Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute lymphoblastic leukemia

Deregulation of kinase signaling and lymphoid development in EBF1-PDGFRB ALL leukemogenesis

Abstract

The chimeric fusion oncogene early B-cell factor 1–platelet-derived growth factor receptor-β (EBF1-PDGFRB) is a recurrent lesion observed in Philadelphia-like B-acute lymphoblastic leukemia (B-ALL) and is associated with particularly poor prognosis. While it is understood that this fusion activates tyrosine kinase signaling, the mechanisms of transformation and importance of perturbation of EBF1 activity remain unknown. EBF1 is a nuclear transcription factor required for normal B-lineage specification, commitment and development. Conversely, PDGFRB is a receptor tyrosine kinase that is normally repressed in lymphocytes, yet PDGFRB remains a common fusion partner in leukemias. Here, we demonstrate that the EBF1-PDGFRB fusion results in loss of EBF1 function, multimerization and autophosphorylation of the fusion protein, activation of signal transducer and activator of transcription 5 (STAT5) signaling and gain of interleukin-7 (IL-7)-independent cell proliferation. Deregulation and loss of EBF1 function is critically dependent on the nuclear export activity of the transmembrane (TM) domain of PDGFRB. Deletion of the TM domain partially rescues EBF1 function and restores IL-7 dependence, without requiring kinase inhibition. Moreover, we demonstrate that EBF1-PDGFRB synergizes with loss of IKAROS function in a fully penetrant B-ALL in vivo. Thus, we establish that EBF1-PDGFRB is sufficient to drive leukemogenesis through TM-dependent loss of transcription factor function, increased proliferation and synergy with additional genetic insults including loss of IKAROS function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A . Cancer statistics, 2016. CA Cancer J Clin 2016; 66: 7–30.

    Article  Google Scholar 

  2. Iacobucci I, Mullighan CG . Genetic Basis of Acute Lymphoblastic Leukemia. J Clin Oncol 2017; 35: 975–983.

    Article  CAS  Google Scholar 

  3. Roberts KG, Morin RD, Zhang J, Hirst M, Zhao Y, Su X et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell 2012; 22: 153–166.

    Article  CAS  Google Scholar 

  4. Jain N, Roberts KG, Jabbour E, Patel K, Eterovic AK, Chen K et al. Ph-like acute lymphoblastic leukemia: a high-risk subtype in adults. Blood 2017; 129: 572–581.

    Article  CAS  Google Scholar 

  5. Schwab C, Ryan SL, Chilton L, Elliott A, Murray J, Richardson S et al. EBF1-PDGFRB fusion in paediatric B-cell precursor acute lymphoblastic leukaemia (BCP-ALL): genetic profile and clinical implications. Blood 2016; 127: 2214–2218.

    Article  CAS  Google Scholar 

  6. Demoulin JB, Montano-Almendras CP . Platelet-derived growth factors and their receptors in normal and malignant hematopoiesis. Am J Blood Res 2012; 2: 44–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Demoulin JB, Essaghir A . PDGF receptor signaling networks in normal and cancer cells. Cytokine Growth Factor Rev 2014; 25: 273–283.

    Article  CAS  Google Scholar 

  8. Ishibashi T, Yaguchi A, Terada K, Ueno-Yokohata H, Tomita O, Iijima K et al. Ph-like ALL-related novel fusion kinase ATF7IP-PDGFRB exhibits high sensitivity to tyrosine kinase inhibitors in murine cells. Exp Hematol 2016; 44: 177–188.e5.

    Article  CAS  Google Scholar 

  9. O'Connor D, Moorman AV, Wade R, Hancock J, Tan RM, Bartram J et al. Use of minimal residual disease assessment to redefine induction failure in pediatric acute lymphoblastic leukemia. J Clin Oncol 2017; 35: 660–667.

    Article  Google Scholar 

  10. Vilagos B, Hoffmann M, Souabni A, Sun Q, Werner B, Medvedovic J et al. Essential role of EBF1 in the generation and function of distinct mature B cell types. J Exp Med 2012; 209: 775–792.

    Article  CAS  Google Scholar 

  11. Pongubala JM, Northrup DL, Lancki DW, Medina KL, Treiber T, Bertolino E et al. Transcription factor EBF restricts alternative lineage options and promotes B cell fate commitment independently of Pax5. Nat Immunol 2008; 9: 203–215.

    Article  CAS  Google Scholar 

  12. Treiber T, Mandel EM, Pott S, Györy I, Firner S, Liu ET et al. Early B cell factor 1 regulates B cell gene networks by activation, repression, and transcription- independent poising of chromatin. Immunity 2010; 32: 714–725.

    Article  CAS  Google Scholar 

  13. Lin H, Grosschedl R . Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature 1995; 376: 263–267.

    Article  CAS  Google Scholar 

  14. Györy I, Boller S, Nechanitzky R, Mandel E, Pott S, Liu E et al. Transcription factor Ebf1 regulates differentiation stage-specific signaling, proliferation, and survival of B cells. Genes Dev 2012; 26: 668–682.

