Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular targets for therapy

Genetic deletion or small-molecule inhibition of the arginine methyltransferase PRMT5 exhibit anti-tumoral activity in mouse models of MLL-rearranged AML

Abstract

The hematological malignancies classified as mixed lineage leukemias (MLL) harbor fusions of the MLL1 gene to partners that are members of transcriptional elongation complexes. MLL-rearranged leukemias are associated with extremely poor prognosis, and response to conventional therapies and efforts to identify molecular targets are urgently needed. Using mouse models of MLL-rearranged acute myeloid leukemia, here we show that genetic inactivation or small-molecule inhibition of the protein arginine methyltransferase PRMT5 exhibit anti-tumoral activity in MLL-fusion protein-driven transformation. Genome-wide transcriptional analysis revealed that inhibition of PRMT5 methyltransferase activity overrides the differentiation block in leukemia cells without affecting the expression of MLL-fusion direct oncogenic targets. Furthermore, we find that this differentiation block is mediated by transcriptional silencing of the cyclin-dependent kinase inhibitor p21 (CDKN1a) gene in leukemia cells. Our study provides pre-clinical rationale for targeting PRMT5 using small-molecule inhibitors in the treatment of leukemias harboring MLL rearrangements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Krivtsov AV, Armstrong SA . MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 2007; 7: 823–833.

    Article  CAS  PubMed  Google Scholar 

  2. Somervaille TC, Cleary ML . Grist for the MLL: how do MLL oncogenic fusion proteins generate leukemia stem cells? Int J Hematol 2010; 91: 735–741.

    Article  PubMed  Google Scholar 

  3. Jude CD, Climer L, Xu D, Artinger E, Fisher JK, Ernst P . Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors. Cell Stem Cell 2007; 1: 324–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bernt KM, Armstrong SA . Targeting epigenetic programs in MLL-rearranged leukemias. Hematology Am Soc Hematol Educ Program 2011; 2011: 354–360.

    Article  PubMed  Google Scholar 

  5. Santos MA, Faryabi RB, Ergen AV, Day AM, Malhowski A, Canela A et al. DNA-damage-induced differentiation of leukaemic cells as an anti-cancer barrier. Nature 2014; 514: 107–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bedford MT, Richard S . Arginine methylation an emerging regulator of protein function. Mol Cell 2005; 18: 263–272.

    Article  CAS  PubMed  Google Scholar 

  7. Pal S, Vishwanath SN, Erdjument-Bromage H, Tempst P, Sif S . Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol Cell Biol 2004; 24: 9630–9645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao Q, Rank G, Tan YT, Li H, Moritz RL, Simpson RJ et al. PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat Struct Mol Biol 2009; 16: 304–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen H, Lorton B, Gupta V, Shechter D . A TGFbeta-PRMT5-MEP50 axis regulates cancer cell invasion through histone H3 and H4 arginine methylation coupled transcriptional activation and repression. Oncogene 2016; 36: 373–386.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pal S, Baiocchi RA, Byrd JC, Grever MR, Jacob ST, Sif S . Low levels of miR-92b/96 induce PRMT5 translation and H3R8/H4R3 methylation in mantle cell lymphoma. EMBO J 2007; 26: 3558–3569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aggarwal P, Vaites LP, Kim JK, Mellert H, Gurung B, Nakagawa H et al. Nuclear cyclin D1/CDK4 kinase regulates CUL4 expression and triggers neoplastic growth via activation of the PRMT5 methyltransferase. Cancer Cell 2010; 18: 329–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kirino Y, Kim N, de Planell-Saguer M, Khandros E, Chiorean S, Klein PS et al. Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability. Nat Cell Biol 2009; 11: 652–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vagin VV, Wohlschlegel J, Qu J, Jonsson Z, Huang X, Chuma S et al. Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members. Genes Dev 2009; 23: 1749–1762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wei H, Wang B, Miyagi M, She Y, Gopalan B, Huang DB et al. PRMT5 dimethylates R30 of the p65 subunit to activate NF-kappaB. Proc Natl Acad Sci USA 2013; 110: 13516–13521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hsu JM, Chen CT, Chou CK, Kuo HP, Li LY, Lin CY et al. Crosstalk between Arg 1175 methylation and Tyr 1173 phosphorylation negatively modulates EGFR-mediated ERK activation. Nat Cell Biol 2011; 13: 174–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zheng S, Moehlenbrink J, Lu YC, Zalmas LP, Sagum CA, Carr S et al. Arginine methylation-dependent reader-writer interplay governs growth control by E2F-1. Mol Cell 2013; 52: 37–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jansson M, Durant ST, Cho EC, Sheahan S, Edelmann M, Kessler B et al. Arginine methylation regulates the p53 response. Nat Cell Biol 2008; 10: 1431–1439.

