Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute myeloid leukemia

Genetics of ancestry-specific risk for relapse in acute lymphoblastic leukemia

Abstract

The causes of individual relapses in children with acute lymphoblastic leukemia (ALL) remain incompletely understood. We evaluated the contribution of germline genetic factors to relapse in 2225 children treated on Children’s Oncology Group trial AALL0232. We identified 302 germline single-nucleotide polymorphisms (SNPs) associated with relapse after adjusting for treatment and ancestry and 715 additional SNPs associated with relapse in an ancestry-specific manner. We tested for replication of these relapse-associated SNPs in external data sets of antileukemic drug pharmacokinetics and pharmacodynamics and an independent clinical cohort. 224 SNPs were associated with rapid drug clearance or drug resistance, and 32 were replicated in the independent cohort. The adverse risk associated with black and Hispanic ancestries was attenuated by addition of the 4 SNPs most strongly associated with relapse in these populations (for blacks: model without SNPs hazard ratio (HR)=2.32, P=2.27 × 10−4, model with SNPs HR=1.07, P=0.79; for Hispanics: model without SNPs HR=1.7, P=8.23 × 105, model with SNPs HR=1.31, P=0.065). Relapse SNPs associated with asparaginase resistance or allergy were overrepresented among SNPs associated with relapse in the more asparaginase intensive treatment arm (20/54 in Capizzi-methorexate arm vs 8/54 in high-dose methotrexate arm, P=0.015). Inherited genetic variation contributes to race-specific and treatment-specific relapse risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Hunger SP, Lu X, Devidas M, Camitta BM, Gaynon PS, Winick NJ et al. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children's oncology group. J Clin Oncol 2012; 30: 1663–1669.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Schrappe M, Moricke A, Reiter A, Henze G, Welte K, Gadner H et al. Key treatment questions in childhood acute lymphoblastic leukemia: results in 5 consecutive trials performed by the ALL-BFM study group from 1981 to 2000. Klin Padiatr 2013; 225 (Suppl 1): S62–S72.

    PubMed  Google Scholar 

  3. Pui CH, Pei D, Sandlund JT, Ribeiro RC, Rubnitz JE, Raimondi SC et al. Long-term results of St Jude Total Therapy Studies 11, 12, 13A, 13B, and 14 for childhood acute lymphoblastic leukemia. Leukemia 2010; 24: 371–382.

    CAS  PubMed  Google Scholar 

  4. Place AE, Stevenson KE, Vrooman LM, Harris MH, Hunt SK, O'Brien JE et al. Intravenous pegylated asparaginase versus intramuscular native Escherichia coli L-asparaginase in newly diagnosed childhood acute lymphoblastic leukaemia (DFCI 05-001): a randomised, open-label phase 3 trial. Lancet Oncol 2015; 16: 1677–1690.

    Article  CAS  PubMed  Google Scholar 

  5. Pui CH, Campana D, Pei D, Bowman WP, Sandlund JT, Kaste SC et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med 2009; 360: 2730–2741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Conter V, Valsecchi MG, Parasole R, Putti MC, Locatelli F, Barisone E et al. Childhood high-risk acute lymphoblastic leukemia in first remission: results after chemotherapy or transplant from the AIEOP ALL 2000 study. Blood 2014; 123: 1470–1478.

    Article  CAS  PubMed  Google Scholar 

  7. Stary J, Zimmermann M, Campbell M, Castillo L, Dibar E, Donska S et al. Intensive chemotherapy for childhood acute lymphoblastic leukemia: results of the randomized intercontinental trial ALL IC-BFM 2002. J Clin Oncol 2014; 32: 174–184.

    Article  CAS  PubMed  Google Scholar 

  8. Larsen EC, Devidas M, Chen S, Salzer WL, Raetz EA, Loh ML et al. Dexamethasone and high-dose methotrexate improve outcome for children and young adults with high-risk b-acute lymphoblastic leukemia: A Report From Children's Oncology Group Study AALL0232. J Clin Oncol 2016; 34: 2380–2388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bowman WP, Larsen EL, Devidas M, Linda SB, Blach L, Carroll AJ et al. Augmented therapy improves outcome for pediatric high risk acute lymphocytic leukemia: results of Children's Oncology Group trial P9906. Pediatr Blood Cancer 2011; 57: 569–577.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Marshall GM, Dalla Pozza L, Sutton R, Ng A, de Groot-Kruseman HA, van der Velden VH et al. High-risk childhood acute lymphoblastic leukemia in first remission treated with novel intensive chemotherapy and allogeneic transplantation. Leukemia 2013; 27: 1497–1503.

