Chronic myelogenous leukemia

Differential signaling through p190 and p210 BCR-ABL fusion proteins revealed by interactome and phosphoproteome analysis



Two major types of leukemogenic BCR-ABL fusion proteins are p190BCR-ABLand p210BCR-ABL. Although the two fusion proteins are closely related, they can lead to different clinical outcomes. A thorough understanding of the signaling programs employed by these two fusion proteins is necessary to explain these clinical differences. We took an integrated approach by coupling protein–protein interaction analysis using biotinylation identification with global phosphorylation analysis to investigate the differences in signaling between these two fusion proteins. Our findings suggest that p190BCR-ABL and p210BCR-ABL differentially activate important signaling pathways, such as JAK-STAT, and engage with molecules that indicate interaction with different subcellular compartments. In the case of p210BCR-ABL, we observed an increased engagement of molecules active proximal to the membrane and in the case of p190BCR-ABL, an engagement of molecules of the cytoskeleton. These differences in signaling could underlie the distinct leukemogenic process induced by these two protein variants.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5


  1. 1

    Score J, Calasanz MJ, Ottman O, Pane F, Yeh RF, Sobrinho-Simões MA et al. Analysis of genomic breakpoints in p190 and p210 BCR-ABL indicate distinct mechanisms of formation. Leukemia 2010; 24: 1742–1750.

    CAS  Article  Google Scholar 

  2. 2

    Demehri S, O’Hare T, Eide CA, Smith CA, Tyner JW, Druker BJ et al. The function of the pleckstrin homology domain in BCR-ABL-mediated leukemogenesis. Leukemia 2009; 24: 226–229.

    Article  Google Scholar 

  3. 3

    Foà R, Vitale A, Vignetti M, Meloni G, Guarini A, Propris MSD et al. Dasatinib as first-line treatment for adult patients with Philadelphia chromosome–positive acute lymphoblastic leukemia. Blood 2011; 118: 6521–6528.

    Article  Google Scholar 

  4. 4

    Gurion R, Raanani P, Vidal L, Leader A, Gafter-Gvili A . First line treatment with newer tyrosine kinase inhibitors in chronic myeloid leukemia associated with deep and durable molecular response – systematic review and meta-analysis. Acta Oncol 2016; 55: 1077–1083.

    CAS  Article  Google Scholar 

  5. 5

    Tala I, Chen R, Hu T, Fitzpatrick ER, Williams DA, Whitehead IP . Contributions of the RhoGEF activity of p210 BCR/ABL to disease progression. Leukemia 2013; 27: 1080–1089.

    CAS  Article  Google Scholar 

  6. 6

    Li S, Ilaria RL, Million RP, Daley GQ, Etten RAV . The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia–like syndrome in mice but have different lymphoid leukemogenic activity. J Exp Med 1999; 189: 1399–1412.

    CAS  Article  Google Scholar 

  7. 7

    Lugo TG, Pendergast AM, Muller AJ, Witte ON . Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 1990; 247: 1079–1082.

    CAS  Article  Google Scholar 

  8. 8

    Hantschel O . Structure, regulation, signaling, and targeting of Abl kinases in cancer. Genes Cancer 2012; 3: 436–446.

    Article  Google Scholar 

  9. 9

    Cilloni D, Saglio G . Molecular pathways: BCR-ABL. Clin Cancer Res 2012; 18: 930–937.

    CAS  Article  Google Scholar 

  10. 10

    Harnois T, Constantin B, Rioux A, Grenioux E, Kitzis A, Bourmeyster N . Differential interaction and activation of Rho family GTPases by p210bcr-abl and p190bcr-abl. Oncogene 2003; 22: 6445–6454.

    CAS  Article  Google Scholar 

  11. 11

    Ilaria RL, Etten RAV . P210 and P190BCR/ABL induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J Biol Chem 1996; 271: 31704–31710.

    CAS  Article  Google Scholar 

  12. 12

    Goss VL, Lee KA, Moritz A, Nardone J, Spek EJ, MacNeill J et al. A common phosphotyrosine signature for the Bcr-Abl kinase. Blood 2006; 107: 4888–4897.