    Article  Google Scholar 

  15. Lukin K, Fields S, Lopez D, Cherrier M, Ternyak K, Ramirez J et al. Compound haploinsufficiencies of Ebf1 and Runx1 genes impede B cell lineage progression. Proc Natl Acad Sci USA 2010; 107: 7869–7874.

    Article  CAS  Google Scholar 

  16. Heltemes-Harris LM, Willette MJ, Ramsey LB, Qiu YH, Neeley ES, Zhang N et al. Ebf1 or Pax5 haploinsufficiency synergizes with STAT5 activation to initiate acute lymphoblastic leukemia. J Exp Med 2011; 208: 1135–1149.

    Article  CAS  Google Scholar 

  17. Heckl D, Schwarzer A, Haemmerle R, Steinemann D, Rudolph C, Skawran B et al. Lentiviral vector induced insertional haploinsufficiency of Ebf1 causes murine leukemia. Mol Ther 2012; 20: 1187–1195.

    Article  CAS  Google Scholar 

  18. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007; 446: 758–764.

    Article  CAS  Google Scholar 

  19. Yang JJ, Bhojwani D, Yang W, Cai X, Stocco G, Crews K et al. Genome-wide copy number profiling reveals molecular evolution from diagnosis to relapse in childhood acute lymphoblastic leukemia. Blood 2008; 112: 4178–4183.

    Article  CAS  Google Scholar 

  20. Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang Y-L, Pei D et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med 2014; 371: 1005–1015.

    Article  Google Scholar 

  21. Williams RT, Roussel MF, Sherr CJ . Arf gene loss enhances oncogenicity and limits imatinib response in mouse models of Bcr-Abl-induced acute lymphoblastic leukemia. Proc Natl Acad Sci USA 2006; 103: 6688–6693.

    Article  CAS  Google Scholar 

  22. Sorkin A, Westermark B, Heldin CH, Claesson-Welsh L . Effect of receptor kinase inactivation on the rate of internalization and degradation of PDGF and the PDGF beta-receptor. J Cell Biol 1991; 112: 469–478.

    Article  CAS  Google Scholar 

  23. Toffalini F, Hellberg C, Demoulin JB . Critical role of the platelet-derived growth factor receptor (PDGFR) beta transmembrane domain in the TEL-PDGFRbeta cytosolic oncoprotein. J Biol Chem 2010; 285: 12268–12278.

    Article  CAS  Google Scholar 

  24. Gao H, Lukin K, Ramirez J, Fields S, Lopez D, Hagman J . Opposing effects of SWI/SNF and Mi-2/NuRD chromatin remodeling complexes on epigenetic reprogramming by EBF and Pax5. Proc Natl Acad Sci USA 2009; 106: 11258–11263.

    Article  CAS  Google Scholar 

  25. Boller S, Ramamoorthy S, Akbas D, Nechanitzky R, Burger L, Murr R et al. Pioneering activity of the C-terminal domain of EBF1 shapes the chromatin landscape for B cell programming. Immunity 2016; 44: 527–541.

    Article  CAS  Google Scholar 

  26. la Cour T, Gupta R, Rapacki K, Skriver K, Poulsen FM, Brunak S . NESbase version 1.0: a database of nuclear export signals. Nucleic Acids Res 2003; 31: 393–396.

    Article  CAS  Google Scholar 

  27. Claesson-Welsh L . Signal transduction by the PDGF receptors. Prog Growth Factor Res 1994; 5: 37–54.

    Article  CAS  Google Scholar 

  28. Pahara J, Shi H, Chen X, Wang Z . Dimerization drives PDGF receptor endocytosis through a C-terminal hydrophobic motif shared by EGF receptor. Exp Cell Res 2010; 316: 2237–2250.

    Article  CAS  Google Scholar 

  29. Mori S, Tanaka K, Omura S, Saito Y . Degradation process of ligand-stimulated platelet-derived growth factor beta-receptor involves ubiquitin-proteasome proteolytic pathway. J Biol Chem 1995; 270: 29447–29452.

    Article  CAS  Google Scholar 

  30. Stein EM . Molecularly targeted therapies for acute myeloid leukemia. Hematol Am Soc Hematol Educ Prog 2015; 2015: 579–583.

    Article  Google Scholar 

  31. Katoh M . FGFR inhibitors: effects on cancer cells, tumor microenvironment and whole-body homeostasis. Int J Mol Med 2016; 38: 3–15.

    Article  CAS  Google Scholar 

  32. Zimmerman EI, Turner DC, Buaboonnam J, Hu S, Orwick S, Roberts MS et al. Crenolanib is active against models of drug-resistant FLT3-ITD-positive acute myeloid leukemia. Blood 2013; 122: 3607–3615.

    Article  CAS  Google Scholar 

  33. Churchman ML, Low J, Qu C, Paietta EM, Kasper LH, Chang Y et al. Efficacy of retinoids in IKZF1-mutated BCR-ABL1 acute lymphoblastic leukemia. Cancer Cell 2015; 28: 343–356.

