Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

C/EBPα deregulation as a paradigm for leukemogenesis

Abstract

Myeloid master regulator CCAAT enhancer-binding protein alpha (C/EBPα) is deregulated by multiple mechanisms in leukemia. Inhibition of C/EBPα function plays pivotal roles in leukemogenesis. While much is known about how C/EBPα orchestrates granulopoiesis, our understanding of molecular transformation events, the role(s) of cooperating mutations and clonal evolution during C/EBPα deregulation in leukemia remains elusive. In this review, we will summarize the latest research addressing these topics with special emphasis on CEBPA mutations. We conclude by describing emerging therapeutic strategies to restore C/EBPα function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Rosenbauer F, Tenen DG . Transcription factors in myeloid development: balancing differentiation with transformation. Nat Rev Immunol 2007; 7: 105–117.

    Article  CAS  PubMed  Google Scholar 

  2. Johnson PF . Molecular stop signs: regulation of cell-cycle arrest by C/EBP transcription factors. J Cell Sci 2005; 118 (Pt 12): 2545–2555.

    Article  CAS  PubMed  Google Scholar 

  3. Landschulz WH, Johnson PF, McKnight SL . The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 1988; 240: 1759–1764.

    Article  CAS  PubMed  Google Scholar 

  4. Landschulz WH, Johnson PF, McKnight SL . The DNA binding domain of the rat liver nuclear protein C/EBP is bipartite. Science 1989; 243: 1681–1688.

    Article  CAS  PubMed  Google Scholar 

  5. McKnight SL . McBindall–a better name for CCAAT/enhancer binding proteins? Cell 2001; 107: 259–261.

    Article  CAS  PubMed  Google Scholar 

  6. Lin FT, MacDougald OA, Diehl AM, Lane MD . A 30-kDa alternative translation product of the CCAAT/enhancer binding protein alpha message: transcriptional activator lacking antimitotic activity. Proc Natl Acad Sci USA 1993; 90: 9606–9610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Calkhoven CF, Muller C, Leutz A . Translational control of C/EBPalpha and C/EBPbeta isoform expression. Genes Dev 2000; 14: 1920–1932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Slomiany BA, D'Arigo KL, Kelly MM, Kurtz DT . C/EBPalpha inhibits cell growth via direct repression of E2F-DP-mediated transcription. Mol Cell Biol 2000; 20: 5986–5997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Porse BT, Pedersen TA, Xu X, Lindberg B, Wewer UM, Friis-Hansen L et al. E2F repression by C/EBPalpha is required for adipogenesis and granulopoiesis in vivo. Cell 2001; 107: 247–258.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang P, Iwasaki-Arai J, Iwasaki H, Fenyus ML, Dayaram T, Owens BM et al. Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha. Immunity 2004; 21: 853–863.

    Article  CAS  PubMed  Google Scholar 

  11. Kummalue T, Friedman AD . Cross-talk between regulators of myeloid development: C/EBPalpha binds and activates the promoter of the PU.1 gene. J Leuk Biol 2003; 74: 464–470.

    Article  CAS  Google Scholar 

  12. Rangatia J, Vangala RK, Treiber N, Zhang P, Radomska H, Tenen DG et al. Downregulation of c-Jun expression by transcription factor C/EBPalpha is critical for granulocytic lineage commitment. Mol Cell Biol 2002; 22: 8681–8694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Johansen LM, Iwama A, Lodie TA, Sasaki K, Felsher DW, Golub TR et al. c-Myc is a critical target for c/EBPalpha in granulopoiesis. Mol Cell Biol 2001; 21: 3789–3806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang H, Alberich-Jorda M, Amabile G, Yang H, Staber PB, Di Ruscio A et al. Sox4 is a key oncogenic target in C/EBPalpha mutant acute myeloid leukemia. Cancer Cell 2013; 24: 575–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang W, Wang X, Ward AC, Touw IP, Friedman AD . C/EBPalpha and G-CSF receptor signals cooperate to induce the myeloperoxidase and neutrophil elastase genes. Leukemia 2001; 15: 779–786.

