Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic lymphocytic leukemia

Aberrant splicing of the tumor suppressor CYLD promotes the development of chronic lymphocytic leukemia via sustained NF-κB signaling

Abstract

The pathogenesis of chronic lymphocytic leukemia (CLL) has been linked to constitutive NF-κB activation but the underlying mechanisms are poorly understood. Here we show that alternative splicing of the negative regulator of NF-κB and tumor suppressor gene CYLD regulates the pool of CD5+ B cells through sustained canonical NF-κB signaling. Reinforced canonical NF-κB activity leads to the development of B1 cell-associated tumor formation in aging mice by promoting survival and proliferation of CD5+ B cells, highly reminiscent of human B-CLL. We show that a substantial number of CLL patient samples express sCYLD, strongly implicating a role for it in human B-CLL. We propose that our new CLL-like mouse model represents an appropriate tool for studying ubiquitination-driven canonical NF-κB activation in CLL. Thus, inhibition of alternative splicing of this negative regulator is essential for preventing NF-κB-driven clonal CD5+ B-cell expansion and ultimately CLL-like disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Kipps TJ . Immunobiology of chronic lymphocytic leukemia. Curr Opin Hematol 2003; 10: 312–318.

    Article  Google Scholar 

  2. Rosati E, Sabatini R, Rampino G, Tabilio A, Di Ianni M, Fettucciari K et al. Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. Blood 2009; 113: 856–865.

    Article  CAS  Google Scholar 

  3. Cuni S, Perez-Aciego P, Perez-Chacon G, Vargas JA, Sanchez A, Martin-Saavedra FM et al. A sustained activation of PI3K/NF-kappaB pathway is critical for the survival of chronic lymphocytic leukemia B cells. Leukemia 2004; 18: 1391–1400.

    Article  CAS  Google Scholar 

  4. Schuh K, Avots A, Tony HP, Serfling E, Kneitz C . Nuclear NF-ATp is a hallmark of unstimulated B cells from B-CLL patients. Leuk Lymphoma 1996; 23: 583–592.

    Article  CAS  Google Scholar 

  5. Furman RR, Asgary Z, Mascarenhas JO, Liou HC, Schattner EJ . Modulation of NF-kappa B activity and apoptosis in chronic lymphocytic leukemia B cells. J Immunol 2000; 164: 2200–2206.

    Article  CAS  Google Scholar 

  6. Liu Z, Hazan-Halevy I, Harris DM, Li P, Ferrajoli A, Faderl S et al. STAT-3 activates NF-kappaB in chronic lymphocytic leukemia cells. Mol Cancer Res 2011; 9: 507–515.

    Article  CAS  Google Scholar 

  7. Mansouri L, Papakonstantinou N, Ntoufa S, Stamatopoulos K, Rosenquist R . NF-kappaB activation in chronic lymphocytic leukemia: a point of convergence of external triggers and intrinsic lesions. Semin Cancer Biol 2016; 39: 40–48.

    Article  CAS  Google Scholar 

  8. Malynn BA, Ma A . Ubiquitin makes its mark on immune regulation. Immunity 2010; 33: 843–852.

    Article  CAS  Google Scholar 

  9. Massoumi R . Ubiquitin chain cleavage: CYLD at work. Trends Biochem Sci 2010; 35: 392–399.

    Article  CAS  Google Scholar 

  10. Hymowitz SG, Wertz IE . A20: from ubiquitin editing to tumour suppression. Nat Rev Cancer 2010; 10: 332–341.

    Article  CAS  Google Scholar 

  11. Mathis BJ, Lai Y, Qu C, Janicki JS, Cui T . CYLD-mediated signaling and diseases. Curr Drug Targets 2015; 16: 284–294.

    Article  CAS  Google Scholar 

  12. Hovelmeyer N, Wunderlich FT, Massoumi R, Jakobsen CG, Song J, Worns MA et al. Regulation of B cell homeostasis and activation by the tumor suppressor gene CYLD. J Exp Med 2007; 204: 2615–2627.