    Article  CAS  Google Scholar 

  34. Toffalini F, Hellberg C, Demoulin JB . Critical role of the platelet-derived growth factor receptor (PDGFR) beta transmembrane domain in the TEL-PDGFRBbeta cytosolic oncoprotein. J Biol Chem 2010; 285: 12268–12278.

    Article  CAS  Google Scholar 

  35. De Keersmaecker K, Rocnik JL, Bernad R, Lee BH, Leeman D, Gielen O et al. Kinase activation and transformation by NUP214-ABL1 is dependent on the context of the nuclear pore. Mol Cell 2008; 31: 134–142.

    Article  CAS  Google Scholar 

  36. Toffalini F, Kallin A, Vandenberghe P, Pierre P, Michaux L, Cools J et al. The fusion proteins TEL-PDGFRbeta and FIP1L1-PDGFRalpha escape ubiquitination and degradation. Haematologica 2009; 94: 1085–1093.

    Article  CAS  Google Scholar 

  37. Kasyapa CS, Kunapuli P, Cowell JK . HSPA1A is an important regulator of the stability and function of ZNF198 and its oncogenic derivative, ZNF198-FGFR1. J Cell Biochem 2007; 102: 1308–1317.

    Article  CAS  Google Scholar 

  38. Schwab C, Ryan SL, Chilton L, Elliott A, Murray J, Richardson S et al. EBF1-PDGFRB fusion in pediatric B-Cell precursor acute lymphoblastic leukemia (BCP-ALL): genetic profile and clinical implications. Blood 2016; 127: 2214–2218.

    Article  CAS  Google Scholar 

  39. Mullighan CG, Su X, Zhang J, Radtke I, Phillips LA, Miller CB et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 2009; 360: 470–480.

    Article  CAS  Google Scholar 

  40. Petti LM, Talbert-Slagle K, Hochstrasser ML, DiMaio D . A single amino acid substitution converts a transmembrane protein activator of the platelet-derived growth factor beta receptor into an inhibitor. J Biol Chem 2013; 288: 27273–27286.

    Article  CAS  Google Scholar 

  41. Harvey RC, Mullighan CG, Wang X, Dobbin KK, Davidson GS, Bedrick EJ et al. Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. Blood 2010; 116: 4874–4884.

    Article  CAS  Google Scholar 

  42. Hunger SP, Mullighan CG . Redefining ALL classification: toward detecting high-risk ALL and implementing precision medicine. Blood 2015; 125: 3977–3987.

    Article  CAS  Google Scholar 

  43. Schwickert TA, Tagoh H, Gültekin S, Dakic A, Axelsson E, Minnich M et al. Stage-specific control of early B cell development by the transcription factor Ikaros. Nat Immunol 2014; 15: 283–293.

    Article  CAS  Google Scholar 

  44. Churchman ML, Mullighan CG . Ikaros: exploiting and targeting the hematopoietic stem cell niche in B-progenitor acute lymphoblastic leukemia. Exp Hematol 2017; 46: 1–8.

    Article  CAS  Google Scholar 

  45. Joshi I, Yoshida T, Jena N, Qi X, Zhang J, Van Etten RA et al. Loss of Ikaros DNA-binding function confers integrin-dependent survival on pre-B cells and progression to acute lymphoblastic leukemia. Nat Immunol 2014; 15: 294–304.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Jay Hesselberth, John Cambier, Mark Johnston, Laurent Gapin, Aaron M Johnson, Hua Huang and Mikael Sigvardsson for helpful suggestions and reagents. We also thank the National Jewish Health Flow Cytometry Core and Josh Loomis for support and technical assistance, the St Jude Children’s Research Hospital Flow Cytometry and Cell Sorting Shared Resource and Cell and Tissue Imaging Center. This work was funded by grants to JH from the National Institutes of Health R01 AI081878 and AI098417, The Wendy Siegel Fund for Leukemia and Cancer Research and the Cancer League of Colorado. The Victor W Bolie and Earleen D Bolie Graduate Scholarship Fund supported SJW. This work was supported by the American Lebanese Syrian Associated Charities of St Jude Children’s Research Hospital. CGM was supported by a St Baldrick’s Foundation Scholar Award, a St Baldrick’s Foundation Robert J Arceci Innovation Award, a Specialized Center of Research Award from the Leukemia and Lymphoma Society and an Outstanding Investigator Award (R35 CA197695) from the National Cancer Institute.

Author contributions

Conceptualization and methodology: SJW, MLC, MT, CGM and JH; investigation: SJW, MLC and MT; writing: SJW, MLC, CGM and JH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C G Mullighan or J Hagman.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Welsh, S., Churchman, M., Togni, M. et al. Deregulation of kinase signaling and lymphoid development in EBF1-PDGFRB ALL leukemogenesis. Leukemia 32, 38–48 (2018). https://doi.org/10.1038/leu.2017.166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.166

This article is cited by

Search

Quick links