    Article  CAS  PubMed  Google Scholar 

  16. Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 2005; 123: 819–831.

    Article  CAS  PubMed  Google Scholar 

  17. Pulikkan JA, Dengler V, Peramangalam PS, Peer Zada AA, Muller-Tidow C, Bohlander SK et al. Cell-cycle regulator E2F1 and microRNA-223 comprise an autoregulatory negative feedback loop in acute myeloid leukemia. Blood 2010; 115: 1768–1778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pulikkan JA, Peramangalam PS, Dengler V, Ho PA, Preudhomme C, Meshinchi S et al. C/EBPalpha regulated microRNA-34a targets E2F3 during granulopoiesis and is down-regulated in AML with CEBPA mutations. Blood 2010; 116: 5638–5649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Katzerke C, Madan V, Gerloff D, Brauer-Hartmann D, Hartmann JU, Wurm AA et al. Transcription factor C/EBPalpha-induced microRNA-30c inactivates Notch1 during granulopoiesis and is downregulated in acute myeloid leukemia. Blood 2013; 122: 2433–2442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dahl R, Walsh JC, Lancki D, Laslo P, Iyer SR, Singh H et al. Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPalpha ratio and granulocyte colony-stimulating factor. Nat Immunol 2003; 4: 1029–1036.

    Article  CAS  PubMed  Google Scholar 

  21. Wang D, D'Costa J, Civin CI, Friedman AD . C/EBPalpha directs monocytic commitment of primary myeloid progenitors. Blood 2006; 108: 1223–1229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ye M, Zhang H, Amabile G, Yang H, Staber PB, Zhang P et al. C/EBPa controls acquisition and maintenance of adult haematopoietic stem cell quiescence. Nat Cell Biol 2013; 15: 385–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hasemann MS, Lauridsen FK, Waage J, Jakobsen JS, Frank AK, Schuster MB et al. C/EBPalpha is required for long-term self-renewal and lineage priming of hematopoietic stem cells and for the maintenance of epigenetic configurations in multipotent progenitors. PLoS Genet 2014; 10: e1004079.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Nie Y, Han YC, Zou YR . CXCR4 is required for the quiescence of primitive hematopoietic cells. J Exp Med 2008; 205: 777–783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sugiyama T, Kohara H, Noda M, Nagasawa T . Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006; 25: 977–988.

    Article  CAS  PubMed  Google Scholar 

  26. Kuo YY, Hou HA, Chen YK, Li LY, Chen PH, Tseng MH et al. The N-terminal CEBPA mutant in acute myeloid leukemia impairs CXCR4 expression. Haematologica 2014; 99: 1799–1807.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Growney JD, Shigematsu H, Li Z, Lee BH, Adelsperger J, Rowan R et al. Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood 2005; 106: 494–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ichikawa M, Asai T, Saito T, Seo S, Yamazaki I, Yamagata T et al. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med 2004; 10: 299–304.

    Article  CAS  PubMed  Google Scholar 

  29. Ichikawa M, Goyama S, Asai T, Kawazu M, Nakagawa M, Takeshita M et al. AML1/Runx1 negatively regulates quiescent hematopoietic stem cells in adult hematopoiesis. J Immunol 2008; 180: 4402–4408.

    Article  CAS  PubMed  Google Scholar 

  30. Umek RM, Friedman AD, McKnight SL . CCAAT-enhancer binding protein: a component of a differentiation switch. Science 1991; 251: 288–292.

    Article  CAS  PubMed  Google Scholar 

  31. Nerlov C . C/EBPalpha mutations in acute myeloid leukaemias. Nat Rev Cancer 2004; 4: 394–400.

    Article  CAS  PubMed  Google Scholar 

  32. D'Alo F, Johansen LM, Nelson EA, Radomska HS, Evans EK, Zhang P et al. The amino terminal and E2F interaction domains are critical for C/EBP alpha-mediated induction of granulopoietic development of hematopoietic cells. Blood 2003; 102: 3163–3171.

