Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute myeloid leukemia

Dual inhibition of EZH1/2 breaks the quiescence of leukemia stem cells in acute myeloid leukemia

Abstract

Acute myeloid leukemia (AML) is an aggressive and lethal blood cancer originating from rare populations of leukemia stem cells (LSCs). AML relapse after conventional chemotherapy is caused by a remaining population of drug-resistant LSCs. Selective targeting of the chemoresistant population is a promising strategy for preventing and treating AML relapse. Polycomb repressive complex 2 (PRC2) trimethylates histone H3 at lysine 27 to maintain the stemness of LSCs. Here, we show that quiescent LSCs expressed the highest levels of enhancer of zeste (EZH) 1 and EZH2, the PRC2 catalytic subunits, in the AML hierarchy, and that dual inactivation of EZH1/2 eradicated quiescent LSCs to cure AML. Genetic deletion of Ezh1/2 in a mouse AML model induced cell cycle progression of quiescent LSCs and differentiation to LSCs, eventually eradicating AML LSCs. Quiescent LSCs showed PRC2-mediated suppression of Cyclin D, and Cyclin D-overexpressing AML was more sensitive to chemotherapy. We have developed a novel EZH1/2 dual inhibitor with potent inhibitory activity against both EZH1/2. In AML mouse models and patient-derived xenograft models, the inhibitor reduced the number of LSCs, impaired leukemia progression, and prolonged survival. Taken together, these results show that dual inhibition of EZH1/2 is an effective strategy for eliminating AML LSCs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Kreso A, Dick JE . Evolution of the cancer stem cell model. Cell Stem Cell 2014; 14: 275–291.

    Article  CAS  PubMed  Google Scholar 

  2. Szer J . The prevalent predicament of relapsed acute myeloid leukemia. Hematology Am Soc Hematol Educ Program 2012; 2012: 43–48.

    PubMed  Google Scholar 

  3. Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol 2007; 25: 1315–1321.

    Article  CAS  PubMed  Google Scholar 

  4. Gentles AJ, Plevritis SK, Majeti R, Alizadeh AA . Association of a leukemic stem cell gene expression signature with clinical outcomes in acute myeloid leukemia. JAMA 2012; 304: 2706–2715.

    Article  Google Scholar 

  5. Takeishi S, Matsumoto A, Onoyama I, Naka K, Hirao A, Nakayama KI . Ablation of Fbxw7 eliminates leukemia-initiating cells by preventing quiescence. Cancer Cell [Internet].; 2013; 23: 347–361.

    Article  CAS  Google Scholar 

  6. Lechman ER, Gentner B, Ng SWK, Schoof EM, van Galen P, Kennedy JA et al. MiR-126 regulates distinct self-renewal outcomes in normal and malignant hematopoietic stem cells. Cancer Cell 2016; 29: 214–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bruedigam C, Bagger FO, Heidel FH, Paine Kuhn C, Guignes S, Song A et al. Telomerase inhibition effectively targets mouse and human aml stem cells and delays relapse following chemotherapy. Cell Stem Cell.; 2014; 15: 775–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boyer La, Plath K, Zeitlinger J, Brambrink T, Medeiros La, Lee TI et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 2006; 441: 349–353.

    Article  CAS  PubMed  Google Scholar 

  9. Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM et al. Control of developmental regulators by polycomb in human embryonic stem cells. Cell 2006; 125: 301–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cao R, Zhang Y . SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell 2004; 15: 57–67.

    Article  CAS  PubMed  Google Scholar 

  11. Margueron R, Justin N, Ohno K, Sharpe ML, Son J, Drury WJ et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 2009; 461: 762–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Czermin B, Melfi R, McCabe D, Seitz V, Imhof A, Pirrotta V . Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 2002; 111: 185–196.

    Article  CAS  PubMed  Google Scholar 

  13. Sparmann A, van Lohuizen M . Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 2006; 6: 846–856.

    Article  CAS  PubMed  Google Scholar 

  14. Xu F, Li X, Wu L, Zhang Q, Yang R, Yang Y et al. Overexpression of the EZH2, RING1 and BMI1 genes is common in myelodysplastic syndromes: Relation to adverse epigenetic alteration and poor prognostic scoring. Ann Hematol 2011; 90: 643–653.

    Article  CAS  PubMed  Google Scholar 

  15. Raaphorst FM, van Kemenade FJ, Blokzijl T, Fieret E, Hamer KM, Satijn DP et al. Coexpression of BMI-1 and EZH2 polycomb group genes in Reed-Sternberg cells of Hodgkin’s disease. Am J Pathol 2000; 157: 709–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Van Kemenade FJ, Raaphorst FM, Blokzijl T, Fieret E, Hamer KM, Satijn DPE et al. Coexpression of BMI-1 and EZH2 polycomb-group proteins is associated with cycling cells and degree of malignancy in B-cell non-Hodgkin lymphoma. Blood 2001; 97: 3896–3901.

    Article  CAS  PubMed  Google Scholar 

  17. Sasaki D, Imaizumi Y, Hasegawa H, Osaka A, Tsukasaki K, Lim Choi Y et al. Overexpression of enhancer of zeste homolog 2 with trimethylation of lysine 27 on histone H3 in adult T-cell leukemia/lymphoma as a target for epigenetic therapy. Haematologica 2011; 96: 712–719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Visser HPJ, Gunster MJ, Kluin-Nelemans HC, Manders EMM, Raaphorst FM, CJLM Meijer et al. The Polycomb group protein EZH2 is upregulated in proliferating, cultured human mantle cell lymphoma. Br J Haematol 2001; 112: 950–958.

