Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic myeloproliferative neoplasms

The calreticulin (CALR) exon 9 mutations are promising targets for cancer immune therapy

Abstract

The calreticulin (CALR) exon 9 mutations are found in 30% of patients with essential thrombocythemia and primary myelofibrosis. Recently, we reported spontaneous immune responses against the CALR mutations. Here, we describe that CALR-mutant (CALRmut)-specific T cells are able to specifically recognize CALRmut cells. First, we established a T-cell culture specific for a CALRmut epitope. These specific T cells were able to recognize several epitopes in the CALRmut C terminus. Next, we established a CALRmut-specific CD4+ T-cell clone by limiting dilution. These CD4+ T cells recognized autologous CALRmut monocytes and hematopoietic stem cells, and T-cell recognition of target cells was dependent on the presence of CALR. Furthermore, we showed that the CALRmut response was human leukocyte antigen (HLA)-DR restricted. Finally, we demonstrated that the CALRmut-specific CD4+ T cells, despite their phenotype, were cytotoxic to autologous CALRmut cells, and that the cytotoxicity was mediated by degranulation of the T cells. In conclusion, the CALR exon 9 mutations are targets for specific T cells and thus are promising targets for cancer immune therapy such as peptide vaccination in patients harboring CALR exon 9 mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD . Cancer immunoediting: from immuno- surveillance to tumor escape. Nat Immunol 2002; 3: 991–998.

    Article  CAS  PubMed  Google Scholar 

  2. Olivera F . Cancer Immunology. N Engl J Med 2008; 358: 2704–2715.

    Article  Google Scholar 

  3. Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T . Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 2014; 14: 135–146.

    Article  CAS  PubMed  Google Scholar 

  4. Schumacher TN, Schreiber RD . Neoantigens in cancer immunotherapy. Science 2015; 348: 69–74.

    Article  CAS  PubMed  Google Scholar 

  5. Campbell PJ, Green AR . The myeloproliferative disorders. N Engl J Med 2006; 355: 2452–2466.

    Article  CAS  PubMed  Google Scholar 

  6. Kralovics R, Passamonti F, Buser AS, Teo S, Tiedt R et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779–1790.

    Article  CAS  PubMed  Google Scholar 

  7. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 2013; 369: 2379–2390.

    Article  CAS  PubMed  Google Scholar 

  8. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 2013; 369: 2391–2405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Holmstrom MO, Riley CH, Svane IM, Hasselbalch HC, Andersen MH . The CALR exon 9 mutations are shared neoantigens in patients with CALR mutant chronic myeloproliferative neoplasms. Leukemia 2016; 30: 2413–2416.

    Article  CAS  PubMed  Google Scholar 

  10. Packer R, Bolton B Immortalization of B lymphocytes by Epstein Barr virus. In: Celis JE (ed) Cell Biology: A Laboratory Handbook, 2nd edn. Academic Press: San Diego, CA, USA, 1998; pp 178–185.

    Google Scholar 

  11. Pietra D, Rumi E, Ferretti VV, Di Buduo CA, Milanesi C, Cavalloni C et al. Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia 2015; 30: 1–8.

    Google Scholar 

  12. Moodie Z, Price L, Gouttefangeas C, Mander A, Janetzki S, Löwer M et al. Response definition criteria for ELISPOT assays revisited. Cancer Immunol Immunother 2010; 59: 1489–1501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Takeuchi A, MESG Badr, Miyauchi K, Ishihara C, Onishi R, Guo Z et al. CRTAM determines the CD4+cytotoxic T lymphocyte lineage. J Exp Med 2016; 213: 123–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Perez-Diez A, Joncker NT, Choi K, Chan WFN, Anderson CC, Lantz O et al. CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood 2007; 109: 5346–5354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Silver RT, Kiladjian J-J, Hasselbalch HC . Interferon and the treatment of polycythaemia vera, essential thrombocytemia and myelofibrosis. Exp Hematol 2013; 6: 1–10.

    Article  CAS  Google Scholar 

  16. Cassinat B, Verger E, Kiladjian J-J . Interferon alfa therapy in CALR-mutated essential thrombocythemia. N Engl J Med 2014; 371: 188–189.

    Article  CAS  PubMed  Google Scholar 

  17. Verger E, Cassinat B, Dosquet C, Giraudier S . Clinical and molecular response to interferon- a therapy in essential thrombocythemia patients with CALR mutations. Blood 2015; 126: 2585–2592.

    Article  CAS  PubMed  Google Scholar 

  18. Kjær L, Cordua S, Holmström MO, Thomassen M, Kruse TA, Pallisgaard N et al. Differential dynamics of CALR mutant allele burden in myeloproliferative neoplasms during interferon alfa treatment. PLoS ONE 2016; 11: e0165336.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kiladjian J-J, Giraudier S, Cassinat B . Interferon-alpha for the therapy of myeloproliferative neoplasms: targeting the malignant clone. Leukemia 2015; 30: 1–6.