    Article  CAS  PubMed  Google Scholar 

  33. Porse BT, Bryder D, Theilgaard-Monch K, Hasemann MS, Anderson K, Damgaard I et al. Loss of C/EBP alpha cell cycle control increases myeloid progenitor proliferation and transforms the neutrophil granulocyte lineage. J Exp Med 2005; 202: 85–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kirstetter P, Schuster MB, Bereshchenko O, Moore S, Dvinge H, Kurz E et al. Modeling of C/EBPalpha mutant acute myeloid leukemia reveals a common expression signature of committed myeloid leukemia-initiating cells. Cancer Cell 2008; 13: 299–310.

    Article  CAS  PubMed  Google Scholar 

  35. Bereshchenko O, Mancini E, Moore S, Bilbao D, Mansson R, Luc S et al. Hematopoietic stem cell expansion precedes the generation of committed myeloid leukemia-initiating cells in C/EBPalpha mutant AML. Cancer Cell 2009; 16: 390–400.

    Article  CAS  PubMed  Google Scholar 

  36. Westendorf JJ, Yamamoto CM, Lenny N, Downing JR, Selsted ME, Hiebert SW . The t(8;21) fusion product, AML-1-ETO, associates with C/EBP-alpha, inhibits C/EBP-alpha-dependent transcription, and blocks granulocytic differentiation. Mol Cell Biol 1998; 18: 322–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pabst T, Mueller BU, Harakawa N, Schoch C, Haferlach T, Behre G et al. AML1-ETO downregulates the granulocytic differentiation factor C/EBPalpha in t(8;21) myeloid leukemia. Nat Med 2001; 7: 444–451.

    Article  CAS  PubMed  Google Scholar 

  38. Avellino R . A myeloid-specific gene-dosage regulator for cebpa expression in myeloid cells is commonly targeted by onco-proteins in AML. Blood 2014; 124: 2205.

    Article  Google Scholar 

  39. Cooper S, Guo H, Friedman AD . The +37kb cebpa enhancer is critical for cebpa myeloid gene expression and contains functional sites that bind SCL, GATA2, C/EBPalpha, PU.1, and additional Ets factors. PloS One 2015; 10: e0126385.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Avellino R, Havermans M, Erpelinck C, Sanders MA, Hoogenboezem R, van de Werken HJ et al. An autonomous CEBPA enhancer specific for myeloid-lineage priming and neutrophilic differentiation. Blood 2016; 127: 2991–3003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Helbling D, Mueller BU, Timchenko NA, Schardt J, Eyer M, Betts DR et al. CBFB-SMMHC is correlated with increased calreticulin expression and suppresses the granulocytic differentiation factor CEBPA in AML with inv(16). Blood 2005; 106: 1369–1375.

    Article  CAS  PubMed  Google Scholar 

  42. Illendula A, Pulikkan JA, Zong H, Grembecka J, Xue L, Sen S et al. Chemical biology. A small-molecule inhibitor of the aberrant transcription factor CBFbeta-SMMHC delays leukemia in mice. Science 2015; 347: 779–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Helbling D, Mueller BU, Timchenko NA, Hagemeijer A, Jotterand M, Meyer-Monard S et al. The leukemic fusion gene AML1-MDS1-EVI1 suppresses CEBPA in acute myeloid leukemia by activation of Calreticulin. Proc Natl Acad Sci USA 2004; 101: 13312–13317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Perrotti D, Cesi V, Trotta R, Guerzoni C, Santilli G, Campbell K et al. BCR-ABL suppresses C/EBPalpha expression through inhibitory action of hnRNP E2. Nat Genet 2002; 30: 48–58.

