Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic myeloproliferative neoplasms

Drug-induced inhibition of phosphorylation of STAT5 overrides drug resistance in neoplastic mast cells

Abstract

Systemic mastocytosis (SM) is a mast cell (MC) neoplasm with complex pathology and a variable clinical course. In aggressive SM (ASM) and MC leukemia (MCL), responses to conventional drugs are poor and the prognosis is dismal. R763 is a multi-kinase inhibitor that blocks the activity of Aurora-kinase-A/B, ABL1, AKT and FLT3. We examined the effects of R763 on proliferation and survival of neoplastic MC. R763 produced dose-dependent inhibition of proliferation in the human MC lines HMC-1.1 (IC50 5–50 nM), HMC-1.2 (IC50 1–10 nM), ROSAKIT WT (IC50 1–10 nM), ROSAKIT D816V (IC50 50–500 nM) and MCPV-1.1 (IC50 100–1000 nM). Moreover, R763 induced growth inhibition in primary neoplastic MC in patients with ASM and MCL. Growth-inhibitory effects of R763 were accompanied by signs of apoptosis and a G2/M cell cycle arrest. R763 also inhibited phosphorylation of KIT, BTK, AKT and STAT5 in neoplastic MC. The most sensitive target appeared to be STAT5. In fact, tyrosine phosphorylation of STAT5 was inhibited by R763 at 10 nM. At this low concentration, R763 produced synergistic growth-inhibitory effects on neoplastic MC when combined with midostaurin or dasatinib. Together, R763 is a novel promising multi-kinase inhibitor that blocks STAT5 activation and thereby overrides drug-resistance in neoplastic MC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Metcalfe DD . Classification and diagnosis of mastocytosis: current status. J Invest Dermatol 1991; 96: 2S–4S.

    Article  Google Scholar 

  2. Valent P . Biology, classification and treatment of human mastocytosis. Wien Klin Wochenschr 1996; 108: 385–397.

    CAS  PubMed  Google Scholar 

  3. Horny HP, Valent P . Diagnosis of mastocytosis: general histopathological aspects, morphological criteria, and immunohistochemical findings. Leuk Res 2001; 25: 543–551.

    Article  CAS  Google Scholar 

  4. Escribano L, Akin C, Castells M, Orfao A, Metcalfe DD . Mastocytosis: current concepts in diagnosis and treatment. Ann Hematol 2002; 81: 677–690.

    Article  CAS  Google Scholar 

  5. Valent P, Akin C, Sperr WR, Horny HP, Arock M, Lechner K et al. Diagnosis and treatment of systemic mastocytosis: state of the art. Br J Haematol 2003; 122: 695–717.

    Article  Google Scholar 

  6. Akin C, Metcalfe DD . Systemic mastocytosis. Annu Rev Med 2004; 55: 419–432.

    Article  CAS  Google Scholar 

  7. Pardanani A, Tefferi A . Systemic mastocytosis in adults: a review on prognosis and treatment based on 342 Mayo Clinic patients and current literature. Curr Opin Hematol 2010; 17: 125–132.

    Article  Google Scholar 

  8. Valent P, Ghannadan M, Akin C, Krauth MT, Selzer E, Mayerhofer M et al. On the way to targeted therapy of mast cell neoplasms: identification of molecular targets in neoplastic mast cells and evaluation of arising treatment concepts. Eur J Clin Invest 2004; 34 (Suppl 2): 41–52.

    Article  CAS  Google Scholar 

  9. Tefferi A, Pardanani A . Clinical genetic, and therapeutic insights into systemic mast cell disease. Curr Opin Hematol 2004; 11: 58–64.

    Article  Google Scholar 

  10. Nagata H, Worobec AS, Oh CK, Chowdhury BA, Tannenbaum S, Suzuki Y et al. Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder. Proc Natl Acad Sci USA 1995; 92: 10560–10564.

    Article  CAS  Google Scholar 

  11. Feger F, Ribadeau Dumas A, Leriche L, Valent P, Arock M . Kit and c-kit mutations in mastocytosis: a short overview with special reference to novel molecular and diagnostic concepts. Int Arch Allergy Immunol 2002; 127: 110–114.

    Article  CAS  Google Scholar 

  12. Longley BJ, Tyrrell L, Lu SZ, Ma YS, Langley K, Ding TG et al. Somatic c-kit activating mutation in urticaria pigmentosa and aggressive mastocytosis: establishment of clonality in a human mast cell neoplasm. Nat Genet 1996; 12: 312–314.