    Article  CAS  PubMed  Google Scholar 

  11. Diouf B, Crews KR, Lew G, Pei D, Cheng C, Bao J et al. Association of an inherited genetic variant with vincristine-related peripheral neuropathy in children with acute lymphoblastic leukemia. JAMA 2015; 313: 815–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gregers J, Green H, Christensen IJ, Dalhoff K, Schroeder H, Carlsen N et al. Polymorphisms in the ABCB1 gene and effect on outcome and toxicity in childhood acute lymphoblastic leukemia. Pharmacogenomics J 2015; 15: 372–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moriyama T, Nishii R, Perez-Andreu V, Yang W, Klussmann FA, Zhao X et al. NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity. Nat Genet 2016; 48: 367–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ramsey LB, Janke LJ, Edick MJ, Cheng C, Williams RT, Sherr CJ et al. Host thiopurine methyltransferase status affects mercaptopurine antileukemic effectiveness in a murine model. Pharmacogenet Genomics 2014; 24: 263–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kawedia JD, Liu C, Pei D, Cheng C, Fernandez CA, Howard SC et al. Dexamethasone exposure and asparaginase antibodies affect relapse risk in acute lymphoblastic leukemia. Blood 2012; 119: 1658–1664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fernandez CA, Smith C, Yang W, Mullighan CG, Qu C, Larsen E et al. Genome-wide analysis links NFATC2 with asparaginase hypersensitivity. Blood 2015; 126: 69–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abrahao R, Lichtensztajn DY, Ribeiro RC, Marina NM, Keogh RH, Marcos-Gragera R et al. Racial/ethnic and socioeconomic disparities in survival among children with acute lymphoblastic leukemia in California, 1988-2011: A population-based observational study. Pediatr Blood Cancer 2015; 62: 1819–1825.

    Article  PubMed  Google Scholar 

  18. Goggins WB, Lo FF . Racial and ethnic disparities in survival of US children with acute lymphoblastic leukemia: evidence from the SEER database 1988-2008. Cancer Causes Control 2012; 23: 737–743.

    Article  PubMed  Google Scholar 

  19. Kadan-Lottick NS, Ness KK, Bhatia S, Gurney JG . Survival variability by race and ethnicity in childhood acute lymphoblastic leukemia. JAMA 2003; 290: 2008–2014.

    Article  CAS  PubMed  Google Scholar 

  20. Bhatia S, Sather HN, Heerema NA, Trigg ME, Gaynon PS, Robison LL . Racial and ethnic differences in survival of children with acute lymphoblastic leukemia. Blood 2002; 100: 1957–1964.

    Article  CAS  PubMed  Google Scholar 

  21. Kahn JM, Keegan TH, Tao L, Abrahao R, Bleyer A, Viny AD . Racial disparities in the survival of American children, adolescents, and young adults with acute lymphoblastic leukemia, acute myelogenous leukemia, and Hodgkin lymphoma. Cancer 2016; 122: 2723–2730.

    Article  PubMed  Google Scholar 

  22. Bhatia S, Landier W, Hageman L, Kim H, Chen Y, Crews KR et al. 6MP adherence in a multiracial cohort of children with acute lymphoblastic leukemia: a Children's Oncology Group study. Blood 2014; 124: 2345–2353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pui CH, Sandlund JT, Pei D, Rivera GK, Howard SC, Ribeiro RC et al. Results of therapy for acute lymphoblastic leukemia in black and white children. JAMA 2003; 290: 2001–2007.

    Article  CAS  PubMed  Google Scholar 

  24. Bhatia S, Landier W, Hageman L, Chen Y, Kim H, Sun CL et al. Systemic Exposure to Thiopurines and Risk of Relapse in Children With Acute Lymphoblastic Leukemia: A Children's Oncology Group Study. JAMA oncology 2015; 1: 287–295.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pollock BH, DeBaun MR, Camitta BM, Shuster JJ, Ravindranath Y, Pullen DJ et al. Racial differences in the survival of childhood B-precursor acute lymphoblastic leukemia: a Pediatric Oncology Group Study. J Clin Oncol 2000; 18: 813–823.