    CAS  Article  Google Scholar 

  13. 13

    Rubbi L, Titz B, Brown L, Galvan E, Komisopoulou E, Chen SS et al. Global phosphoproteomics reveals crosstalk between Bcr-Abl and negative feedback mechanisms controlling Src signaling. Sci Signal 2011; 4: ra18.

    Article  Google Scholar 

  14. 14

    Titz B, Low T, Komisopoulou E, Chen SS, Rubbi L, Graeber TG . The proximal signaling network of the BCR-ABL1 oncogene shows a modular organization. Oncogene 2010; 29: 5895–5910.

    CAS  Article  Google Scholar 

  15. 15

    Brehme M, Hantschel O, Colinge J, Kaupe I, Planyavsky M, Köcher T et al. Charting the molecular network of the drug target Bcr-Abl. Proc Natl Acad Sci USA 2009; 106: 7414–7419.

    CAS  Article  Google Scholar 

  16. 16

    Roux KJ, Kim DI, Burke B . BioID: a screen for protein-protein interactions. Curr Protoc Protein Sci 2013; 74, 19.23.1–19.23.14.

  17. 17

    Lambert J-P, Tucholska M, Go C, Knight JDR, Gingras A-C . Proximity biotinylation and affinity purification are complementary approaches for the interactome mapping of chromatin-associated protein complexes. J Proteomics 2015; 118: 81–94.

    CAS  Article  Google Scholar 

  18. 18

    Mitchell CJ, Kim M-S, Na CH, Pandey A . PyQuant: a versatile framework for analysis of quantitative mass spectrometry data. Mol Cell Proteomics 2016; 15: 2829–2838.

    CAS  Article  Google Scholar 

  19. 19

    Cox J, Mann M . MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 2008; 26: 1367–1372.

    CAS  Article  Google Scholar 

  20. 20

    Mellacheruvu D, Wright Z, Couzens AL, Lambert J-P, St-Denis NA, Li T et al. The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat Methods 2013; 10: 730–736.

    CAS  Article  Google Scholar 

  21. 21

    Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 2015; 43: D447–D452.

    CAS  Article  Google Scholar 

  22. 22

    Kim M-S, Zhong Y, Yachida S, Rajeshkumar NV, Abel ML, Marimuthu A et al. Heterogeneity of pancreatic cancer metastases in a single patient revealed by quantitative proteomics. Mol Cell Proteomics 2014; 13: 2803–2811.

    CAS  Article  Google Scholar 

  23. 23

    Roux KJ, Kim DI, Raida M, Burke B . A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 2012; 196: 801–810.

    CAS  Article  Google Scholar 

  24. 24

    Daley GQ, Baltimore D . Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210bcr/abl protein. Proc Natl Acad Sci USA 1988; 85: 9312–9316.

    CAS  Article  Google Scholar 

  25. 25

    Bhatia R, Munthe HA, Verfaillie CM . Role of abnormal integrin-cytoskeletal interactions in impaired β1 integrin function in chronic myelogenous leukemia hematopoietic progenitors. Exp Hematol 1999; 27: 1384–1396.

    CAS  Article  Google Scholar 

  26. 26

    Wertheim JA, Perera SA, Hammer DA, Ren R, Boettiger D, Pear WS . Localization of BCR-ABL to F-actin regulates cell adhesion but does not attenuate CML development. Blood 2003; 102: 2220–2228.

    CAS  Article  Google Scholar 

  27. 27

    Heisterkamp N, Voncken JW, Senadheera D, Gonzalez-Gomez I, Reichert A, Haataja L et al. Reduced oncogenicity of p190 Bcr/Abl F-actin-binding domain mutants. Blood 2000; 96: 2226–2232.

    CAS  PubMed  Google Scholar 

  28. 28

    Salgia R, Li JL, Ewaniuk DS, Pear W, Pisick E, Burky SA et al. BCR/ABL induces multiple abnormalities of cytoskeletal function. J Clin Invest 1997; 100: 46–57.

