Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic myeloproliferative neoplasms

A clinical-molecular prognostic model to predict survival in patients with post polycythemia vera and post essential thrombocythemia myelofibrosis

Abstract

Polycythemia vera (PV) and essential thrombocythemia (ET) are myeloproliferative neoplasms with variable risk of evolution into post-PV and post-ET myelofibrosis, from now on referred to as secondary myelofibrosis (SMF). No specific tools have been defined for risk stratification in SMF. To develop a prognostic model for predicting survival, we studied 685 JAK2, CALR, and MPL annotated patients with SMF. Median survival of the whole cohort was 9.3 years (95% CI: 8-not reached-NR-). Through penalized Cox regressions we identified negative predictors of survival and according to beta risk coefficients we assigned 2 points to hemoglobin level <11 g/dl, to circulating blasts 3%, and to CALR-unmutated genotype, 1 point to platelet count <150 × 109/l and to constitutional symptoms, and 0.15 points to any year of age. Myelofibrosis Secondary to PV and ET-Prognostic Model (MYSEC-PM) allocated SMF patients into four risk categories with different survival (P<0.0001): low (median survival NR; 133 patients), intermediate-1 (9.3 years, 95% CI: 8.1-NR; 245 patients), intermediate-2 (4.4 years, 95% CI: 3.2–7.9; 126 patients), and high risk (2 years, 95% CI: 1.7–3.9; 75 patients). Finally, we found that the MYSEC-PM represents the most appropriate tool for SMF decision-making to be used in clinical and trial settings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM et al. The 2016 revision to the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia. Blood 2016; 127: 2391–2405.

    Article  CAS  PubMed  Google Scholar 

  2. Passamonti F, Maffioli M . Update from the latest WHO classification of MPNs: a user's manual. Hematol Am Soc Hematol Educ Program 2016; 2016: 534–542.

    Article  Google Scholar 

  3. Barosi G, Mesa RA, Thiele J, Cervantes F, Campbell PJ, Verstovsek S et al. Proposed criteria for the diagnosis of post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a consensus statement from the International Working Group for Myelofibrosis Research and Treatment. Leukemia 2008; 22: 437–438.

    Article  CAS  PubMed  Google Scholar 

  4. Passamonti F, Rumi E, Arcaini L, Castagnola C, Lunghi M, Bernasconi P et al. Leukemic transformation of polycythemia vera: a single center study of 23 patients. Cancer 2005; 104: 1032–1036.

    Article  PubMed  Google Scholar 

  5. Passamonti F, Rumi E, Caramella M, Elena C, Arcaini L, Boveri E et al. A dynamic prognostic model to predict survival in post-polycythemia vera myelofibrosis. Blood 2008; 111: 3383–3387.

    Article  CAS  PubMed  Google Scholar 

  6. Cervantes F, Dupriez B, Pereira A, Passamonti F, Reilly JT, Morra E et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 2009; 113: 2895–2901.

    Article  CAS  PubMed  Google Scholar 

  7. Gangat N, Caramazza D, Vaidya R, George G, Begna K, Schwager S et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol 2011; 29: 392–397.

    Article  PubMed  Google Scholar 

  8. Passamonti F, Cervantes F, Vannucchi AM, Morra E, Rumi E, Pereira A et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood 2010; 115: 1703–1708.

    Article  CAS  PubMed  Google Scholar 

  9. Hernandez-Boluda JC, Pereira A, Gomez M, Boque C, Ferrer-Marin F, Raya JM et al. The International Prognostic Scoring System does not accurately discriminate different risk categories in patients with post-essential thrombocythemia and post-polycythemia vera myelofibrosis. Haematologica 2014; 99: e55–e57.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gowin K, Coakley M, Kosiorek H, Mesa R . Discrepancies of applying primary myelofibrosis prognostic scores for patients with post polycythemia vera/ essential thrombocytosis myelofibrosis. Haematologica 2016; 101: e405–e406.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen M, Xu ZF, Xu JQ, Li B, Zhang PH, Qin TJ et al. Analysis of prognostic factors in Chinese patients with post-polycythemia vera myelofibrosis and post-essential thrombocythemia myelofibrosis. Zhonghua Xue Ye Xue Za Zhi 2016; 37: 876–880.