    Article  CAS  Google Scholar 

  13. Fritsche-Polanz R, Jordan JH, Feix A, Sperr WR, Sunder-Plassmann G, Valent P et al. Mutation analysis of C-KIT in patients with myelodysplastic syndromes without mastocytosis and cases of systemic mastocytosis. Br J Haematol 2001; 113: 357–364.

    Article  CAS  Google Scholar 

  14. Arock M, Sotlar K, Akin C, Broesby-Olsen S, Hoermann G, Escribano L et al. KIT mutation analysis in mast cell neoplasms: recommendations of the European Competence Network on Mastocytosis. Leukemia 2015; 29: 1223–1232.

    Article  CAS  Google Scholar 

  15. Furitsu T, Tsujimura T, Tono T, Ikeda H, Kitayama H, Koshimizu U et al. Identification of mutations in the coding sequence of the proto-oncogene c-kit in a human mast cell leukemia cell line causing ligand-independent activation of the c-kit product. J Clin Invest 1993; 92: 1736–1744.

    Article  CAS  Google Scholar 

  16. Shah NP, Lee FY, Luo R, Jiang Y, Donker M, Akin C . Dasatinib (BMS-354825) inhibits KITD816V, an imatinib-resistant activating mutation that triggers neoplastic growth in most patients with systemic mastocytosis. Blood 2006; 108: 286–291.

    Article  CAS  Google Scholar 

  17. Akin C, Brockow K, D'Ambrosio C, Kirshenbaum AS, Ma Y, Longley BJ et al. Effects of tyrosine kinase inhibitor STI571 on human mast cells bearing wild-type or mutated c-kit. Exp Hematol 2003; 31: 686–692.

    Article  CAS  Google Scholar 

  18. Gleixner KV, Mayerhofer M, Sonneck K, Gruze A, Samorapoompichit P, Baumgartner C et al. Synergistic growth-inhibitory effects of two tyrosine kinase inhibitors, dasatinib and PKC412, on neoplastic mast cells expressing the D816V-mutated oncogenic variant of KIT. Haematologica 2007; 92: 1451–1459.

    Article  CAS  Google Scholar 

  19. Gleixner KV, Mayerhofer M, Aichberger KJ, Derdak S, Sonneck K, Böhm A et al. PKC412 inhibits in vitro growth of neoplastic human mast cells expressing the D816V-mutated variant of KIT: comparison with AMN107, imatinib, and cladribine (2CdA) and evaluation of cooperative drug effects. Blood 2006; 107: 752–759.

    Article  CAS  Google Scholar 

  20. Gotlib J, Berubé C, Growney JD, Chen CC, George TI, Williams C et al. Activity of the tyrosine kinase inhibitor PKC412 in a patient with mast cell leukemia with the D816V KIT mutation. Blood 2005; 106: 2865–2870.

    Article  CAS  Google Scholar 

  21. Gotlib J, Kluin-Nelemans HC, George TI, Akin C, Sotlar K, Hermine O et al. Efficacy and safety of midostaurin in advanced systemic mastocytosis. N Engl J Med 2016; 374: 2530–2541.

    Article  CAS  Google Scholar 

  22. Gleixner KV, Mayerhofer M, Cerny-Reiterer S, Hörmann G, Rix U, Bennett KL et al. KIT-D816V-independent oncogenic signaling in neoplastic cells in systemic mastocytosis: role of Lyn and BTK activation and disruption by dasatinib and bosutinib. Blood 2011; 118: 1885–1898.

    Article  CAS  Google Scholar 

  23. Wilson TM, Maric I, Simakova O, Bai Y, Chan EC, Olivares N et al. Clonal analysis of NRAS activating mutations in KIT-D816V systemic mastocytosis. Haematologica 2011; 96: 459–463.

    Article  CAS  Google Scholar 

  24. Schwaab J, Schnittger S, Sotlar K, Walz C, Fabarius A, Pfirrmann M et al. Comprehensive mutational profiling in advanced systemic mastocytosis. Blood 2013; 122: 2460–2466.

    Article  CAS  Google Scholar 

  25. Bibi S, Langenfeld F, Jeanningros S, Brenet F, Soucie E, Hermine O et al. Molecular defects in mastocytosis: KIT and beyond KIT. Immunol Allergy Clin North Am 2014; 34: 239–262.