    Article  CAS  PubMed  Google Scholar 

  45. Radomska HS, Basseres DS, Zheng R, Zhang P, Dayaram T, Yamamoto Y et al. Block of C/EBP alpha function by phosphorylation in acute myeloid leukemia with FLT3 activating mutations. J Exp Med 2006; 203: 371–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Radomska HS, Alberich-Jorda M, Will B, Gonzalez D, Delwel R, Tenen DG . Targeting CDK1 promotes FLT3-activated acute myeloid leukemia differentiation through C/EBPalpha. J Clin Invest 2012; 122: 2955–2966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bararia D, Kwok HS, Welner RS, Numata A, Sarosi MB, Yang H et al. Acetylation of C/EBPalpha inhibits its granulopoietic function. Nat Commun 2016; 7: 10968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Girard N, Tremblay M, Humbert M, Grondin B, Haman A, Labrecque J et al. RARalpha-PLZF oncogene inhibits C/EBPalpha function in myeloid cells. Proc Natl Acad Sci USA 2013; 110: 13522–13527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wurm AA, Zjablovskaja P, Kardosova M, Gerloff D, Brauer-Hartmann D, Katzerke C et al. Disruption of the C/EBPalpha-miR-182 balance impairs granulocytic differentiation. Nat Commun 2017; 8: 46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Guibal FC, Alberich-Jorda M, Hirai H, Ebralidze A, Levantini E, Di Ruscio A et al. Identification of a myeloid committed progenitor as the cancer-initiating cell in acute promyelocytic leukemia. Blood 2009; 114: 5415–5425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Santana-Lemos BA, de Lima Lange AP, de Lira Benicio MT, Jose TD, Lucena-Araujo AR, Krause A et al. The CEBPA gene is down-regulated in acute promyelocytic leukemia and its upstream promoter, but not the core promoter, is highly methylated. Haematologica 2011; 96: 617–620.

    Article  CAS  PubMed  Google Scholar 

  52. Fasan A, Alpermann T, Haferlach C, Grossmann V, Rollr A, Kohlmann A et al. Frequency and prognostic impact of CEBPA proximal, distal and core promoter methylation in normal karyotype AML: a study on 623 cases. PloS One 2013; 8: e54365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Musialik E, Bujko M, Kober P, Grygorowicz MA, Libura M, Przestrzelska M et al. Comparison of promoter DNA methylation and expression levels of genes encoding CCAAT/enhancer binding proteins in AML patients. Leuk Res 2014; 38: 850–856.

    Article  CAS  PubMed  Google Scholar 

  54. Pabst T, Mueller BU, Zhang P, Radomska HS, Narravula S, Schnittger S et al. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat Genet 2001; 27: 263–270.

    Article  CAS  PubMed  Google Scholar 

  55. Gombart AF, Hofmann WK, Kawano S, Takeuchi S, Krug U, Kwok SH et al. Mutations in the gene encoding the transcription factor CCAAT/enhancer binding protein alpha in myelodysplastic syndromes and acute myeloid leukemias. Blood 2002; 99: 1332–1340.

    Article  CAS  PubMed  Google Scholar 

  56. Fasan A, Haferlach C, Alpermann T, Jeromin S, Grossmann V, Eder C et al. The role of different genetic subtypes of CEBPA mutated AML. Leukemia 2014; 28: 794–803.

    Article  CAS  PubMed  Google Scholar 

  57. Shih LY, Liang DC, Huang CF, Wu JH, Lin TL, Wang PN et al. AML patients with CEBPalpha mutations mostly retain identical mutant patterns but frequently change in allelic distribution at relapse: a comparative analysis on paired diagnosis and relapse samples. Leukemia 2006; 20: 604–609.

    Article  CAS  PubMed  Google Scholar 

  58. Tiesmeier J, Czwalinna A, Muller-Tidow C, Krauter J, Serve H, Heil G et al. Evidence for allelic evolution of C/EBPalpha mutations in acute myeloid leukaemia. Br J Haematol 2003; 123: 413–419.

    Article  CAS  PubMed  Google Scholar 

  59. Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 2006; 442: 818–822.

    Article  CAS  PubMed  Google Scholar 

  60. Niebuhr B, Iwanski GB, Schwieger M, Roscher S, Stocking C, Cammenga J . Investigation of C/EBPalpha function in human (versus murine) myelopoiesis provides novel insight into the impact of CEBPA mutations in acute myelogenous leukemia (AML). Leukemia 2009; 23: 978–983.