    CAS  PubMed  Google Scholar 

  12. Vannucchi AM, Lasho TL, Guglielmelli P, Biamonte F, Pardanani A, Pereira A et al. Mutations and prognosis in primary myelofibrosis. Leukemia 2013; 27: 1861–1869.

    Article  CAS  PubMed  Google Scholar 

  13. Tefferi A, Lasho TL, Finke CM, Knudson RA, Ketterling R, Hanson CH et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia 2014; 28: 1472–1477.

    Article  CAS  PubMed  Google Scholar 

  14. Wassie E, Finke C, Gangat N, Lasho TL, Pardanani A, Hanson CA et al. A compendium of cytogenetic abnormalities in myelofibrosis: molecular and phenotypic correlates in 826 patients. Br J Haematol 2015; 169: 71–76.

    Article  CAS  PubMed  Google Scholar 

  15. Rumi E, Pietra D, Pascutto C, Guglielmelli P, Martinez-Trillos A, Casetti I et al. Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood 2014; 124: 1062–1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rozovski U, Verstovsek S, Manshouri T, Dembitz V, Bozinovic K, Newberry K et al. An accurate, simple prognostic model consisting of age, JAK2, CALR, and MPL mutation status for patients with primary myelofibrosis. Haematologica 2017; 102: 79–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Passamonti F, Mora B, Giorgino T, Guglielmelli P, Cazzola M, Maffioli M et al. Driver mutations' effect in secondary myelofibrosis: an international multicenter study based on 781 patients. Leukemia 2016.

  18. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009; 114: 937–951.

    Article  CAS  PubMed  Google Scholar 

  19. Pavlou M, Ambler G, Seaman SR, Guttmann O, Elliott P, King M et al. How to develop a more accurate risk prediction model when there are few events. BMJ 2015; 351: h3868.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Friedman J, Hastie T, Tibshirani R . Regularization paths for generalized linear models via coordinate descent. J Stat Softw 2010; 33: 1–22.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Grambsch PM, Therneau TM . Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 1994; 81: 515–526.

    Article  Google Scholar 

  22. Rotunno G, Pacilli A, Artusi V, Rumi E, Maffioli M, Delaini F et al. Epidemiology and clinical relevance of mutations in post-polycythemia vera and post-essential thrombocythemia myelofibrosis. A study on 359 patients of the AGIMM group. Am J Hematol 2016; 91: 681–686.

    Article  CAS  PubMed  Google Scholar 

  23. Barbui T, Barosi G, Birgegard G, Cervantes F, Finazzi G, Griesshammer M et al. Philadelphia-negative classical myeloproliferative neoplasms: critical concepts and management recommendations from European LeukemiaNet. J Clin Oncol 2011; 29: 761–770.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mesa RA, Passamonti F . Individualizing care for patients with myeloproliferative neoplasms: integrating genetics, evolving therapies, and patient-specific disease burden. Am Soc Clin Oncol Educ Book 2016; 35: e324–e335.

    Article  PubMed  Google Scholar 

  25. Passamonti F, Maffioli M, Cervantes F, Vannucchi AM, Morra E, Barbui T et al. Impact of ruxolitinib on the natural history of primary myelofibrosis: a comparison of the DIPSS and the COMFORT-2 cohorts. Blood 2014; 123: 1833–1835.

    Article  CAS  PubMed  Google Scholar 

  26. Barosi G, Zhang MJ, Peter Gale R . Does ruxolitinib improve survival of persons with MPN-associated myelofibrosis? Should it? Leukemia 2014; 28: 2267–2270.