    Article  Google Scholar 

  26. Damaj G, Joris M, Chandesris O, Hanssens K, Soucie E, Canioni D et al. ASXL1 but not TET2 mutations adversely impact overall survival of patients suffering systemic mastocytosis with associated clonal hematologic non-mast-cell diseases. PLoS ONE 2014; 9: e85362.

    Article  Google Scholar 

  27. Baumgartner C, Cerny-Reiterer S, Sonneck K, Mayerhofer M, Gleixner KV, Fritz R et al. Expression of activated STAT5 in neoplastic mast cells in systemic mastocytosis: subcellular distribution and role of the transforming oncoprotein KIT D816V. Am J Pathol 2009; 175: 2416–2429.

    Article  CAS  Google Scholar 

  28. Chaix A, Lopez S, Voisset E, Gros L, Dubreuil P, De Sepulveda P . Mechanisms ofSTAT protein activation by oncogenic KIT mutants in neoplastic mast cells. J Biol Chem 2011; 286: 5956–5966.

    Article  CAS  Google Scholar 

  29. Harir N, Boudot C, Friedbichler K, Sonneck K, Kondo R, Martin-Lannerée S et al. Oncogenic Kit controls neoplastic mast cell growth through a Stat5/PI3-kinase signalling cascade. Blood 2008; 112: 2463–2473.

    Article  CAS  Google Scholar 

  30. Farag SS . The potential role of Aurora kinase inhibitors in haematological malignancies. Br J Haematol 2011; 155: 561–579.

    Article  CAS  Google Scholar 

  31. Wang XX, Liu R, Jin SQ, Fan FY, Zhan QM . Overexpression of Aurora-A kinase promotes tumor cell proliferation and inhibits apoptosis in esophageal squamous cell carcinoma cell line. Cell Res 2006; 16: 356–366.

    Article  CAS  Google Scholar 

  32. Lok W, Klein RQ, Saif MW . Aurora kinase inhibitors as anti-cancer therapy. Anticancer Drugs 2010; 21: 339–350.

    Article  CAS  Google Scholar 

  33. McLaughlin J, Markovtsov V, Li H, Wong S, Gelman M, Zhu Y et al. Preclinical characterization of Aurora kinase inhibitor R763 identified through an image-based phenotypic screen. J Cancer Res Clin Oncol 2010; 136: 99–113.

    Article  CAS  Google Scholar 

  34. Cicenas J . The Aurora kinase inhibitors in cancer research and therapy. J Cancer Res Clin Oncol 2016; 142: 1995–2012.

    Article  CAS  Google Scholar 

  35. Valent P, Horny H-P, Escribano L, Longley BJ, Li CY, Schwartz LB, Marone G et al. Diagnostic criteria and classification of mastocytosis: a consensus proposal. Conference Report of ‘Year 2000 Working Conference on Mastocytosis’ Leuk Res 2001; 25: 603–625.

    Article  CAS  Google Scholar 

  36. Valent P, Akin C, Metcalfe DD . Mastocytosis: 2016-updated WHO classification and novel emerging treatment concepts. Blood 2017; 129: 1420–1427.

    Article  CAS  Google Scholar 

  37. Butterfield JH, Weiler D, Dewald G, Gleich GJ . Establishment of an immature mast cell line from a patient with mast cell leukemia. Leuk Res 1988; 12: 345–355.

    Article  CAS  Google Scholar 

  38. Saleh R, Wedeh G, Herrmann H, Bibi S, Cerny-Reiterer S, Sadovnik I et al. A new human mast cell line expressing a functional IgE receptor converts to factor-independence and tumorigenicity by KIT D816V-transfection. Blood 2014; 124: 111–120.

    Article  CAS  Google Scholar 

  39. Hoermann G, Blatt K, Greiner G, Putz EM, Berger A, Herrmann H et al. CD52 is a molecular target in advanced systemic mastocytosis. FASEB J 2014; 28: 3540–3551.

    Article  CAS  Google Scholar 

  40. DeVinney R, Gold WM . Establishment of two dog mastocytoma cell lines in continuous culture. Am J Respir Cell Mol Biol 1990; 3: 413–420.

