Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

A revisionist history of adult marrow stem cell biology or ‘they forgot about the discard’

Abstract

The adult marrow hematopoietic stem cell biology has largely been based on studies of highly purified stem cells. This is unfortunate because during the stem cell purification the great bulk of stem cells are discarded. These cells are actively proliferating. The final purified stem cell is dormant and not representative of the whole stem cell compartment. Thus, a large number of studies on the cellular characteristics, regulators and molecular details of stem cells have been carried on out of non-represented cells. Niche studies have largely pursued using these purified stem cells and these are largely un-interpretable. Other considerations include the distinction between baseline and transplant stem cells and the modulation of stem cell phenotype by extracellular vesicles, to cite a non-inclusive list. Work needs to proceed on characterizing the true stem cell population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Rossi L, Challen GA, Sirin O, Lin KK, Goodell MA . Hematopoietic stem cell characterization and isolation. Methods Mol Biol 2011; 750: 47–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Till JE, McCulloch EA . A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 1961; 14: 213–222.

    Article  CAS  PubMed  Google Scholar 

  3. Till JE, McCulloch EA, Siminovitch L . A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc Natl Acad Sci USA 1964; 51: 29–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bradley TR, Metcalf D . The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci 1966; 44: 287–299.

    Article  CAS  PubMed  Google Scholar 

  5. Pluznik DH, Sachs L . The cloning of normal “mast” cells in tissue culture. J Cell Physiol 1965; 66: 319–324.

    Article  CAS  PubMed  Google Scholar 

  6. Axelrad AA, McLeod DL, Suzuki S, Shreeve MM . Regulation of the Population Size of Erythropoietic Progenitor Cells. Cold Spring Harbor Press: Cold Spring Harbor NY, 1978, p155.

    Google Scholar 

  7. Nakeff A, Dicke KA, Van Noord MJ . Megakaryocytes in agar culture of mouse bone marrow. Ser Haematol 1975; 8: 4–21.

    CAS  PubMed  Google Scholar 

  8. Pharr PN, Ogawa M . Fetal liver blast cell colonies: a source of erythroid progenitors. Exp Hematol 1988; 16: 748–751.

    CAS  PubMed  Google Scholar 

  9. Johnson GR, Dresch C, Metcalf D . Heterogeneity in human neutrophil, macrophage and eosinophil progenitor cells demonstrated by velocity sedimentation separation. Blood 1977; 50: 823–831.

    CAS  PubMed  Google Scholar 

  10. Shortman K, Dunkley M, Ryden A . Some requirements for a linear cell dose response in vitro assay for the T-cell progenitors of cytotoxic lymphocytes. J Immunol Methods 1978; 19: 369–385.

    Article  CAS  PubMed  Google Scholar 

  11. Fidler JM, Howard MC, Shortman K . Antigen-initiated B-lymphocyte differentiation. VIII. Sedimentation velocity and buoyant density characterization of virgin antibody-forming cell progenitors in the adoptive immune response of unprimed CBA mice to 4-hydroxy-3-iodo-5-nitrophenylacetic acid-polymerized bacterial flagellin antigen. J Exp Med 1976; 143: 1220–1238.

    Article  CAS  PubMed  Google Scholar 

  12. Bradley TR, Hodgson GS . Detection of primitive macrophage progenitor cells in mouse bone marrow. Blood 1979; 54: 1446–1450.

    CAS  PubMed  Google Scholar 

  13. Suda T, Suda J, Ogawa M . Single cell origin of mouse hemopoietic colonies expressing multiple lineages in variable combinations. Proc Natl Acad Sci USA 1983; 80: 6689–6693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Quesenberry P . Blueness of stem cells. Exp Hematol 1991; 19: 725–728.

    CAS  PubMed  Google Scholar 

  15. Suda T, Suda J, Ogawa M . Disparate differentiation in mouse hemopoietic colonies derived from paired progenitors. Proc Natl Acad Sci USA 1984; 81: 2520–2524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Spangrude GJ, Heimfeld S, Weissman IL . Purification and characterization of mouse hematopoietic stem cells. Science 1988; 241: 58–62.

    Article  CAS  PubMed  Google Scholar 

  17. Morrison SJ, Wandycz AM, Hemmati HD, Wright DE, Weissman IL . Identification of lineage of multipotent hematopoietic progenitors. Development 1997; 124: 1929–1939.