    Google Scholar 

  20. Riley CH, Brimnes MK, Hansen M, Jensen MK, Hasselbalch HC, Kjaer L et al. Interferon-α induces marked alterations in circulating regulatory T cells, NK cell subsets, and dendritic cells in patients with JAK2V617F-positive essential thrombocythemia and polycythemia vera. Eur J Haematol 2016; 97: 83–92.

    Article  CAS  PubMed  Google Scholar 

  21. Riley CH, Jensen MK, Brimnes MK, Hasselbalch HC, Bjerrum OW, Straten PT et al. Increase in circulating CD4+CD25+Foxp3+ T cells in patients with Philadelphia-negative chronic myeloproliferative neoplasms during treatment with IFN-α. Blood 2011; 118: 2170–2173.

    Article  PubMed  Google Scholar 

  22. Riley CH, Hansen M, Brimnes MK, Hasselbalch HC, Bjerrum OW, Straten PT et al. Expansion of circulating CD56(bright) natural killer cells in patients with JAK2-positive chronic myeloproliferative neoplasms during treatment with interferon-α. Eur J Haematol 2015; 94: 227–234.

    Article  CAS  PubMed  Google Scholar 

  23. Skov V, Riley CH, Thomassen M, Larsen TS, Jensen MK, Bjerrum OW et al. Whole blood transcriptional profiling reveals significant down-regulation of human leukocyte antigen class I and II genes in essential thrombocythemia, polycythemia vera and myelofibrosis. Leuk Lymphoma 2013; 54: 2269–2273.

    Article  CAS  PubMed  Google Scholar 

  24. Skov V, Riley CH, Thomassen M, Kjær L, Stauffer Larsen T, Bjerrum OW et al. The impact of interferon-alpha2 on HLA genes in patients with polycythemia vera and related neoplasms. Leuk Lymphoma 2017; 58: 1914–1921.

    Article  CAS  PubMed  Google Scholar 

  25. Tian Y, Sette A, Weiskopf D . Cytotoxic CD4 T cells: differentiation, function, and application to dengue virus infection. Front Immunol 2016; 7: 1–9.

    Article  Google Scholar 

  26. Andersen MH, Bonfill JE, Neisig A, Arsequell G, Sondergaard I, Valencia G et al. Phosphorylated peptides can be transported by TAP molecules, presented by class I MHC molecules, and recognized by phosphopeptide-specific CTL. J Immunol 1999; 163: 3812–3818.

    CAS  PubMed  Google Scholar 

  27. Chachoua I, Pecquet C, El-Khoury M, Nivarthi H, Albu RI, Marty C et al. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood 2016; 127: 1325–1335.

    Article  CAS  PubMed  Google Scholar 

  28. Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini J-L et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 2007; 13: 54–61.

    Article  CAS  PubMed  Google Scholar 

  29. Wang JC, Kundra A, Andrei M, Baptiste S, Chen C, Wong C . Myeloid-derived suppressor cells in patients with myeloproliferative neoplasm. Leuk Res 2016; 43: 39–43.

    Article  CAS  PubMed  Google Scholar 

  30. Munder M . Arginase: an emerging key player in the mammalian immune system. Br J Pharmacol 2009; 158: 638–651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boussiotis VA . Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med 2016; 375: 1767–1778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank laboratory technician Merete Jonassen for outstanding help in teaching MOH to perform the immune cell assays and Tina Seremet for help with the analysis of T-cell receptors. We also thank the secretaries, nurses and laboratory technicians at University Hospital Zealand for organizing blood draws from patients. This study was supported in part by grant from Danish Cancer Society to HCH (Grant Number R90-A6143-14-S2) and by grants from Region Sjællands Sundhedsvidenskabelige Forskningsfond to MOH (Grant Numbers 12-000095 and 15-000342) in addition to support from Herlev Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M H Andersen.

Ethics declarations

Competing interests

The authors declare no conflict of interest. However, it should be noted that Morten Orebo Holmström, Hans Carl Hasselbalch and Mads Hald Andersen have filed a patent regarding the CALR exon 9 mutations as a target for cancer immune therapy. The patent has been transferred to University Hospital Zealand, Zealand Region, and Copenhagen University Hospital at Herlev, Capital Region, according to Danish Law concerning inventions made at public research institutions.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holmström, M., Martinenaite, E., Ahmad, S. et al. The calreticulin (CALR) exon 9 mutations are promising targets for cancer immune therapy. Leukemia 32, 429–437 (2018). https://doi.org/10.1038/leu.2017.214

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.214

This article is cited by

Search

Quick links