Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute myeloid leukemia

RSK2 is a new Pim2 target with pro-survival functions in FLT3-ITD-positive acute myeloid leukemia

Abstract

Acute myeloid leukemia (AML) with the FLT3 internal tandem duplication (FLT3-ITD AML) accounts for 20–30% of AML cases. This subtype usually responds poorly to conventional therapies, and might become resistant to FLT3 tyrosine kinase inhibitors (TKIs) due to molecular bypass mechanisms. New therapeutic strategies focusing on resistance mechanisms are therefore urgently needed. Pim kinases are FLT3-ITD oncogenic targets that have been implicated in FLT3 TKI resistance. However, their precise biological function downstream of FLT3-ITD requires further investigation. We performed high-throughput transcriptomic and proteomic analyses in Pim2-depleted FLT3-ITD AML cells and found that Pim2 predominantly controlled apoptosis through Bax expression and mitochondria disruption. We identified ribosomal protein S6 kinase A3 (RSK2), a 90 kDa serine/threonine kinase involved in the mitogen-activated protein kinase cascade encoded by the RPS6KA3 gene, as a novel Pim2 target. Ectopic expression of an RPS6KA3 allele rescued the viability of Pim2-depleted cells, supporting the involvement of RSK2 in AML cell survival downstream of Pim2. Finally, we showed that RPS6KA3 knockdown reduced the propagation of human AML cells in vivo in mice. Our results point to RSK2 as a novel Pim2 target with translational therapeutic potential in FLT3-ITD AML.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Patel JP, Gonen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med 2012; 366: 1079–1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Leung AY, Man CH, Kwong YL . FLT3 inhibition: a moving and evolving target in acute myeloid leukaemia. Leukemia 2013; 27: 260–268.

    Article  CAS  PubMed  Google Scholar 

  3. Grunwald MR, Levis MJ . FLT3 tyrosine kinase inhibition as a paradigm for targeted drug development in acute myeloid leukemia. Semin Hematol 2015; 52: 193–199.

    Article  CAS  PubMed  Google Scholar 

  4. Rollig C, Serve H, Huttmann A, Noppeney R, Muller-Tidow C, Krug U et al. Addition of sorafenib versus placebo to standard therapy in patients aged 60 years or younger with newly diagnosed acute myeloid leukaemia (SORAML): a multicentre, phase 2, randomised controlled trial. Lancet Oncol 2015; 16: 1691–1699.

    Article  PubMed  Google Scholar 

  5. Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med 2017; 377: 454–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Green AS, Maciel TT, Hospital MA, Yin C, Mazed F, Townsend EC et al. Pim kinases modulate resistance to FLT3 tyrosine kinase inhibitors in FLT3-ITD acute myeloid leukemia. Sci Adv 2015; 1: e1500221.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Brault L, Gasser C, Bracher F, Huber K, Knapp S, Schwaller J . PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica 2010; 95: 1004–1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tamburini J, Green AS, Bardet V, Chapuis N, Park S, Willems L et al. Protein synthesis is resistant to rapamycin and constitutes a promising therapeutic target in acute myeloid leukemia. Blood 2009; 114: 1618–1627.

    Article  CAS  PubMed  Google Scholar 

  9. Grundler R, Brault L, Gasser C, Bullock AN, Dechow T, Woetzel S et al. Dissection of PIM serine/threonine kinases in FLT3-ITD-induced leukemogenesis reveals PIM1 as regulator of CXCL12-CXCR4-mediated homing and migration. J Exp Med 2009; 206: 1957–1970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen LS, Redkar S, Taverna P, Cortes JE, Gandhi V . Mechanisms of cytotoxicity to Pim kinase inhibitor, SGI-1776, in acute myeloid leukemia. Blood 2011; 118: 693–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guo Z, Wang A, Zhang W, Levit M, Gao Q, Barberis C et al. PIM inhibitors target CD25-positive AML cells through concomitant suppression of STAT5 activation and degradation of MYC oncogene. Blood 2014; 124: 1777–1789.

