Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcriptional control and signal transduction, cell cycle

The T-cell leukemia-associated ribosomal RPL10 R98S mutation enhances JAK-STAT signaling

Abstract

Several somatic ribosome defects have recently been discovered in cancer, yet their oncogenic mechanisms remain poorly understood. Here we investigated the pathogenic role of the recurrent R98S mutation in ribosomal protein L10 (RPL10 R98S) found in T-cell acute lymphoblastic leukemia (T-ALL). The JAK-STAT signaling pathway is a critical controller of cellular proliferation and survival. A proteome screen revealed overexpression of several Jak-Stat signaling proteins in engineered RPL10 R98S mouse lymphoid cells, which we confirmed in hematopoietic cells from transgenic Rpl10 R98S mice and T-ALL xenograft samples. RPL10 R98S expressing cells displayed JAK-STAT pathway hyper-activation upon cytokine stimulation, as well as increased sensitivity to clinically used JAK-STAT inhibitors like pimozide. A mutually exclusive mutation pattern between RPL10 R98S and JAK-STAT mutations in T-ALL patients further suggests that RPL10 R98S functionally mimics JAK-STAT activation. Mechanistically, besides transcriptional changes, RPL10 R98S caused reduction of apparent programmed ribosomal frameshifting at several ribosomal frameshift signals in mouse and human Jak-Stat genes, as well as decreased Jak1 degradation. Of further medical interest, RPL10 R98S cells showed reduced proteasome activity and enhanced sensitivity to clinical proteasome inhibitors. Collectively, we describe modulation of the JAK-STAT cascade as a novel cancer-promoting activity of a ribosomal mutation, and expand the relevance of this cascade in leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Pui C-H, Robison LL, Look AT . Acute lymphoblastic leukaemia. Lancet 2008; 371: 1030–1043.

    Article  CAS  PubMed  Google Scholar 

  2. Vicente C, Schwab C, Broux M, Geerdens E, Degryse S, Demeyer S et al. Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in T-cell acute lymphoblastic leukemia. Haematologica 2015; 100: 1301–1310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 2012; 481: 157–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Canté-Barrett K, Spijkers-Hagelstein JAP, Buijs-Gladdines JGCAM, Uitdehaag JCM, Smits WK, van der Zwet J et al. MEK and PI3K-AKT inhibitors synergistically block activated IL7 receptor signaling in T-cell acute lymphoblastic leukemia. Leukemia 2016; 30: 1832–1843.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Girardi T, Vicente C, Cools J, De Keersmaecker K . The genetics and molecular biology of T-ALL. Blood 2017; 129: 1113–1123.

    Article  CAS  PubMed  Google Scholar 

  6. De Keersmaecker K, Atak ZK, Li N, Vicente C, Patchett S, Girardi T et al. Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat Genet 2012; 45: 186–190.

    Article  PubMed  Google Scholar 

  7. Rao S, Lee S-Y, Gutierrez A, Perrigoue J, Thapa RJ, Tu Z et al. Inactivation of ribosomal protein L22 promotes transformation by induction of the stemness factor, Lin28B. Blood 2012; 120: 3764–3773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tzoneva G, Perez-Garcia A, Carpenter Z, Khiabanian H, Tosello V, Allegretta M et al. Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL. Nat Med 2013; 19: 368–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fancello L, Kampen KR, Hofman IJF, Verbeeck J, De Keersmaecker K . The ribosomal protein gene RPL5 is a haploinsufficient tumor suppressor in multiple cancer types. Oncotarget 2017; 8: 14462–14478.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hofman IJF, Van Duin M, De Bruyne E, Fancello L, Mulligan G, Geerdens E et al. RPL5 on 1p22.1 is recurrently deleted in multiple myeloma and its expression is linked to bortezomib response. Leukemia 2017; 31: 1706–1714.

    Article  CAS  PubMed  Google Scholar 

  11. Landau DA, Tausch E, Taylor-Weiner AN, Stewart C, Reiter JG, Bahlo J et al. Mutations driving CLL and their evolution in progression and relapse. Nature 2015; 526: 525–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ljungstrom V, Cortese D, Young E, Pandzic T, Mansouri L, Plevova K et al. Whole-exome sequencing in relapsing chronic lymphocytic leukemia: clinical impact of recurrent RPS15 mutations. Blood 2015; 127: 1007–1016.

    Article  PubMed  Google Scholar 

  13. Morgado-Palacin L, Varetti G, Llanos S, Gómez-López G, Martinez D, Serrano M . Partial loss of Rpl11 in adult mice recapitulates Diamond-Blackfan anemia and promotes lymphomagenesis. Cell Rep 2015; 13: 712–722.