    Article  CAS  PubMed  Google Scholar 

  61. Wang C, Chen X, Wang Y, Gong J, Hu G . C/EBPalphap30 plays transcriptional regulatory roles distinct from C/EBPalphap42. Cell Research 2007; 17: 374–383.

    Article  CAS  PubMed  Google Scholar 

  62. Pulikkan JA, Dengler V, Peer Zada AA, Kawasaki A, Geletu M, Pasalic Z et al. Elevated PIN1 expression by C/EBPalpha-p30 blocks C/EBPalpha-induced granulocytic differentiation through c-Jun in AML. Leukemia 2010; 24: 914–923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Geletu M, Balkhi MY, Peer Zada AA, Christopeit M, Pulikkan JA, Trivedi AK et al. Target proteins of C/EBPalphap30 in AML: C/EBPalphap30 enhances sumoylation of C/EBPalphap42 via up-regulation of Ubc9. Blood 2007; 110: 3301–3309.

    Article  CAS  PubMed  Google Scholar 

  64. Keeshan K, He Y, Wouters BJ, Shestova O, Xu L, Sai H et al. Tribbles homolog 2 inactivates C/EBPalpha and causes acute myelogenous leukemia. Cancer Cell 2006; 10: 401–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rishi L, Hannon M, Salome M, Hasemann M, Frank AK, Campos J et al. Regulation of Trib2 by an E2F1-C/EBPalpha feedback loop in AML cell proliferation. Blood 2014; 123: 2389–2400.

    Article  CAS  PubMed  Google Scholar 

  66. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. The N Engl J Med 2004; 350: 1617–1628.

    Article  CAS  PubMed  Google Scholar 

  67. Taskesen E, Bullinger L, Corbacioglu A, Sanders MA, Erpelinck CA, Wouters BJ et al. Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity. Blood 2011; 117: 2469–2475.

    Article  CAS  PubMed  Google Scholar 

  68. Greif PA, Dufour A, Konstandin NP, Ksienzyk B, Zellmeier E, Tizazu B et al. GATA2 zinc finger 1 mutations associated with biallelic CEBPA mutations define a unique genetic entity of acute myeloid leukemia. Blood 2012; 120: 395–403.

    Article  CAS  PubMed  Google Scholar 

  69. Lavallee VP, Krosl J, Lemieux S, Boucher G, Gendron P, Pabst C et al. Chemo-genomic interrogation of CEBPA mutated AML reveals recurrent CSF3R mutations and subgroup sensitivity to JAK inhibitors. Blood 2016; 127: 3054–3061.

    Article  CAS  PubMed  Google Scholar 

  70. Maxson JE, Ries RE, Wang YC, Gerbing RB, Kolb EA, Thompson SL et al. CSF3R mutations have a high degree of overlap with CEBPA mutations in pediatric AML. Blood 2016; 127: 3094–3098.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Reckzeh K, Bereshchenko O, Mead A, Rehn M, Kharazi S, Jacobsen SE et al. Molecular and cellular effects of oncogene cooperation in a genetically accurate AML mouse model. Leukemia 2012; 26: 1527–1536.

    Article  CAS  PubMed  Google Scholar 

  72. Pabst T, Eyholzer M, Haefliger S, Schardt J, Mueller BU . Somatic CEBPA mutations are a frequent second event in families with germline CEBPA mutations and familial acute myeloid leukemia. J Clin Oncol 2008; 26: 5088–5093.

    Article  CAS  PubMed  Google Scholar 

  73. Tawana K, Wang J, Renneville A, Bodor C, Hills R, Loveday C et al. Disease evolution and outcomes in familial AML with germline CEBPA mutations. Blood 2015; 126: 1214–1223.