    Article  CAS  PubMed  Google Scholar 

  12. Hospital MA, Green AS, Lacombe C, Mayeux P, Bouscary D, Tamburini J . The FLT3 and Pim kinases inhibitor SGI-1776 preferentially target FLT3-ITD AML cells. Blood 2012; 119: 1791–1792.

    Article  CAS  PubMed  Google Scholar 

  13. Keeton EK, McEachern K, Dillman KS, Palakurthi S, Cao Y, Grondine MR et al. AZD1208, a potent and selective pan-Pim kinase inhibitor, demonstrates efficacy in preclinical models of acute myeloid leukemia. Blood 2014; 123: 905–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Garcia PD, Langowski JL, Wang Y, Chen M, Castillo J, Fanton C et al. Pan-PIM kinase inhibition provides a novel therapy for treating hematologic cancers. Clin Cancer Res 20: 1834–1845.

    Article  CAS  PubMed  Google Scholar 

  15. Chesnais V, Arcangeli ML, Delette C, Rousseau A, Guermouche H, Lefevre C et al. Architectural and functional heterogeneity of hematopoietic stem/progenitor cells in non-del(5q) myelodysplastic syndromes. Blood 2017; 129: 484–496.

    Article  CAS  PubMed  Google Scholar 

  16. Wiederschain D, Wee S, Chen L, Loo A, Yang G, Huang A et al. Single-vector inducible lentiviral RNAi system for oncology target validation. Cell Cycle 2009; 8: 498–504.

    Article  CAS  PubMed  Google Scholar 

  17. Sujobert P, Poulain L, Paubelle E, Zylbersztejn F, Grenier A, Lambert M et al. Co-activation of AMPK and mTORC1 induces cytotoxicity in acute myeloid leukemia. Cell Rep 2015; 11: 1446–1457.

    Article  CAS  PubMed  Google Scholar 

  18. Meerbrey KL, Hu G, Kessler JD, Roarty K, Li MZ, Fang JE et al. The pINDUCER lentiviral toolkit for inducible RNA interference in vitro and in vivo. Proc Natl Acad Sci USA 2011; 108: 3665–3670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gautier EF, Ducamp S, Leduc M, Salnot V, Guillonneau F, Dussiot M et al. Comprehensive proteomic analysis of human erythropoiesis. Cell Rep 2016; 16: 1470–1484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vizcaino JA, Csordas A, del-Toro N, Dianes JA, Griss J, Lavidas I et al2016 2016 update of the PRIDE database and its related tools. Nucleic Acids Res 2016; 44: D447–D456.

    Article  CAS  PubMed  Google Scholar 

  21. Saland E, Boutzen H, Castellano R, Pouyet L, Griessinger E, Larrue C et al. A robust and rapid xenograft model to assess efficacy of chemotherapeutic agents for human acute myeloid leukemia. Blood Cancer J 2015; 5: e297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zheng JH, Viacava Follis A, Kriwacki RW, Moldoveanu T . Discoveries and controversies in BCL-2 protein-mediated apoptosis. FEBS J 2015; 283: 2690–2700.

    Article  PubMed  Google Scholar 

  23. Certo M, Del Gaizo Moore V, Nishino M, Wei G, Korsmeyer S, Armstrong SA et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 2006; 9: 351–365.

    Article  CAS  PubMed  Google Scholar 

  24. Elf S, Blevins D, Jin L, Chung TW, Williams IR, Lee BH et al. p90RSK2 is essential for FLT3-ITD- but dispensable for BCR-ABL-induced myeloid leukemia. Blood 2011; 117: 6885–6894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Garcia PD, Langowski JL, Wang Y, Chen M, Castillo J, Fanton C et al. Pan-PIM kinase inhibition provides a novel therapy for treating hematologic cancers. Clin Cancer Res 2014; 20: 1834–1845.

    Article  CAS  PubMed  Google Scholar 

  26. Zippo A, De Robertis A, Serafini R, Oliviero S . PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat Cell Biol 2007; 9: 932–944.