    Article  CAS  PubMed  Google Scholar 

  14. Amsterdam A, Sadler KC, Lai K, Farrington S, Bronson RT, Lees JA et al. Many ribosomal protein genes are cancer genes in zebrafish. PLoS Biol 2004; 2: e139.

    Article  PubMed  PubMed Central  Google Scholar 

  15. De Keersmaecker K, Sulima SO, Dinman JD . Ribosomopathies and the paradox of cellular hypo- to hyperproliferation. Blood 2015; 125: 1377–1382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Narla A, Ebert BL . Ribosomopathies: human disorders of ribosome dysfunction. Blood 2010; 115: 3196–3205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou X, Liao W-J, Liao J-M, Liao P, Lu H . Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol 2015; 7: 92–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ban N, Beckmann R, Cate JHD, Dinman JD, Dragon F, Ellis SR et al. A new system for naming ribosomal proteins. Curr Opin Struct Biol 2014; 24: 165–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sulima SO, Patchett S, Advani VM, De Keersmaecker K, Johnson AW, Dinman JD . Bypass of the pre-60S ribosomal quality control as a pathway to oncogenesis. Proc Natl Acad Sci USA 2014; 111: 5640–5645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sulima SO, Gülay SP, Anjos M, Patchett S, Meskauskas A, Johnson AW et al. Eukaryotic rpL10 drives ribosomal rotation. Nucleic Acids Res 2013; 42: 2049–2063.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mootha VK, Lindgren CM, Eriksson K-F, Subramanian A, Sihag S, Lehar J et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003; 34: 267–273.

    Article  CAS  PubMed  Google Scholar 

  23. Belew AT, Hepler NL, Jacobs JL, Dinman JD . PRFdb: a database of computationally predicted eukaryotic programmed -1 ribosomal frameshift signals. BMC Genomics 2008; 9: 339.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Reimand J, Arak T, Adler P, Kolberg L, Reisberg S, Peterson H et al. g:Profiler-a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res 2016; 44: W83–W89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Harger JW, Dinman JD . An in vivo dual-luciferase assay system for studying translational recoding in the yeast Saccharomyces cerevisiae. RNA 2003; 9: 1019–1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grentzmann G, Ingram JA, Kelly PJ, Gesteland RF, Atkins JF . A dual-luciferase reporter system for studying recoding signals. RNA 1998; 4: 479–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jacobs JL, Dinman JD . Systematic analysis of bicistronic reporter assay data. Nucleic Acids Res 2004; 32: e160.

    Article  PubMed  PubMed Central  Google Scholar 

  28. van Vlierberghe P, Ferrando A . The molecular basis of T cell acute lymphoblastic leukemia. J Clin Invest 2012; 122: 3398–3406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hara T, Miyajima A . Two distinct functional high affinity receptors for mouse interleukin-3 (IL-3). EMBO J 1992; 11: 1875–1884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vainchenker W, Constantinescu SN . JAK/STAT signaling in hematological malignancies. Oncogene 2012; 32: 2601–2613.

    Article  PubMed  Google Scholar 

  31. Ribeiro D, Melão A, Barata JT . IL-7R-mediated signaling in T-cell acute lymphoblastic leukemia. Adv Biol Regul 2012; 53: 211–222.

    Article  PubMed  Google Scholar 

  32. Advani VM, Dinman JD . Reprogramming the genetic code: The emerging role of ribosomal frameshifting in regulating cellular gene expression. Bioessays 2015; 38: 21–26.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Belew AT, Meskauskas A, Musalgaonkar S, Advani VM, Sulima SO, Kasprzak WK et al. Ribosomal frameshifting in the CCR5 mRNA is regulated by miRNAs and the NMD pathway. Nature 2014; 512: 265–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Truitt ML, Ruggero D . New frontiers in translational control of the cancer genome. Nat Rev Cancer 2016; 16: 288–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bezzerri V, Vella A, Calcaterra E, Finotti A, Gasparello J, Gambari R et al. New insights into the Shwachman–Diamond Syndrome-related haematological disorder: hyper-activation of mTOR and STAT3 in leukocytes. Sci Rep 2016; 6: 33165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Weis F, Giudice E, Churcher M, Jin L, Hilcenko C, Wong CC et al. Mechanism of eIF6 release from the nascent 60S ribosomal subunit. Nat Struct Mol Biol 2015; 22: 914–919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Anzalone AV, Lin AJ, Zairis S, Rabadan R, Cornish VW . Reprogramming eukaryotic translation with ligand-responsive synthetic RNA switches. Nat Methods 2016; 13: 453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li Y, Treffers EE, Napthine S, Tas A, Zhu L, Sun Z et al. Transactivation of programmed ribosomal frameshifting by a viral protein. Proc Natl Acad Sci USA 2014; 111: E2172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Klare N, Seeger M, Janek K, Jungblut PR, Dahlmann B . Intermediate-type 20S proteasomes in HeLa cells: ‘asymmetric’ subunit composition, diversity and adaptation. J Mol Biol 2007; 373: 1–10.