    CAS  Article  Google Scholar 

  29. 29

    Hantschel O, Wiesner S, Güttler T, Mackereth CD, Rix LLR, Mikes Z et al. Structural basis for the cytoskeletal association of Bcr-Abl/c-Abl. Mol Cell 2005; 19: 461–473.

    CAS  Article  Google Scholar 

  30. 30

    Yi S-J, Lee H-T, Groffen J, Heisterkamp N . Bcr/Abl P190 interaction with Spa-1, a GTPase activating protein for the small GTPase Rap1. Int J Mol Med 2008; 22: 453–458.

    CAS  PubMed  Google Scholar 

  31. 31

    Kowanetz K, Crosetto N, Haglund K, Schmidt MHH, Heldin C-H, Dikic I . Suppressors of T-cell receptor signaling Sts-1 and Sts-2 bind to Cbl and inhibit endocytosis of receptor tyrosine kinases. J Biol Chem 2004; 279: 32786–32795.

    CAS  Article  Google Scholar 

  32. 32

    Mikhailik A, Ford B, Keller J, Chen Y, Nassar N, Carpino N . A phosphatase activity of Sts-1 contributes to the suppression of TCR signaling. Mol Cell 2007; 27: 486–497.

    CAS  Article  Google Scholar 

  33. 33

    Ruschmann J, Ho V, Antignano F, Kuroda E, Lam V, Ibaraki M et al. Tyrosine phosphorylation of SHIP promotes its proteasomal degradation. Exp Hematol 2010; 38: 392–402.

    CAS  Article  Google Scholar 

  34. 34

    Sattler M, Verma S, Byrne CH, Shrikhande G, Winkler T, Algate PA et al. BCR/ABL directly inhibits expression of SHIP, an SH2-containing polyinositol-5-phosphatase involved in the regulation of hematopoiesis. Mol Cell Biol 1999; 19: 7473–7480.

    CAS  Article  Google Scholar 

  35. 35

    Hantschel O, Warsch W, Eckelhart E, Kaupe I, Grebien F, Wagner K-U et al. BCR-ABL uncouples canonical JAK2-STAT5 signaling in chronic myeloid leukemia. Nat Chem Biol 2012; 8: 285–293.

    CAS  Article  Google Scholar 

  36. 36

    Medina KL, Pongubala JMR, Reddy KL, Lancki DW, DeKoter R, Kieslinger M et al. Assembling a gene regulatory network for specification of the B cell fate. Dev Cell 2004; 7: 607–617.

    CAS  Article  Google Scholar 

  37. 37

    Gwin K, Frank E, Bossou A, Medina KL . Hoxa9 regulates Flt3 in lymphohematopoietic progenitors. J Immunol 2010; 185: 6572–6583.

    CAS  Article  Google Scholar 

  38. 38

    Pongubala JMR, Northrup DL, Lancki DW, Medina KL, Treiber T, Bertolino E et al. Transcription factor EBF restricts alternative lineage options and promotes B cell fate commitment independently of Pax5. Nat Immunol 2008; 9: 203–215.

    CAS  Article  Google Scholar 

  39. 39

    Heydarian M . Prediction of gene activity in early B cell development based on an integrative multi-omics analysis. J Proteomics Bioinform 2014; 7: 50–63.

    CAS  Article  Google Scholar 

  40. 40

    Massaad MJ, Ramesh N, Geha RS . Wiskott–Aldrich syndrome: a comprehensive review. Ann NY Acad Sci 2013; 1285: 26–43.

    CAS  Article  Google Scholar 

  41. 41

    Benesch S, Lommel S, Steffen A, Stradal TEB, Scaplehorn N, Way M et al. Phosphatidylinositol 4,5-biphosphate (PIP2)-induced vesicle movement depends on N-WASP and involves Nck, WIP, and Grb2. J Biol Chem 2002; 277: 37771–37776.

    CAS  Article  Google Scholar 

  42. 42

    Woodring PJ, Meisenhelder J, Johnson SA, Zhou G-L, Field J, Shah K et al. c-Abl phosphorylates Dok1 to promote filopodia during cell spreading. J Cell Biol 2004; 165: 493–503.