    Article  CAS  PubMed  Google Scholar 

  26. Perez-Andreu V, Roberts KG, Xu H, Smith C, Zhang H, Yang W et al. A genome-wide association study of susceptibility to acute lymphoblastic leukemia in adolescents and young adults. Blood 2015; 125: 680–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu H, Yang W, Perez-Andreu V, Devidas M, Fan Y, Cheng C et al. Novel susceptibility variants at 10p12.31-12.2 for childhood acute lymphoblastic leukemia in ethnically diverse populations. J Natl Cancer Inst 2013; 105: 733–742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang JJ, Cheng C, Devidas M, Cao X, Fan Y, Campana D et al. Ancestry and pharmacogenomics of relapse in acute lymphoblastic leukemia. Nat Genet 2011; 43: 237–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pritchard JK, Stephens M, Donnelly P . Inference of population structure using multilocus genotype data. Genetics 2000; 155: 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mao X, Bigham AW, Mei R, Gutierrez G, Weiss KM, Brutsaert TD et al. A genomewide admixture mapping panel for Hispanic/Latino populations. Am J Hum Genet 2007; 80: 1171–1178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cheng C, Pounds SB, Boyett JM, Pei D, Kuo ML, Roussel MF . Statistical significance threshold criteria for analysis of microarray gene expression data. Stat Appl Genet Mol Biol 2004; 3: Article36.

    Article  PubMed  Google Scholar 

  32. Borowitz MJ, Devidas M, Hunger SP, Bowman WP, Carroll AJ, Carroll WL et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: A Children's Oncology Group study. Blood 2008; 111: 5477–5485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Borowitz MJ, Wood BL, Devidas M, Loh ML, Raetz EA, Salzer WL et al. Prognostic significance of minimal residual disease in high risk B-ALL: a report from Children's Oncology Group study AALL0232. Blood 2015; 126: 964–971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pui CH, Pei D, Coustan-Smith E, Jeha S, Cheng C, Bowman WP et al. Clinical utility of sequential minimal residual disease measurements in the context of risk-based therapy in childhood acute lymphoblastic leukaemia: a prospective study. Lancet Oncol 2015; 16: 465–474.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rocconi RP, Lankes HA, Brady WE, Goodfellow PJ, Ramirez NC, Alvarez RD et al. The role of racial genetic admixture with endometrial cancer outcomes: An NRG Oncology/Gynecologic Oncology Group study. Gynecol Oncol 2016; 140: 264–269.

    Article  PubMed  Google Scholar 

  36. Hernandez-Suarez G, Sanabria MC, Serrano M, Herran OF, Perez J, Plata JL et al. Genetic ancestry is associated with colorectal adenomas and adenocarcinomas in Latino populations. Eur J Hum Genet 2014; 22: 1208–1216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Torgerson DG, Capurso D, Ampleford EJ, Li X, Moore WC, Gignoux CR et al. Genome-wide ancestry association testing identifies a common European variant on 6q14.1 as a risk factor for asthma in African American subjects. J Allergy Clin Immunol 2012; 130: 622–9 e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Corvol H, De Giacomo A, Eng C, Seibold M, Ziv E, Chapela R et al. Genetic ancestry modifies pharmacogenetic gene-gene interaction for asthma. Pharmacogenet Genomics 2009; 19: 489–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alarcon-Riquelme ME, Ziegler JT, Molineros J, Howard TD, Moreno-Estrada A, Sanchez-Rodriguez E et al. Genome-Wide Association Study in an Amerindian ancestry population reveals novel systemic lupus erythematosus risk loci and the role of European admixture. Arthritis Rheumatol 2016; 68: 932–943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Molineros JE, Maiti AK, Sun C, Looger LL, Han S, Kim-Howard X et al. Admixture mapping in lupus identifies multiple functional variants within IFIH1 associated with apoptosis, inflammation, and autoantibody production. PLoS Genet 2013; 9: e1003222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Niewold TB, Kelly JA, Kariuki SN, Franek BS, Kumar AA, Kaufman KM et al. IRF5 haplotypes demonstrate diverse serological associations which predict serum interferon alpha activity and explain the majority of the genetic association with systemic lupus erythematosus. Ann Rheum Dis 2012; 71: 463–468.