    Article  CAS  PubMed  Google Scholar 

  40. Dahlmann B, Ruppert T, Kuehn L, Merforth S, Kloetzel PM . Different proteasome subtypes in a single tissue exhibit different enzymatic properties. J Mol Biol 2000; 303: 643–653.

    Article  CAS  PubMed  Google Scholar 

  41. Huber EM, Basler M, Schwab R, Heinemeyer W, Kirk CJ, Groettrup M et al. Immuno- and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity. Cell 2012; 148: 727–738.

    Article  CAS  PubMed  Google Scholar 

  42. Mishto M, Liepe J, Textoris-Taube K, Keller C, Henklein P, Weberruß M et al. Proteasome isoforms exhibit only quantitative differences in cleavage and epitope generation. Eur J Immunol 2014; 44: 3508–3521.

    Article  CAS  PubMed  Google Scholar 

  43. Tremblay CS, Brown FC, Collett M, Saw J, Chiu SK, Sonderegger SE et al. Loss-of-function mutations of Dynamin 2 promote T-ALL by enhancing IL-7 signalling. Leukemia 2016; 30: 1993–2001.

    Article  CAS  PubMed  Google Scholar 

  44. Goossens S, Radaelli E, Blanchet O, Durinck K, Van der Meulen J, Peirs S et al. ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling. Nat Commun 2015; 6: 5794.

    Article  CAS  PubMed  Google Scholar 

  45. Degryse S, de Bock CE, Cox L, Demeyer S, Gielen O, Mentens N et al. JAK3 mutants transform hematopoietic cells through JAK1 activation, causing T-cell acute lymphoblastic leukemia in a mouse model. Blood 2014; 124: 3092–3100.

    Article  CAS  PubMed  Google Scholar 

  46. Schafranek L, Nievergall E, Powell JA, Hiwase DK, Leclercq T, Hughes TP et al. Sustained inhibition of STAT5, but not JAK2, is essential for TKI-induced cell death in chronic myeloid leukemia. Leukemia 2014; 29: 76–85.

    Article  PubMed  Google Scholar 

  47. Nelson EA, Walker SR, Xiang M, Weisberg E, Bar-Natan M, Barrett R et al. The STAT5 inhibitor pimozide displays efficacy in models of acute myelogenous leukemia driven by FLT3 mutations. Genes Cancer 2012; 3: 503–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the EPFL proteomics core facility and the VIB Nucleomics core facility for their excellent support on mass spectrometry and RNA sequencing respectively. We thank Somersault1824 for preparing Figure 7. TG is funded by the fellowship ‘Emmanuel van der Schueren’ Kom op tegen kanker. SOS was supported by a long-term EMBO Fellowship (ALTF 1263-2014), the European Commission and Marie Curie Actions (LTFCOFUND2013, GA-2013-609409) and by a José Carreras EHA junior research grant. SV is SB PhD fellow at FWO (n° 1S49817N). KRK is supported by the Lady Tata Memorial Trust International Award for research in Leukaemia. This research was funded by an ERC starting grant (n° 334946), FWO funding (G067015N, G084013N and 1509814N) and a Stichting Tegen Kanker grant (grant n° 2012-176) to KDK. This work was partially supported by funding to JDD by the National Institutes of Health (R01HL119439 and R01GM117177).

Author contributions

TG, JDD and KDK designed the research. TG, SV, SOS, KRK and SB developed methodology. TG, SV, SOS, KRK, YK, EG, JWB, JODB, JV and JR performed the research. TG, SV, SOS, KRK, YK, LF, CV and KDK analyzed the data. JPM, CS, EG, CJH and JC provided administrative, technical and material support. TG, SV, SOS, LF, CJH, JPM, JC, JDD and KDK wrote and edited the paper. JDD and KDK supervised the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K De Keersmaecker.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girardi, T., Vereecke, S., Sulima, S. et al. The T-cell leukemia-associated ribosomal RPL10 R98S mutation enhances JAK-STAT signaling. Leukemia 32, 809–819 (2018). https://doi.org/10.1038/leu.2017.225

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.225

This article is cited by

Search

Quick links