    CAS  PubMed  Google Scholar 

  18. Adolfsson J, Mansson R, Buza-Vidas N, Hultquist A, Liuba K, Jensen CT et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential: a revised road map for adult blood lineage commitment. Cell 2005; 121: 295–306.

    Article  CAS  PubMed  Google Scholar 

  19. Forsberg EC, Serwold T, Kogan S, Weissman IL, Passegue E . New evidence supporting megakaryocyte-erythrocyte potential of flk2/flt3+ multipotent hematopoietic progenitors. Cell 2006; 126: 415–426.

    Article  CAS  PubMed  Google Scholar 

  20. Yimez OH, Kiel MJ, Morrison SJ . Slam family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity. Blood 2006; 107: 924–930.

    Google Scholar 

  21. Varnum-Finney B, Brashem-Stein C, Bernstein ID . Combined effects of Notch signaling and cytokines induce a multiple log increase in precursors with lymphoid and myeloid reconstituting ability. Blood 2003; 101: 1784–1789.

    Article  CAS  PubMed  Google Scholar 

  22. Poulos MG, Guo P, Kofler NM, Pinho S, Gutkin MC, Tikhonova A et al. Endothelial Jagged-1 is necessary for homeostatic and regenerative hematopoiesis. Cell Rep 2013; 4: 1022–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maillard I, Koch U, Dumortier A, Shestova O, Xu L, Sai H et al. Canonical notch signaling is dispensable for the maintenance of adult hematopoietic stem cells. Cell Stem Cell 2008; 2: 356–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003; 423: 409–414.

    Article  CAS  PubMed  Google Scholar 

  25. Scheller M, Huelsken J, Rosenbauer F, Taketo MM, Birchmeier W, Tenen DG et al. Hematopoietic stem cell and multilineage defects generated by constitutive β-catenin activation. Nat Immunol 2006; 7: 1037–1047.

    Article  CAS  PubMed  Google Scholar 

  26. Peters SO, Kittler EL, Ramshaw HS, Quesenberry PJ . Ex vivo expansion of murine marrow cells with interleukin-3 (IL-3), IL-6, IL-11, and stem cell factor leads to impaired engraftment in irradiated hosts. Blood 1996; 87: 30–37.

    CAS  PubMed  Google Scholar 

  27. Habibian HK, Peters SO, Hsieh CC, Wuu J, Vergilis K, Grimaldi CI et al. The fluctuating phenotype of the lympho-hematopoietic stem cell with cell cycle transit. J Exp Med 1998; 188: 393–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Reddy GP, Tiarks CY, Pang L, Wuu J, Hsieh CC, Quesenberry PJ . Cell cycle analysis and synchronization of pluripotent hematopoietic progenitor stem cells. Blood 1997; 90: 2293–2299.

    CAS  PubMed  Google Scholar 

  29. Colvin GA, Dooner MS, Dooner GJ, Sanchez-Guijo FM, Demers DA, Abedi M et al. Stem cell continuum: directed differentiation hotspots. Exp Hematol 2007; 35: 96–107.

    Article  CAS  PubMed  Google Scholar 

  30. Cerny J, Dooner M, McAuliffe C, Habibian H, Stencil K, Berrios V . Homing of purified murine lympho-hematopoietic stem cells: a cytokine-induced defect. J Hematother Stem Cell Res 2002; 11: 913–922.

    Article  CAS  PubMed  Google Scholar 

  31. Becker PS, Nilsson SK, Li Z, Berrios VM, Dooner MS, Cooper CL et al. Adhesion receptor expression by hematopoietic cell lines and murine progenitors: modulation by cytokines and cell cycle status. Exp Hematol 1999; 27: 533–541.

    Article  CAS  PubMed  Google Scholar 

  32. Colvin GA, Lambert JF, Moore BE, Carlson JE, Dooner MS, Abedi M et al. Intrinsic hematopoietic stem cell/progenitor plasticity: inversions. J Cell Physiol 2004; 199: 20–31.

    Article  CAS  PubMed  Google Scholar 

  33. Aliotta JM, Lee D, Puente N, Faradyan S, Sears EH, Amaral A et al. Progenitor/stem cell fate determination: interactive dynamics of cell cycle and microvesicles. Stem Cells Dev 2012; 21: 1627–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Quesenberry PJ, Colvin GA, Abedi M, Dooner G, Dooner M, Aliotta J et al. The stem cell continuum. Ann NY Acad Sci 2005; 1044: 228–235.