    Article  Google Scholar 

  13. van Andel H, Kocemba KA, de Haan-Kramer A, Mellink CH, Piwowar M, Broijl A et al. Loss of CYLD expression unleashes Wnt signaling in multiple myeloma and is associated with aggressive disease. Oncogene 2017; 36: 2105–2115.

    Article  CAS  Google Scholar 

  14. Liu P, Xu B, Shen W, Zhu H, Wu W, Fu Y et al. Dysregulation of TNFalpha-induced necroptotic signaling in chronic lymphocytic leukemia: suppression of CYLD gene by LEF1. Leukemia 2012; 26: 1293–1300.

    Article  CAS  Google Scholar 

  15. Wu W, Zhu H, Fu Y, Shen W, Xu J, Miao K et al. Clinical significance of down-regulated cylindromatosis gene in chronic lymphocytic leukemia. Leuk Lymphoma 2014; 55: 588–594.

    Article  CAS  Google Scholar 

  16. Tavares RM, Turer EE, Liu CL, Advincula R, Scapini P, Rhee L et al. The ubiquitin modifying enzyme A20 restricts B cell survival and prevents autoimmunity. Immunity 2010; 33: 181–191.

    Article  CAS  Google Scholar 

  17. Chu Y, Vahl JC, Kumar D, Heger K, Bertossi A, Wojtowicz E et al. B cells lacking the tumor suppressor TNFAIP3/A20 display impaired differentiation and hyperactivation and cause inflammation and autoimmunity in aged mice. Blood 2011; 117: 2227–2236.

    Article  CAS  Google Scholar 

  18. Hovelmeyer N, Reissig S, Xuan NT, Adams-Quack P, Lukas D, Nikolaev A et al. A20 deficiency in B cells enhances B-cell proliferation and results in the development of autoantibodies. Eur J Immunol 2011; 41: 595–601.

    Article  Google Scholar 

  19. Philipp C, Edelmann J, Buhler A, Winkler D, Stilgenbauer S, Kuppers R . Mutation analysis of the TNFAIP3 (A20) tumor suppressor gene in CLL. Int J Cancer 2011; 128: 1747–1750.

    Article  CAS  Google Scholar 

  20. Frenzel LP, Claus R, Plume N, Schwamb J, Konermann C, Pallasch CP et al. Sustained NF-kappaB activity in chronic lymphocytic leukemia is independent of genetic and epigenetic alterations in the TNFAIP3 (A20) locus. Int J Cancer 2011; 128: 2495–2500.

    Article  CAS  Google Scholar 

  21. Kantor AB, Herzenberg LA . Origin of murine B cell lineages. Annu Rev Immunol 1993; 11: 501–538.

    Article  CAS  Google Scholar 

  22. Pritsch O, Magnac C, Dumas G, Egile C, Dighiero G . V gene usage by seven hybrids derived from CD5+ B-cell chronic lymphocytic leukemia and displaying autoantibody activity. Blood 1993; 82: 3103–3112.

    CAS  PubMed  Google Scholar 

  23. Stevenson FK, Caligaris-Cappio F . Chronic lymphocytic leukemia: revelations from the B-cell receptor. Blood 2004; 103: 4389–4395.

    Article  CAS  Google Scholar 

  24. Herishanu Y, Perez-Galan P, Liu D, Biancotto A, Pittaluga S, Vire B et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood 2011; 117: 563–574.

    Article  CAS  Google Scholar 

  25. Matutes E, Polliack A . Morphological and immunophenotypic features of chronic lymphocytic leukemia. Rev Clin Exp Hematol 2000; 4: 22–47.

    Article  CAS  Google Scholar 

  26. Drillenburg P, Pals ST . Cell adhesion receptors in lymphoma dissemination. Blood 2000; 95: 1900–1910.

    CAS  PubMed  Google Scholar 

  27. Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci USA 2002; 99: 6955–6960.