    Article  CAS  PubMed  Google Scholar 

  19. Berg T, Thoene S, Yap D, Wee T, Schoeler N, Rosten P et al. A transgenic mouse model demonstrating the oncogenic role of mutations in the polycomb-group gene EZH2 in lymphomagenesis. Blood 2014; 123: 3914–3924.

    Article  CAS  PubMed  Google Scholar 

  20. Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 2010; 42: 181–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sneeringer CJ, Scott MP, Kuntz KW, Knutson SK, Pollock RM, Richon VM et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci USA 2010; 107: 20980–20985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McCabe MT, Graves AP, Ganji G, Diaz E, Halsey WS, Jiang Y et al. Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27). Proc Natl Acad Sci USA 2012; 109: 2989–2994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Majer CR, Jin L, Scott MP, Knutson SK, Kuntz KW, Keilhack H et al. A687V EZH2 is a gain-of-function mutation found in lymphoma patients. FEBS Lett 2012; 586: 3448–3451.

    Article  CAS  PubMed  Google Scholar 

  24. Neff T, Sinha AU, Kluk MJ, Zhu N, Khattab MH, Stein L et al. Polycomb repressive complex 2 is required for MLL-AF9 leukemia. Proc Natl Acad Sci USA 2012; 109: 5028–5033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tanaka S, Miyagi S, Sashida G, Chiba T, Yuan J, Mochizuki-Kashio M et al. Ezh2 augments leukemogenicity by reinforcing differentiation blockage in acute myeloid leukemia. Blood 2012; 120: 1107–1117.

    Article  CAS  PubMed  Google Scholar 

  26. Shi J, Wang E, Zuber J, Rappaport A, Taylor M, Johns C et al. The Polycomb complex PRC2 supports aberrant self-renewal in a mouse model of MLL-AF9;Nras(G12D) acute myeloid leukemia. Oncogene 2013; 32: 930–938.

    Article  CAS  PubMed  Google Scholar 

  27. Shen X, Liu Y, Hsu Y-J, Fujiwara Y, Kim J, Mao X et al. EZH1 mediates methylation on histone H3 Lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell 2008; 32: 491–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Margueron R, Li G, Sarma K, Blais A, Zavadil J, Woodcock CL et al. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol Cell 2008; 32: 503–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 2006; 442: 818–822.

    Article  CAS  PubMed  Google Scholar 

  30. Huntly BJP, Shigematsu H, Deguchi K, Lee BH, Mizuno S, Duclos N et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 2004; 6: 587–596.

    Article  CAS  PubMed  Google Scholar 

  31. Somervaille TCP, Matheny CJ, Spencer GJ, Iwasaki M, Rinn JL, Witten DM et al. Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. Cell Stem Cell 2009; 4: 129–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xie H, Xu J, Hsu JH, Nguyen M, Fujiwara Y, Peng C et al. Polycomb repressive complex 2 regulates normal hematopoietic stem cell function in a developmental-stage-specific manner. Cell Stem Cell 2014; 14: 68–80.

    Article  CAS  PubMed  Google Scholar 

  33. Caganova M, Carrisi C, Varano G, Mainoldi F, Zanardi F, Germain PL et al. Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. J Clin Invest 2013; 123: 5009–5022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ghisi M, Kats L, Masson F, Li J, Kratina T, Vidacs E et al. Id2 and E proteins orchestrate the initiation and maintenance of MLL-rearranged acute myeloid leukemia. Cancer Cell 2016; 30: 59–74.

    Article  CAS  PubMed  Google Scholar 

  35. Ren S, Rollins BJ . Cyclin C/Cdk3 promotes Rb-dependent G0 exit. Cell 2004; 117: 239–251.

    Article  CAS  PubMed  Google Scholar 

  36. Mende N, Kuchen EE, Lesche M, Grinenko T, Kokkaliaris KD, Hanenberg H et al. CCND1-CDK4-mediated cell cycle progression provides a competitive advantage for human hematopoietic stem cells in vivo. J Exp Med 2015; 212: 1171–1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Laurenti E, Frelin C, Xie S, Ferrari R, Dunant CF, Zandi S et al. CDK6 levels regulate quiescence exit in human hematopoietic stem cells. Cell Stem Cell 2015; 16: 302–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 2006; 125: 315–326.

    Article  CAS  PubMed  Google Scholar 

  39. Cui K, Zang C, Roh TY, Schones DE, Childs RW, Peng W et al. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 2009; 4: 80–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Honma D, Kanno O, Watanabe J, Kinoshita J, Hirasawa M, Nosaka E et al. Novel orally bioavailable EZH1/2 dual inhibitors with greater antitumor efficacy than an EZH2 selective inhibitor. Cancer Sci 2017; 108: 2069–2078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 2012; 492: 108–112.

    Article  CAS  PubMed  Google Scholar 

  42. Xu B, On DM, Ma A, Parton T, Konze KD, Pattenden SG et al. Selective inhibition of EZH2 and EZH1 enzymatic activity by a small molecule suppresses MLL- rearranged leukemia. Blood 2015; 125: 346–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Acceleration Transformative research for Medical innovation from Japan Agency for Medical Research and Development; and the National Cancer Center Research and Development Fund (IK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Kitabayashi.

Ethics declarations

Competing interests

DH, NA and KA are employees of Daiichi Sankyo, Co., Ltd. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujita, S., Honma, D., Adachi, N. et al. Dual inhibition of EZH1/2 breaks the quiescence of leukemia stem cells in acute myeloid leukemia. Leukemia 32, 855–864 (2018). https://doi.org/10.1038/leu.2017.300

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.300

This article is cited by

Search

Quick links