    Article  PubMed  Google Scholar 

  35. Passegue E, Wagers AJ, Giuriato S, Anderson WC, Weissman IL . Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J Exp Med 2005; 202: 1599–1611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nilsson SK, Dooner MS, Tiarks CY, Weier HU, Quesenberry PJ . Potential and distribution of transplanted hematopoietic stem cells in a non-ablated mouse model. Blood 1997; 89: 4013–4020.

    CAS  PubMed  Google Scholar 

  37. Goldberg LR, Dooner MS, Johnson K, Papa E, Pereira M, Del Tatto M et al. The murine long-term multi-lineage renewal marrow stem cell is a cycling cell. Leukemia 2014; 28: 813–822.

    Article  CAS  PubMed  Google Scholar 

  38. Li L . Does 'immortal DNA strand' exist in 'immortal' stem cells? Cell Res 2007; 17: 834–835.

    Article  CAS  PubMed  Google Scholar 

  39. Wolf NS, Koné A, Priestley GV, Bartelmez SH . In vivo and in vitro characterization of long-term repopulating primitive hematopoietic cells isolated by sequential Hoechst 33342-rhodamine 123 FACS selection. Exp Hematol 1993; 21: 614–622.

    CAS  PubMed  Google Scholar 

  40. Sieburg HB, Cho RH, Dykstra B, Uchida N, Eaves CJ, Muller-Sieburg CE . The hematopoietic stem compartment consists of a limited number of discrete stem cell subsets. Blood 2006; 107: 2311–2316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Goodell MA, Nguyen H, Shroyer N . Somatic stem cell heterogeneity: diversity in the blood, skin and intestinal stem cell compartments. Nat Rev Mol Cell Biol 2015; 16: 299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Morrison SJ, Weissman IL . The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1994; 1: 661–673.

    Article  CAS  PubMed  Google Scholar 

  43. Oguro H, Ding L, Morrison SJ . SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 2013; 13: 102–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ogawa M, Tajima F, Ito T, Sato T, Laver JH, Deguchi T . CD34 expression by murine hematopoietic stem cells. Developmental changes and kinetic alterations. Ann NY Acad Sci 2001; 938: 139–145.

    Article  CAS  PubMed  Google Scholar 

  45. Ogawa M . Changing phenotypes of hematopoietic stem cells. Exp Hematol 2002; 30: 3–6.

    Article  PubMed  Google Scholar 

  46. Zanjani ED, Almeida-Porada G, Livingston AG, Zeng H, Ogawa M . Reversible expression of CD34 by adult human bone marrow long-term engrafting hematopoietic stem cells. Exp Hematol 2003; 31: 406–412.

    Article  CAS  PubMed  Google Scholar 

  47. Trentin JJ . Determination of bone marrow stem cell differentiation by stromal hemopoietic inductive microenvironments (HIM). Am J Pathol 1971; 65: 621–628.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lord BI, Testa NG, Hendry JH . The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood 1975; 46: 65–72.

    CAS  PubMed  Google Scholar 

  49. Schofield R . The relationship between the spleen-colony forming cell and the hematopoietic stem cell. Blood Cells 1978; 4: 7–25.

    CAS  PubMed  Google Scholar 

  50. Lewis JP, O’Grady LF, Trobaugh FE Jr . Studies of hematopoiesis: significance of hematopoietic colonies formed on the surface of spleens. Cell Tissue Kinet 1968; 1: 101–109.

    Google Scholar 

  51. Curry JL, Trentin JJ . Hemopoietic spleen colony studies. I. Growth and differentiation. Dev Biol 1967; 15: 395–413.

    Article  CAS  PubMed  Google Scholar 

  52. Wolf NS, Trentin JJ . Hemopoietic colony studies. V. Effect of hemopoietic organ stroma on differentiation of pluripotent stem cells. J Exp Med 1968; 127: 205–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brecher G, Smith WW . Dissociation between spleen colony formation and bone marrow recovery in colchicine-treated irradiated mice. Radiat Res 1965; 25: 176–177.

    Google Scholar 

  54. Savage AM . Hematopoietic recovery in endotoxin-treated lethally X-irradiated BUB mice. Radiat Res 1964; 23: 180–191.