    Article  CAS  PubMed  Google Scholar 

  27. Passamonti F, Vannucchi AM, Cervantes F, Harrison C, Morra E, Kantarjian H et al. Ruxolitinib and survival improvement in patients with myelofibrosis. Leukemia 2015; 29: 739–740.

    Article  CAS  PubMed  Google Scholar 

  28. Cervantes F, Pereira A . Does ruxolitinib prolong the survival of patients with myelofibrosis? Blood 2017; 129: 832–837.

    Article  CAS  PubMed  Google Scholar 

  29. Kroger N, Giorgino T, Scott BL, Ditschkowski M, Alchalby H, Cervantes F et al. Impact of allogeneic stem cell transplantation on survival of patients less than 65 years of age with primary myelofibrosis. Blood 2015; 125: 3347–3350.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pardanani A, Laborde RR, Lasho TL, Finke C, Begna K, Al-Kali A et al. Safety and efficacy of CYT387, a JAK1 and JAK2 inhibitor, in myelofibrosis. Leukemia 2013; 27: 1322–1327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 2012; 366: 799–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med 2012; 366: 787–798.

    Article  CAS  PubMed  Google Scholar 

  33. Pardanani A, Harrison C, Cortes JE, Cervantes F, Mesa RA, Milligan D et al. Safety and efficacy of fedratinib in patients with primary or secondary myelofibrosis: a randomized clinical trial. JAMA Oncol 2015; 1: 643–651.

    Article  PubMed  Google Scholar 

  34. Tefferi A, Al-Ali HK, Barosi G, Devos T, Gisslinger H, Jiang Q et al. A randomized study of pomalidomide vs placebo in persons with myeloproliferative neoplasm-associated myelofibrosis and RBC-transfusion dependence. Leukemia 2017; 31: 896–902.

    Article  CAS  PubMed  Google Scholar 

  35. Alchalby H, Yunus DR, Zabelina T, Kobbe G, Holler E, Bornhauser M et al. Risk models predicting survival after reduced-intensity transplantation for myelofibrosis. Br J Haematol 2012; 157: 75–85.

    Article  PubMed  Google Scholar 

  36. Marty C, Lacout C, Droin N, Le Couedic JP, Ribrag V, Solary E et al. A role for reactive oxygen species in JAK2(V617F) myeloproliferative neoplasm progression. Leukemia 2013; 27: 2187–2195.

    Article  CAS  PubMed  Google Scholar 

  37. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG et al. Age-related clonal hematopoiesis associated with adverse outcomes. New Engl J Med 2014; 371: 2488–2498.

    Article  PubMed  Google Scholar 

  38. Vainchenker W, Constantinescu SN, Plo I . Recent advances in understanding myelofibrosis and essential thrombocythemia. F1000Res 2016; 5: F1000.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Associazione Italiana per la Ricerca sul Cancro (AIRC; Milano, Italy), Special Program Molecular Clinical Oncology 5 × 1000 to AIRC-Gruppo Italiano Malattie Mieloproliferative (AGIMM) project #1005. A complete list of AGIMM investigators is available at http://www.progettoagimm.it. P.G. also received funding by AIRC IG2014-15967 and by the Ministero della Salute (project code GR-2011-02352109). The Varese group was also supported by grants from the Fondazione Matarelli (Milano, Italy), Fondazione Rusconi (Varese, Italy) and AIL Varese ONLUS. MC and FP were supported by a grant from the Fondazione Regionale Ricerca Biomedica (FRRB), Regione Lombardia. RTS was supported in part by the Cancer Research and Treatment Fund, Inc., New York, NY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Passamonti.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Passamonti, F., Giorgino, T., Mora, B. et al. A clinical-molecular prognostic model to predict survival in patients with post polycythemia vera and post essential thrombocythemia myelofibrosis. Leukemia 31, 2726–2731 (2017). https://doi.org/10.1038/leu.2017.169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.169

This article is cited by

Search

Quick links