    Article  CAS  Google Scholar 

  28. Bashford-Rogers RJ, Palser AL, Huntly BJ, Rance R, Vassiliou GS, Follows GA et al. Network properties derived from deep sequencing of human B-cell receptor repertoires delineate B-cell populations. Genome Res 2013; 23: 1874–1884.

    Article  CAS  Google Scholar 

  29. Ghia P, Stamatopoulos K, Belessi C, Moreno C, Stilgenbauer S, Stevenson F et al. ERIC recommendations on IGHV gene mutational status analysis in chronic lymphocytic leukemia. Leukemia 2007; 21: 1–3.

    Article  CAS  Google Scholar 

  30. Forster I, Rajewsky K . Expansion and functional activity of Ly-1+ B cells upon transfer of peritoneal cells into allotype-congenic, newborn mice. Eur J Immunol 1987; 17: 521–528.

    Article  CAS  Google Scholar 

  31. Enzler T, Kater AP, Zhang W, Widhopf GF 2nd, Chuang HY, Lee J et al. Chronic lymphocytic leukemia of Emu-TCL1 transgenic mice undergoes rapid cell turnover that can be offset by extrinsic CD257 to accelerate disease progression. Blood 2009; 114: 4469–4476.

    Article  CAS  Google Scholar 

  32. Dejardin E, Droin NM, Delhase M, Haas E, Cao Y, Makris C et al. The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity 2002; 17: 525–535.

    Article  CAS  Google Scholar 

  33. Fusco AJ, Savinova OV, Talwar R, Kearns JD, Hoffmann A, Ghosh G . Stabilization of RelB requires multidomain interactions with p100/p52. J Biol Chem 2008; 283: 12324–12332.

    Article  CAS  Google Scholar 

  34. Mineva ND, Rothstein TL, Meyers JA, Lerner A, Sonenshein GE . CD40 ligand-mediated activation of the de novo RelB NF-kappaB synthesis pathway in transformed B cells promotes rescue from apoptosis. J Biol Chem 2007; 282: 17475–17485.

    Article  CAS  Google Scholar 

  35. Lopez-Guerra M, Colomer D . NF-kappaB as a therapeutic target in chronic lymphocytic leukemia. Expert Opin Ther Targets 2010; 14: 275–288.

    Article  CAS  Google Scholar 

  36. Duhren-von Minden M, Ubelhart R, Schneider D, Wossning T, Bach MP, Buchner M et al. Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signalling. Nature 2012; 489: 309–312.

    Article  Google Scholar 

  37. Buggins AG, Pepper C, Patten PE, Hewamana S, Gohil S, Moorhead J et al. Interaction with vascular endothelium enhances survival in primary chronic lymphocytic leukemia cells via NF-kappaB activation and de novo gene transcription. Cancer Res 2010; 70: 7523–7533.

    Article  CAS  Google Scholar 

  38. Zapata JM, Krajewska M, Morse HC 3rd, Choi Y, Reed JC . TNF receptor-associated factor (TRAF) domain and Bcl-2 cooperate to induce small B cell lymphoma/chronic lymphocytic leukemia in transgenic mice. Proc Natl Acad Sci USA 2004; 101: 16600–16605.

    Article  CAS  Google Scholar 

  39. Klein U, Dalla-Favera R . New insights into the pathogenesis of chronic lymphocytic leukemia. Semin Cancer Biol 2010; 20: 377–383.

    Article  CAS  Google Scholar 

  40. Planelles L, Carvalho-Pinto CE, Hardenberg G, Smaniotto S, Savino W, Gomez-Caro R et al. APRIL promotes B-1 cell-associated neoplasm. Cancer Cell 2004; 6: 399–408.