    Article  CAS  PubMed  Google Scholar 

  74. Ohlsson E, Hasemann MS, Willer A, Lauridsen FK, Rapin N, Jendholm J et al. Initiation of MLL-rearranged AML is dependent on C/EBPalpha. J Exp Med 2014; 211: 5–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Collins C, Wang J, Miao H, Bronstein J, Nawer H, Xu T et al. C/EBPalpha is an essential collaborator in Hoxa9/Meis1-mediated leukemogenesis. Proc Natl Acad Sci USA 2014; 111: 9899–9904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ye M, Zhang H, Yang H, Koche R, Staber PB, Cusan M et al. Hematopoietic differentiation is required for initiation of acute myeloid leukemia. Cell Stem Cell 2015; 17: 611–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ben-Ami O, Friedman D, Leshkowitz D, Goldenberg D, Orlovsky K, Pencovich N et al. Addiction of t(8;21) and inv(16) acute myeloid leukemia to native RUNX1. Cell Rep 2013; 4: 1131–1143.

    Article  CAS  PubMed  Google Scholar 

  78. Mandoli A, Singh AA, Prange KH, Tijchon E, Oerlemans M, Dirks R et al. The hematopoietic transcription factors RUNX1 and ERG prevent aml1-eto oncogene overexpression and onset of the apoptosis program in t(8;21) AMLs. Cell Rep 2016; 17: 2087–2100.

    Article  CAS  PubMed  Google Scholar 

  79. Truong BT, Lee YJ, Lodie TA, Park DJ, Perrotti D, Watanabe N et al. CCAAT/Enhancer binding proteins repress the leukemic phenotype of acute myeloid leukemia. Blood 2003; 101: 1141–1148.

    Article  CAS  PubMed  Google Scholar 

  80. Lee YJ, Jones LC, Timchenko NA, Perrotti D, Tenen DG, Kogan SC . CCAAT/enhancer binding proteins alpha and epsilon cooperate with all-trans retinoic acid in therapy but differ in their antileukemic activities. Blood 2006; 108: 2416–2419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Koschmieder S, D'Alo F, Radomska H, Schoneich C, Chang JS, Konopleva M et al. CDDO induces granulocytic differentiation of myeloid leukemic blasts through translational up-regulation of p42 CCAAT enhancer binding protein alpha. Blood 2007; 110: 3695–3705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chang JS, Santhanam R, Trotta R, Neviani P, Eiring AM, Briercheck E et al. High levels of the BCR/ABL oncoprotein are required for the MAPK-hnRNP-E2 dependent suppression of C/EBPalpha-driven myeloid differentiation. Blood 2007; 110: 994–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liss A, Ooi CH, Zjablovskaja P, Benoukraf T, Radomska HS, Ju C et al. The gene signature in CCAAT-enhancer-binding protein alpha dysfunctional acute myeloid leukemia predicts responsiveness to histone deacetylase inhibitors. Haematologica 2014; 99: 697–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Grebien F, Vedadi M, Getlik M, Giambruno R, Grover A, Avellino R et al. Pharmacological targeting of the Wdr5-MLL interaction in C/EBPalpha N-terminal leukemia. Nat Chem Biol 2015; 11: 571–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

JAP is the recipient of a Scholar Award from American Society of Hematology, Young Investigator Award from Alex's Lemonade Stand Foundation for Childhood Cancer and a Discovery Grant from Lauri Strauss Leukemia Foundation. This work was supported by grants to DGT (a STaR Investigator Award; a RCE Core grant; a Tier 3 RNA Biology Center grant MOE2014-T3-1-006 from the NRF and MOE, Singapore; and grants CA66996 and CA197697 from the NCI/NIH) and to GB (grants BE 2042/12-1, BE 2042/7-1 and GRK1591 from DFG, German Research Foundation; grants DJCLS R 11/17, 17R/2016, R15/18, R12/31 from Deutsche Jose Carreras Leukämie-Stiftung e.V. and grants 2013.153.1 and 2015.093.1 from Wilhelm Sander Stiftung).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J A Pulikkan, D G Tenen or G Behre.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pulikkan, J., Tenen, D. & Behre, G. C/EBPα deregulation as a paradigm for leukemogenesis. Leukemia 31, 2279–2285 (2017). https://doi.org/10.1038/leu.2017.229

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.229

This article is cited by

Search

Quick links