    Article  CAS  PubMed  Google Scholar 

  42. Kopp JB, Smith MW, Nelson GW, Johnson RC, Freedman BI, Bowden DW et al. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat Genet 2008; 40: 1175–1184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang JJ, Cheng C, Devidas M, Cao X, Campana D, Yang W et al. Genome-wide association study identifies germline polymorphisms associated with relapse of childhood acute lymphoblastic leukemia. Blood 2012; 120: 4197–4204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang JJ, Cheng C, Yang W, Pei D, Cao X, Fan Y et al. Genome-wide interrogation of germline genetic variation associated with treatment response in childhood acute lymphoblastic leukemia. JAMA 2009; 301: 393–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Evans WE, Crom WR, Stewart CF, Bowman WP, Chen CH, Abromowitch M et al. Methotrexate systemic clearance influences probability of relapse in children with standard-risk acute lymphocytic leukaemia. Lancet 1984; 1: 359–362.

    Article  CAS  PubMed  Google Scholar 

  46. Mikkelsen TS, Sparreboom A, Cheng C, Zhou Y, Boyett JM, Raimondi SC et al. Shortening infusion time for high-dose methotrexate alters antileukemic effects: a randomized prospective clinical trial. J Clin Oncol 2011; 29: 1771–1778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Han X, Zheng T, Foss FM, Lan Q, Holford TR, Rothman N et al. Genetic polymorphisms in the metabolic pathway and non-Hodgkin lymphoma survival. Am J Hematol 2010; 85: 51–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Haque AK, Au W, Cajas-Salazar N, Khan S, Ginzel AW, Jones DV et al. CYP2E1 polymorphism, cigarette smoking, p53 expression, and survival in non-small cell lung cancer: a long term follow-up study. Appl Immunohistochem Mol Morphol 2004; 12: 315–322.

    Article  CAS  PubMed  Google Scholar 

  49. Roadmap Epigenomics C, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A et al. Integrative analysis of 111 reference human epigenomes. Nature 2015; 518: 317–330.

    Article  Google Scholar 

  50. Lin CW, Chang YL, Chang YC, Lin JC, Chen CC, Pan SH et al. MicroRNA-135b promotes lung cancer metastasis by regulating multiple targets in the Hippo pathway and LZTS1. Nat Commun 2013; 4: 1877.

    Article  PubMed  Google Scholar 

  51. Onken MD, Worley LA, Harbour JW . A metastasis modifier locus on human chromosome 8p in uveal melanoma identified by integrative genomic analysis. Clin Cancer Res 2008; 14: 3737–3745.

    Article  CAS  PubMed  Google Scholar 

  52. Wang XX, Zhu ZM, Su D, Lei T, Wu X, Fan Y et al. Down-regulation of leucine zipper putative tumor suppressor 1 is associated with poor prognosis, increased cell motility and invasion, and epithelial-to-mesenchymal transition characteristics in human breast carcinoma. Hum Pathol 2011; 42: 1410–1419.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Institutes of Health (grant numbers GM 92666, GM 115279, CA142665, CA 21765, CA 176063, CA 36401, CA 156449, CA98543 and CA 180886 (COG Chair's grant), CA98413 and CA180899 (COG Statistical Center), CA114766 (COG Specimen Banking), U01-HG04603, RC2- GM092618, R01-LM010685, 5T32-GM007569); Leukemia Lymphoma Society (grant number 6168); and by the American Lebanese Syrian Associated Charities. The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Author contributions

MVR and JJY contributed to the conception and design of the study. EL, LBR, CAF, JRM, SWP, RJA, ELL, BD, SJ, C-HP, EAR, NJW, WLC, SPH, MLL, MD, WEE, JJY and MVR contributed to the provision of study materials, patient recruitment, or acquisition of data. SEK, CC, XC and MVR contributed to data analysis and interpretation. All authors contributed to the drafting and reviewing of the manuscript and gave their final approval to submit for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M V Relling.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karol, S., Larsen, E., Cheng, C. et al. Genetics of ancestry-specific risk for relapse in acute lymphoblastic leukemia. Leukemia 31, 1325–1332 (2017). https://doi.org/10.1038/leu.2017.24

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.24

This article is cited by

Search

Quick links