    Article  CAS  PubMed  Google Scholar 

  18. Wang L, Pal S, Sif S . Protein arginine methyltransferase 5 suppresses the transcription of the RB family of tumor suppressors in leukemia and lymphoma cells. Mol Cell Biol 2008; 28: 6262–6277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chung J, Karkhanis V, Tae S, Yan F, Smith P, Ayers LW et al. Protein arginine methyltransferase 5 (PRMT5) inhibition induces lymphoma cell death through reactivation of the retinoblastoma tumor suppressor pathway and polycomb repressor complex 2 (PRC2) silencing. J Biol Chem 2013; 288: 35534–35547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li Y, Chitnis N, Nakagawa H, Kita Y, Natsugoe S, Yang Y et al. PRMT5 is required for lymphomagenesis triggered by multiple oncogenic drivers. Cancer Discov 2015; 5: 288–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chan-Penebre E, Kuplast KG, Majer CR, Boriack-Sjodin PA, Wigle TJ, Johnston LD et al. A selective inhibitor of PRMT5 with in vivoand in vitro potency in MCL models. Nat Chem Biol 2015; 11: 432–437.

    Article  CAS  PubMed  Google Scholar 

  22. Jin Y, Zhou J, Xu F, Jin B, Cui L, Wang Y et al. Targeting methyltransferase PRMT5 eliminates leukemia stem cells in chronic myelogenous leukemia. J Clin Invest 2016; 126: 3961–3980.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liu F, Cheng G, Hamard PJ, Greenblatt S, Wang L, Man N et al. Arginine methyltransferase PRMT5 is essential for sustaining normal adult hematopoiesis. J Clin Invest 2015; 125: 3532–3544.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL . TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 2013; 14: R36.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Anders S, Pyl PT, Huber W . HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 2015; 31: 166–169.

    Article  CAS  PubMed  Google Scholar 

  26. Anders S, Huber W . Differential expression analysis for sequence count data. Genome Biol 2010; 11: R106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kondo Y, Shen L, Yan PS, Huang TH, Issa JP . Chromatin immunoprecipitation microarrays for identification of genes silenced by histone H3 lysine9 methylation. Proc Natl Acad Sci USA 2004; 101: 7398–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Martens JH, O’Sullivan RJ, Braunschweig U, Opravil S, Radolf M, Steinlein P et al. The profile of repeat associated histone lysine methylation states in the mouse epigenome. EMBO J 2005; 24: 800–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schmittgen TD, Livak KJ . Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 2008; 3: 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  31. Mukhopadhyay A, Deplancke B, Walhout AJ, Tissenbaum HA . Chromatinimmunoprecipitation (chip) coupled to detection by quantitative realtime PCR to study transcription factor binding to DNA in caenorhabditis elegans. Nat Protoc 2008; 3: 698–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tee WW, Pardo M, Theunissen TW, Yu L, Choudhary JS, Hajkova P et al. Prmt5 is essential for early mouse development and acts in the cytoplasm to maintain ES cell pluripotency. Genes Dev 2010; 24: 2772–2777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 2006; 442: 818–822.

    Article  CAS  PubMed  Google Scholar 

  34. Neubauer A, Maharry K, Mrozek K, Thiede C, Marcucci G, Paschka P et al. Patients with acute myeloid leukemia and RAS mutations benefit most from postremission high-dose cytarabine: a Cancer and Leukemia Group B study. J Clin Oncol 2008; 26: 4603–4609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pardee TS, Zuber J, Lowe SW . Flt3-ITD alters chemotherapy response in vitro and in vivoin a p53-dependent manner. Exp Hematol 2011; 39: 473–85 e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schoch C, Schnittger S, Klaus M, Kern W, Hiddemann W, Haferlach T . AML with 11q23/MLL abnormalities as defined by the WHO classification: incidence, partner chromosomes, FAB subtype, age distribution, and prognostic impact in an unselected series of 1897 cytogenetically analyzed AML cases. Blood 2003; 102: 2395–2402.

    Article  CAS  PubMed  Google Scholar 

  37. Zuber J, Radtke I, Pardee TS, Zhao Z, Rappaport AR, Luo W et al. Mouse models of human AML accurately predict chemotherapy response. Genes Dev 2009; 23: 877–889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 2011; 478: 524–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Koh CM, Bezzi M, Low DH, Ang WX, Teo SX, Gay FP et al. MYC regulates the core pre-mRNA splicing machinery as an essential step in lymphomagenesis. Nature 2015; 523: 96–100.

