratz KW Cortes J, Roboz GJ, Rao N, Arowojolu O, Stine A et al. A pharmacodynamic study of the FLT3 inhibitor KW-2449 yields insight into the basis for clinical response. Blood 2009; 113: 3938ā€“3946.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  31. Smith BD, Levis M, Beran M, Giles F, Kantarjian H, Berg K et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 2004; 103: 3669ā€“3676.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  32. Xiaochuan Yang AS, Levis MJ . Persistent ERK activation in bone marrow blasts may account for the difference in bone marrow versus peripheral blood response to FLT3 inhibition in FLT3/ITD AML. Blood 2011; 118: 736.

    ArticleĀ  Google ScholarĀ 

  33. De Kouchkovsky I, Abdul-Hay M . Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J 2016; 6: e441.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  34. Gao SM, Xing CY, Chen CQ, Lin SS, Dong PH, Yu FJ . miR-15a and miR-16-1 inhibit the proliferation of leukemic cells by down-regulating WT1 protein level. J Exp Clin Cancer Res 2011; 30: 110.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  35. Gao SM, Yang JJ, Chen CQ, Chen JJ, Ye LP, Wang LY et al. Pure curcumin decreases the expression of WT1 by upregulation of miR-15a and miR-16-1 in leukemic cells. J Exp Clin Cancer Res 2012; 31: 27.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  36. Cantley LC . The phosphoinositide 3-kinase pathway. Science 2002; 296: 1655ā€“1657.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. Mo W, Chen J, Patel A, Zhang L, Chau V, Li Y et al. CXCR4/CXCL12 mediate autocrine cell- cycle progression in NF1-associated malignant peripheral nerve sheath tumors. Cell 2013; 152: 1077ā€“1090.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  38. Fathi AT, Grant S, Karp JE . Exploiting cellular pathways to develop new treatment strategies for AML. Cancer Treat Rev 2010; 36: 142ā€“150.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  39. Rahmani M, Aust MM, Attkisson E, Williams DC Jr, Ferreira-Gonzalez A, Grant S . Inhibition of Bcl-2 antiapoptotic members by obatoclax potently enhances sorafenib-induced apoptosis in human myeloid leukemia cells through a Bim-dependent process. Blood 2012; 119: 6089ā€“6098.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  40. Schimmer AD . Novel therapies targeting the apoptosis pathway for the treatment of acute myeloid leukemia. Curr Treat Options Oncol 2007; 8: 277ā€“286.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  41. Pan R, Hogdal LJ, Benito JM, Bucci D, Han L, Borthakur G et al. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov 2014; 4: 362ā€“375.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  42. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med 2013; 19: 202ā€“208.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Choudhary GS, Al-Harbi S, Mazumder S, Hill BT, Smith MR, Bodo J et al. MCL-1 and BCL-xL-dependent resistance to the BCL-2 inhibitor ABT-199 can be overcome by preventing PI3K/AKT/mTOR activation in lymphoid malignancies. Cell Death Dis 2015; 6: e1593.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  44. Niu X, Wang G, Wang Y, Caldwell JT, Edwards H, Xie C et al. Acute myeloid leukemia cells harboring MLL fusion genes or with the acute promyelocytic leukemia phenotype are sensitive to the Bcl-2-selective inhibitor ABT-199. Leukemia 2014; 28: 1557ā€“1560.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  45. Niu X, Zhao J, Ma J, Xie C, Edwards H, Wang G et al. Binding of released Bim to Mcl-1 is a mechanism of intrinsic resistance to ABT-199 which can be overcome by combination with daunorubicin or cytarabine in AML cells. Clin Cancer Res 2016; 22: 4440ā€“4451.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  46. Lin KH, Winter PS, Xie A, Roth C, Martz CA, Stein EM et al. Targeting MCL-1/BCL-XL forestalls the acquisition of resistance to ABT-199 in acute myeloid leukemia. Sci Rep 2016; 6: 27696.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  47. Tavor S, Eisenbach M, Jacob-Hirsch J, Golan T, Petit I, Benzion K et al. The CXCR4 antagonist AMD3100 impairs survival of human AML cells and induces their differentiation. Leukemia 2008; 22: 2151ā€“5158.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  48. Peled A, Wald O, Burger J . Development of novel CXCR4-based therapeutics. Expert Opin Investig Drugs 2012; 21: 341ā€“353.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  49. Zhang Y, Patel S, Abdelouahab H, Wittner M, Willekens C, Shen S et al. CXCR4 inhibitors selectively eliminate CXCR4-expressing human acute myeloid leukemia cells in NOG mouse model. Cell Death Dis 2012; 3: e396.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  50. Fukuda S, Broxmeyer HE, Pelus LM . Flt3 ligand and the Flt3 receptor regulate hematopoietic cell migration by modulating the SDF-1alpha(CXCL12)/CXCR4 axis. Blood 2005; 105: 3117ā€“3126.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  51. Onishi C, Mori-Kimachi S, Hirade T, Abe M, Taketani T, Suzumiya J et al. Internal tandem duplication mutations in FLT3 gene augment chemotaxis to Cxcl12 protein by blocking the down-regulation of the Rho-associated kinase via the Cxcl12/Cxcr4 signaling axis. J Biol Chem 2014; 289: 31053ā€“31065.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  52. Grundler R, Brault L, Gasser C, Bullock AN, Dechow T, Woetzel S et al. Dissection of PIM serine/threonine kinases in FLT3-ITD-induced leukemogenesis reveals PIM1 as regulator of CXCL12-CXCR4-mediated homing and migration. J Exp Med 2009; 206: 1957ā€“1970.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  53. Kim KT, Carroll AP, Mashkani B, Cairns MJ, Small D, Scott RJ . MicroRNA-16 is down-regulated in mutated FLT3 expressing murine myeloid FDC-P1 cells and interacts with Pim-1. PLoS ONE 2012; 7: e44546.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  54. Zhang W, Konopleva M, Ruvolo VR, McQueen T, Evans RL, Bornmann WG et al. Sorafenib induces apoptosis of AML cells via Bim-mediated activation of the intrinsic apoptotic pathway. Leukemia 2008; 22: 808ā€“818.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  55. Abraham M, Beider K, Wald H, Weiss ID, Zipori D, Galun E et al. The CXCR4 antagonist 4ā€‰F-benzoyl-TN14003 stimulates the recovery of the bone marrow after transplantation. Leukemia 2009; 23: 1378ā€“1388.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgements

This work was supported by grants from Biokine Therapeutics and BiolineRX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Peled.

Ethics declarations

Competing interests

Michal Abraham, Hanna Wald and Orly Eizenberg are employees and shareholders of Biokine Therapeutics; Amnon Peled serves as a consultant for Biokine Therapeutics and is also a shareholder. Yaron Pereg is an employee of BioLineRx. Remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abraham, M., Klein, S., Bulvik, B. et al. The CXCR4 inhibitor BL-8040 induces the apoptosis of AML blasts by downregulating ERK, BCL-2, MCL-1 and cyclin-D1 via altered miR-15a/16-1 expression. Leukemia 31, 2336ā€“2346 (2017). https://doi.org/10.1038/leu.2017.82

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.82

This article is cited by

Search

Quick links