    CAS  Article  Google Scholar 

  43. 43

    Sattler M, Verma S, Pride YB, Salgia R, Rohrschneider LR, Griffin JD . SHIP1, an SH2 domain containing polyinositol-5-phosphatase, regulates migration through two critical tyrosine residues and forms a novel signaling complex with DOK1 and CRKL. J Biol Chem 2001; 276: 2451–2458.

    CAS  Article  Google Scholar 

  44. 44

    Lamkin TD, Walk SF, Liu L, Damen JE, Krystal G, Ravichandran KS . Shc interaction with Src homology 2 domain containing inositol phosphatase (SHIP) in vivo requires the Shc-phosphotyrosine binding domain and two specific phosphotyrosines on SHIP. J Biol Chem 1997; 272: 10396–10401.

    CAS  Article  Google Scholar 

  45. 45

    Deneubourg L, Elong Edimo W, Moreau C, Vanderwinden J-M, Erneux C . Phosphorylated SHIP2 on Y1135 localizes at focal adhesions and at the mitotic spindle in cancer cell lines. Cell Signal 2014; 26: 1193–1203.

    CAS  Article  Google Scholar 

  46. 46

    Kassenbrock CK, Anderson SM . Regulation of ubiquitin protein ligase activity in c-Cbl by phosphorylation-induced conformational change and constitutive activation by tyrosine to glutamate point mutations. J Biol Chem 2004; 279: 28017–28027.

    CAS  Article  Google Scholar 

  47. 47

    Sahay S, Pannucci NL, Mahon GM, Rodriguez PL, Megjugorac NJ, Kostenko EV et al. The RhoGEF domain of p210 Bcr-Abl activates RhoA and is required for transformation. Oncogene 2007; 27: 2064–2071.

    Article  Google Scholar 

  48. 48

    Frank DA . STAT signaling in the pathogenesis and treatment of cancer. Mol Med 1999; 5: 432–456.

    CAS  Article  Google Scholar 

  49. 49

    Mikita T, Campbell D, Wu P, Williamson K, Schindler U . Requirements for interleukin-4-induced gene expression and functional characterization of Stat6. Mol Cell Biol 1996; 16: 5811–5820.

    CAS  Article  Google Scholar 

  50. 50

    Kornfeld J-W, Grebien F, Kerenyi MA, Friedbichler K, Kovacic B, Zankl B et al. The different functions of Stat5 and chromatin alteration through Stat5 proteins. Front Biosci 2008; 13: 6237–6254.

    CAS  Article  Google Scholar 

  51. 51

    Kee BL, Quong MW, Murre C . E2A proteins: essential regulators at multiple stages of B-cell development. Immunol Rev 2000; 175: 138–149.

    CAS  Article  Google Scholar 

  52. 52

    Ratliff ML, Mishra M, Frank MB, Guthridge JM, Webb CF . The transcription factor ARID3a is important for in vitro differentiation of human hematopoietic progenitors. J Immunol 2016; 196: 614–623.

    CAS  Article  Google Scholar 

  53. 53

    Ichikawa M, Yoshimi A, Nakagawa M, Nishimoto N, Watanabe-okochi N, Kurokawa M . A role for RUNX1 in hematopoiesis and myeloid leukemia. Int J Hematol 2013; 97: 726–734.

    CAS  Article  Google Scholar 

  54. 54

    Lam K, Zhang D-E . RUNX1 and RUNX1-ETO: roles in hematopoiesis and leukemogenesis. Front Biosci J Virtual Libr 2012; 17: 1120–1139.

    CAS  Article  Google Scholar 

  55. 55

    Strobl B, Moriggl R . Editorial: recovery from chemotherapy depends on STAT1 for replenishment of B lymphopoiesis. J Leukoc Biol 2014; 95: 849–851.

    Article  Google Scholar 

  56. 56

    Hoelbl A, Schuster C, Kovacic B, Zhu B, Wickre M, Hoelzl MA et al. Stat5 is indispensable for the maintenance of bcr/abl‐positive leukaemia. EMBO Mol Med 2010; 2: 98–110.