    Article  CAS  PubMed  Google Scholar 

  40. Somervaille TC, Matheny CJ, Spencer GJ, Iwasaki M, Rinn JL, Witten DM et al. Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. Cell Stem Cell 2009; 4: 129–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bernt KM, Zhu N, Sinha AU, Vempati S, Faber J, Krivtsov AV et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 2011; 20: 66–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wong P, Iwasaki M, Somervaille TC, Ficara F, Carico C, Arnold C et al. The miR-17-92 microRNA polycistron regulates MLL leukemia stem cell potential by modulating p21 expression. Cancer Res 2010; 70: 3833–3842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang T, Gunther S, Looso M, Kunne C, Kruger M, Kim J et al. Prmt5 is a regulator of muscle stem cell expansion in adult mice. Nat Commun 2015; 6: 7140.

    Article  CAS  PubMed  Google Scholar 

  44. Saramaki A, Banwell CM, Campbell MJ, Carlberg C . Regulation of the human p21(waf1/cip1) gene promoter via multiple binding sites for p53 and the vitamin D3 receptor. Nucleic Acids Res 2006; 34: 543–554.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Siatecka M, Lohmann F, Bao S, Bieker JJ . EKLF directly activates the p21WAF1/CIP1 gene by proximal promoter and novel intronic regulatory regions during erythroid differentiation. Mol Cell Biol 2010; 30: 2811–2822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Andreu-Perez P, Esteve-Puig R, de Torre-Minguela C, Lopez-Fauqued M, Bech-Serra JJ, Tenbaum S et al. Protein arginine methyltransferase 5 regulates ERK1/2 signal transduction amplitude and cell fate through CRAF. Sci Signal 2011; 4: ra58.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kim S, Gunesdogan U, Zylicz JJ, Hackett JA, Cougot D, Bao S et al. PRMT5 protects genomic integrity during global DNA demethylation in primordial germ cells and preimplantation embryos. Mol Cell 2014; 56: 564–579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Scoumanne A, Zhang J, Chen X . PRMT5 is required for cell-cycle progression and p53 tumor suppressor function. Nucleic Acids Res 2009; 37: 4965–4976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang Y, Bedford MT . Protein arginine methyltransferases and cancer. Nat Rev Cancer 2013; 13: 37–50.

    Article  CAS  PubMed  Google Scholar 

  50. Shi J, Wang E, Milazzo JP, Wang Z, Kinney JB, Vakoc CR . Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol 2015; 33: 661–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cheung N, Chan LC, Thompson A, Cleary ML, So CW . Protein arginine-methyltransferase-dependent oncogenesis. Nat Cell Biol 2007; 9: 1208–1215.

    Article  CAS  PubMed  Google Scholar 

  52. Cheung N, Fung TK, Zeisig BB, Holmes K, Rane JK, Mowen KA et al. Targeting Aberrant Epigenetic Networks Mediated by PRMT1 and KDM4C in Acute Myeloid Leukemia. Cancer Cell 2016; 29: 32–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Daigle SR, Olhava EJ, Therkelsen CA, Majer CR, Sneeringer CJ, Song J et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 2011; 20: 53–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 2011; 478: 529–533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Grembecka J, He S, Shi A, Purohit T, Muntean AG, Sorenson RJ et al. Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat Chem Biol 2012; 8: 277–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Harris WJ, Huang X, Lynch JT, Spencer GJ, Hitchin JR, Li Y et al. The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell 2012; 21: 473–487.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all members of the MA Santos’s laboratory; we thank Na Man from SD Nimer lab for all the technical help; P Jones for discussions, P Whitney for flow cytometry; C Perez for imaging; P Huskey and all members of the Smithville animal facility for animal care; L Coletta for RNA-seq; and J Zuber for MLL-ENL/NrasG12D cells. RASF-Smithville, Laboratory Animal Genetic Services, RHPI—Pathology and Imaging Services were supported by NIH CA16672; the Science Park NGS core by CPRIT RP120348. This work was supported by an American Cancer Society Institutional Research Grant to FL and a CPRIT Recruitment of First-time Tenure-Track Faculty Award (RR150039), a Sidney Kimmel Foundation—Kimmel Scholar Award (SKF-16–061) and a NCI Cancer Center Support Grant (CCSG) New Faculty Award to MAS.

Author contributions

SK, FL, KV, VG, MTB, SDN and MAS participated in the study design. SK, FL, GG, PD and LN performed mouse breeding, hematopoietic stem cell analysis, transplantation and leukemia experiments, and analyzed data. KV led all the ChIP experiments and analyzed data. KL, YZ and YL performed computational experiments. SK, FL, SDN and MAS wrote the manuscript and all authors reviewed it. MAS supervised the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Santos.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushik, S., Liu, F., Veazey, K. et al. Genetic deletion or small-molecule inhibition of the arginine methyltransferase PRMT5 exhibit anti-tumoral activity in mouse models of MLL-rearranged AML. Leukemia 32, 499–509 (2018). https://doi.org/10.1038/leu.2017.206

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.206

This article is cited by

Search

Quick links