    Article  CAS  Google Scholar 

  41. Pekarsky Y, Palamarchuk A, Maximov V, Efanov A, Nazaryan N, Santanam U et al. Tcl1 functions as a transcriptional regulator and is directly involved in the pathogenesis of CLL. Proc Natl Acad Sci USA 2008; 105: 19643–19648.

    Article  CAS  Google Scholar 

  42. Puente XS, Bea S, Valdes-Mas R, Villamor N, Gutierrez-Abril J, Martin-Subero JI et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 2015; 526: 519–524.

    Article  CAS  Google Scholar 

  43. Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson K, Lawrence MS et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 2013; 152: 714–726.

    Article  CAS  Google Scholar 

  44. Quesada V, Ramsay AJ, Lopez-Otin C . Chronic lymphocytic leukemia with SF3B1 mutation. N Engl J Med 2012; 366: 2530.

    Article  CAS  Google Scholar 

  45. Rossi D, Fangazio M, Rasi S, Vaisitti T, Monti S, Cresta S et al. Disruption of BIRC3 associates with fludarabine chemorefractoriness in TP53 wild-type chronic lymphocytic leukemia. Blood 2012; 119: 2854–2862.

    Article  CAS  Google Scholar 

  46. Mansouri L, Sutton LA, Ljungstrom V, Bondza S, Arngarden L, Bhoi S et al. Functional loss of IkappaBepsilon leads to NF-kappaB deregulation in aggressive chronic lymphocytic leukemia. J Exp Med 2015; 212: 833–843.

    Article  CAS  Google Scholar 

  47. Petlickovski A, Laurenti L, Li X, Marietti S, Chiusolo P, Sica S et al. Sustained signaling through the B-cell receptor induces Mcl-1 and promotes survival of chronic lymphocytic leukemia B cells. Blood 2005; 105: 4820–4827.

    Article  CAS  Google Scholar 

  48. Barragan M, Bellosillo B, Campas C, Colomer D, Pons G, Gil J . Involvement of protein kinase C and phosphatidylinositol 3-kinase pathways in the survival of B-cell chronic lymphocytic leukemia cells. Blood 2002; 99: 2969–2976.

    Article  CAS  Google Scholar 

  49. Endo T, Nishio M, Enzler T, Cottam HB, Fukuda T, James DF et al. BAFF and APRIL support chronic lymphocytic leukemia B-cell survival through activation of the canonical NF-kappaB pathway. Blood 2007; 109: 703–710.

    Article  CAS  Google Scholar 

  50. Viatour P, Bentires-Alj M, Chariot A, Deregowski V, de Leval L, Merville MP et al. NF- kappa B2/p100 induces Bcl-2 expression. Leukemia 2003; 17: 1349–1356.

    Article  CAS  Google Scholar 

  51. Xu J, Zhou P, Wang W, Sun A, Guo F . RelB, together with RelA, sustains cell survival and confers proteasome inhibitor sensitivity of chronic lymphocytic leukemia cells from bone marrow. J Mol Med 2014; 92: 77–92.

    Article  CAS  Google Scholar 

  52. Tracey L, Perez-Rosado A, Artiga MJ, Camacho FI, Rodriguez A, Martinez N et al. Expression of the NF-kappaB targets BCL2 and BIRC5/Survivin characterizes small B-cell and aggressive B-cell lymphomas, respectively. J Pathol 2005; 206: 123–134.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Marc Schmidt-Supprian for excellent scientific discussions, Petra Adams-Quack and Elena Zurkowski for technical help. We thank Linda Koch and Florian Kurschus for critically proof reading the manuscript. This project was supported by the DFG: HO 4440/1-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Hövelmeyer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hahn, M., Bürckert, JP., Luttenberger, C. et al. Aberrant splicing of the tumor suppressor CYLD promotes the development of chronic lymphocytic leukemia via sustained NF-κB signaling. Leukemia 32, 72–82 (2018). https://doi.org/10.1038/leu.2017.168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.168

This article is cited by

Search

Quick links