    CAS  Article  Google Scholar 

  57. 57

    Warsch W, Kollmann K, Eckelhart E, Fajmann S, Cerny-Reiterer S, Hölbl A et al. High STAT5 levels mediate imatinib resistance and indicate disease progression in chronic myeloid leukemia. Blood 2011; 117: 3409–3420.

    CAS  Article  Google Scholar 

  58. 58

    Daubon T, Chasseriau J, El Ali A, Rivet J, Kitzis A, Constantin B et al. Differential motility of p190bcr-abl- and p210bcr-abl-expressing cells: respective roles of Vav and Bcr-Abl GEFs. Oncogene 2008; 27: 2673–2685.

    CAS  Article  Google Scholar 

  59. 59

    Rochelle T, Daubon T, Troys MV, Harnois T, Waterschoot D, Ampe C et al. p210bcr-abl induces amoeboid motility by recruiting ADF/destrin through RhoA/ROCK1. FASEB J 2013; 27: 123–134.

    CAS  Article  Google Scholar 

  60. 60

    Thien CBF, Langdon WY . Cbl: many adaptations to regulate protein tyrosine kinases. Nat Rev Mol Cell Biol 2001; 2: 294–307.

    CAS  Article  Google Scholar 

  61. 61

    Rohrschneider LR, Fuller JF, Wolf I, Liu Y, Lucas DM . Structure, function, and biology of SHIP proteins. Genes Dev 2000; 14: 505–520.

    CAS  PubMed  Google Scholar 

  62. 62

    Chen X, Ren L, Kim S, Carpino N, Daniel JL, Kunapuli SP et al. Determination of the substrate specificity of protein-tyrosine phosphatase TULA-2 and identification of Syk as a TULA-2 substrate. J Biol Chem 2010; 285: 31268–31276.

    CAS  Article  Google Scholar 

  63. 63

    Hu Y, Liu Y, Pelletier S, Buchdunger E, Warmuth M, Fabbro D et al. Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nat Genet 2004; 36: 453–461.

    CAS  Article  Google Scholar 

  64. 64

    Kovacic B, Hoelbl A, Litos G, Alacakaptan M, Schuster C, Fischhuber KM et al. Diverging fates of cells of origin in acute and chronic leukaemia: cells of origin of BCR/ABL+CML and B-ALL. EMBO Mol Med 2012; 4: 283–297.

    CAS  Article  Google Scholar 

  65. 65

    Reckel S, Hamelin R, Georgeon S, Armand F, Jolliet Q, Chiappe D et al. Differential signaling networks of Bcr-Abl p210 and p190 kinases in leukemia cells defined by functional proteomics. Leukemia 2017; e-pub ahead of print 24 February 2017.

Download references


This study was supported by NCI’s Clinical Proteomic Tumor Analysis Consortium Initiative (U24CA160036) and a shared instrumentation grant (S10OD021844). JC was supported by NIGMS Training Grant 5T32GM07814. We thank Saradhi Mallampati for his support, the Center for Proteomics Discovery at Johns Hopkins, Rieke Jenson for graphic design consultation and all the members of the Reddy and Pandey laboratories.

Author contributions

JAC completed all experiments and carried out data analysis. JAC, KR and AP wrote the manuscript. JAC, T-CH, KR and AP conceived the experimental idea. JAC, KR and AP designed and planned all experiments. RT and SS helped optimize experimental conditions. RT, SKS, XWu, AHP and CM assisted with data analysis. RT and XWu helped optimize validation effort. MH helped establish and optimize the BCR-ABL MPP system. XWo, KR, M-SK and RSN helped optimize BioID protocols. SR carried out mass spectrometry analysis.

Author information



Corresponding authors

Correspondence to K L Reddy or A Pandey.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cutler, J., Tahir, R., Sreenivasamurthy, S. et al. Differential signaling through p190 and p210 BCR-ABL fusion proteins revealed by interactome and phosphoproteome analysis. Leukemia 31, 1513–1524 (2017).

Download citation

Further reading


Quick links