    Article  CAS  Google Scholar 

  41. Hadzijusufovic E, Peter B, Herrmann H, Rülicke T, Cerny-Reiterer S, Schuch K, Kenner L, Thaiwong T, Yuzbasiyan-Gurkan V, Pickl WF, Willmann M, Valent P . NI-1: a novel canine mastocytoma model for studying drug resistance and IgER-dependent mast cell activation. Allergy 2012; 67: 858–868.

    Article  CAS  Google Scholar 

  42. Peter B, Gleixner KV, Cerny-Reiterer S, Herrmann H, Winter V, Hadzijusufovic E et al. Polo-like kinase-1 as novel target in neoplastic mast cells: demonstration of growth-inhibitory effects of siRNA and the Polo-like kinase-1 targeting drug BI 2536. Haematologica 2011; 96: 672–680.

    Article  CAS  Google Scholar 

  43. Moriggl R, Sexl V, Piekorz R, Topham D, Ihle JN . Stat5 activation is uniquely associated with cytokine signaling in peripheral T cells. Immunity 1999; 11: 225–230.

    Article  CAS  Google Scholar 

  44. Friedbichler K, Themanns M, Mueller KM, Schlederer M, Kornfeld JW, Terracciano LM et al. Growth-hormone-induced signal transducer and activator of transcription 5 signaling causes gigantism, inflammation, and premature death but protects mice from aggressive liver cancer. Hepatology 2012; 55: 941–952.

    Article  CAS  Google Scholar 

  45. Wedeh G, Cerny-Reiterer S, Eisenwort G, Herrmann H, Blatt K, Hadzijusufovic E et al. Identification of bromodomain-containing protein-4 as a novel marker and epigenetic target in mast cell leukemia. Leukemia 2015; 29: 2230–2237.

    Article  CAS  Google Scholar 

  46. Fellmann C, Hoffmann T, Sridhar V, Hopfgartner B, Muhar M, Roth M et al. An optimized microRNA backbone for effective single-copy RNAi. Cell Rep 2013; 5: 1704–1713.

    Article  CAS  Google Scholar 

  47. Hoermann G, Cerny-Reiterer S, Herrmann H, Blatt K, Bilban M, Gisslinger H et al. Identification of oncostatin M as a JAK2 V617F-dependent amplifier of cytokineproduction and bone marrow remodeling in myeloproliferative neoplasms. FASEB J 2012; 26: 894–906.

    Article  CAS  Google Scholar 

  48. Keller A, Wingelhofer B, Peter B, Bauer K, Berger D, Gamperl S et al. The JAK2/STAT5 signaling pathway as a potential therapeutic target in canine mastocytoma. Vet Comp Oncol 2017; epub ahead of print 11 April 2017 doi:10.1111/vco.12311.

    Article  Google Scholar 

  49. Peter B, Winter GE, Blatt K, Bennett KL, Stefanzl G, Rix U et al. Target interaction profiling of midostaurin and its metabolites in neoplastic mast cells predicts distinct effects on activation and growth. Leukemia 2016; 30: 464–472.

    Article  CAS  Google Scholar 

  50. Tobío A, Alfonso A, Fernández-Araujo A, Alonso E, Botana LM . Protein kinase C modulates Aurora-kinase inhibition induced by CCT129202 in HMC-1560, 816 cell line. Antiinflamm Antiallergy Agents Med Chem 2013; 12: 265–276.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Austrian Science Fund (FWF), SFB grants F4701-B20, F4704-B20, F4707-B20 and F4710-B20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Valent.

Ethics declarations

Competing interests

GH received honoraria from Novartis and Ariad. WRS received honoraria from Novartis and Celgene, and a research grant from Lipomed. PV, H-PH and AR served as a Consultant in a global Novartis trial examining the effects of midostaurin in advanced SM. JZ received institutional support from Boehringer-Ingelheim, and is consultant and stock holder at Mirimus Inc. AR received a research grant from Novartis, honoraria from Novartis and BMS, and served in advisory boards organized by Novartis. MA received research grants from Blueprint and Deciphera, and received honoraria from Deciphera. PV received research grants from Novartis, Blueprint and Deciphera, and honoraria from Novartis, Celgene, Pfizer and Deciphera. The remaining authors declare no conflicts of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peter, B., Bibi, S., Eisenwort, G. et al. Drug-induced inhibition of phosphorylation of STAT5 overrides drug resistance in neoplastic mast cells. Leukemia 32, 1016–1022 (2018). https://doi.org/10.1038/leu.2017.338

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.338

This article is cited by

Search

Quick links