    Article  CAS  PubMed  Google Scholar 

  27. Hogan C, Hutchison C, Marcar L, Milne D, Saville M, Goodlad J et al. Elevated levels of oncogenic protein kinase Pim-1 induce the p53 pathway in cultured cells and correlate with increased Mdm2 in mantle cell lymphoma. J Biol Chem 2008; 283: 18012–18023.

    Article  CAS  PubMed  Google Scholar 

  28. Miyashita T, Reed JC . Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995; 80: 293–299.

    Article  CAS  PubMed  Google Scholar 

  29. Cohen MS, Zhang C, Shokat KM, Taunton J . Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science 2005; 308: 1318–1321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dufresne SD, Bjorbaek C, El-Haschimi K, Zhao Y, Aschenbach WG, Moller DE et al. Altered extracellular signal-regulated kinase signaling and glycogen metabolism in skeletal muscle from p90 ribosomal S6 kinase 2 knockout mice. Mol cell biol 2001; 21: 81–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 2016; 374: 2209–2221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Santos FP, Jones D, Qiao W, Cortes JE, Ravandi F, Estey EE et al. Prognostic value of FLT3 mutations among different cytogenetic subgroups in acute myeloid leukemia. Cancer 2011; 117: 2145–2155.

    Article  CAS  PubMed  Google Scholar 

  33. Daver N, Cortes J, Ravandi F, Patel KP, Burger JA, Konopleva M et al. Secondary mutations as mediators of resistance to targeted therapy in leukemia. Blood 2015; 125: 3236–3245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Larrue C, Saland E, Boutzen H, Vergez F, David M, Joffre C et al. Proteasome inhibitors induce FLT3-ITD degradation through autophagy in AML cells. Blood 2016; 127: 882–892.

    Article  CAS  PubMed  Google Scholar 

  35. Sexauer A, Perl A, Yang X, Borowitz M, Gocke C, Rajkhowa T et al. Terminal myeloid differentiation in vivo is induced by FLT3 inhibition in FLT3/ITD AML. Blood 2012; 120: 4205–4214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G . Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 1997; 278: 687–689.

    Article  CAS  PubMed  Google Scholar 

  37. Kang S, Chen J . Targeting RSK2 in human malignancies. Expert Opin Ther Targets 2011; 15: 11–20.

    Article  CAS  PubMed  Google Scholar 

  38. Kang S, Dong S, Gu TL, Guo A, Cohen MS, Lonial S et al. FGFR3 activates RSK2 to mediate hematopoietic transformation through tyrosine phosphorylation of RSK2 and activation of the MEK/ERK pathway. Cancer Cell 2007; 12: 201–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ludwik KA, Campbell JP, Li M, Li Y, Sandusky ZM, Pasic L et al. Development of a RSK inhibitor as a novel therapy for triple-negative breast cancer. Mol Cancer Therapeut 2016; 15: 2598–2608.

    Article  CAS  Google Scholar 

  40. Jain R, Mathur M, Lan J, Costales A, Atallah G, Ramurthy S et al. Discovery of potent and selective RSK inhibitors as biological probes. J Med Chem 2015; 58: 6766–6783.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Institut National du Cancer (Projet Recherche Translationnelle TRANSLA13-087) and from the Ligue Nationale Contre le Cancer (Equipe Labellisée EL2014; Projet R14077KK).

Author contributions

Contribution: M-AH, AJ, FM, JM, RB, ASG, ML, JD, LP and NJ performed in vitro experiments; ES and CL performed in vivo experiments; E-FG, VS and MLG performed proteomic experiments; OK and MF performed sequencing experiments; PS analyzed the results and wrote the paper; CR, PA, PM and DB analyzed the results; J-ES designed the in vivo research and wrote the paper; JT designed the research, made the figures and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Tamburini.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hospital, MA., Jacquel, A., Mazed, F. et al. RSK2 is a new Pim2 target with pro-survival functions in FLT3-ITD-positive acute myeloid leukemia. Leukemia 32, 597–605 (2018). https://doi.org/10.1038/leu.2017.284

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.284

This article is cited by

Search

Quick links