    Article  CAS  PubMed  Google Scholar 

  55. McCulloch EA, Siminovitch L, Till JE, Russell ES, Bernstein SE . The cellular basis of the genetically determined hemopoietic defect in anemic mice of genotype Sl/SLd. Blood 1965; 26: 399–410.

    CAS  PubMed  Google Scholar 

  56. Quesenberry P, Halperin J, Ryan M, Stohlman F Jr . Tolerance to the granulocyte-releasing and colony-stimulating factor elevating effects of endotoxin. Blood 1975; 45: 789–800.

    CAS  PubMed  Google Scholar 

  57. Quesenberry PJ, Levin J, Zuckerman K, Rencricca N, Sullivan R, Tyler W . Stem cell migration induced by erythropoietin or haemolytic anemia: the effects of actinomycin and endotoxin contamination of erythropoietin preparations. Br J Haematol 1979; 41: 253–269.

    Article  CAS  PubMed  Google Scholar 

  58. Dexter TM, Allen TD, Lajtha LG, Schofield R, Lord BI . Stimulation of differentiation and proliferation of haemopoietic cells in vitro. J Cell Physiol 1973; 82: 461–473.

    Article  CAS  PubMed  Google Scholar 

  59. Whitlock CA, Witte ON . Long-term culture of B lymphocytes and their precursors from murine bone marrow. Proc Natl Acad Sci USA 1982; 79: 3608–3612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Quesenberry PJ, McNiece IK, Robinson BE, Woodward TA, Baber GB, McGrath HE et al. Stromal cell regulation of lymphoid and myeloid differentiation. Blood Cells 1987; 13: 137–146.

    CAS  PubMed  Google Scholar 

  61. Nilsson SK, Dooner MS, Tiarks CY, Weier HU, Quesenberry PJ . Potential and distribution of transplanted hematopoietic stem cells in a nonablated mouse model. Blood 1997; 89: 4013–4020.

    CAS  PubMed  Google Scholar 

  62. Nilsson SK, Johnston HM, Coverdale JA . Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 2001; 97: 2293–2299.

    Article  CAS  PubMed  Google Scholar 

  63. Xie Y, Yin T, Wiegraebe W, He XC, Miller D, Stark D et al. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 2009; 457: 97–101.

    Article  CAS  PubMed  Google Scholar 

  64. Nombela-Arrieta C, Pivarnik G, Winkel B, Canty KJ, Harley B, Mahoney JE et al. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol 2013; 15: 533–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ . SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005; 121: 1109–1121.

    Article  CAS  PubMed  Google Scholar 

  66. Chow A, Lucas D, Hidalgo A, Méndez-Ferrer S, Hashimoto D, Scheiermann C et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 2011; 208: 261–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lévesque JP, Helwani FM, Winkler IG . The endosteal 'osteoblastic' niche and its role in hematopoietic stem cell homing and mobilization. Leukemia 2010; 24: 1979–1992.

    Article  PubMed  Google Scholar 

  68. Niswander LM, Fegan KH, Kingsley PD, McGrath KE, Palis J . SDF-1 dynamically mediates megakaryocyte niche occupancy and thrombopoiesis at steady state and following radiation injury. Blood 2014; 124: 277–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nagasawa T . The chemokine CXCL12 and regulation of HSC and B lymphocyte development in the bone marrow niche. Adv Exp Med Biol 2007; 602: 69–75.

    Article  PubMed  Google Scholar 

  70. Takeshita S, Fumoto T, Naoe Y, Ikeda K . Age-related marrow adipogenesis is linked to increased expression of RANKL. J Biol Chem 2014; 289: 16699–16710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Isern J, García-García A, Martín AM, Arranz L, Martín-Pérez D, Torroja C et al. The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. Elife 2014; 3: e03696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Calvi LM, Link DC . The hematopoietic stem cell niche in homeostasis and disease. Blood 2015; 126: 2443–2251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Khurana S, Melacarne A, Yadak R, Schouteden S, Notelaers T, Pistoni M et al. SMAD signaling regulates CXCL12 expression in the bone marrow niche, affecting homing and mobilization of hematopoietic progenitors. Stem Cells 2014; 32: 3012–3022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Winkler IG, Barbier V, Nowlan B, Jacobsen RN, Forristal CE, Patton JT et al. Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat Med 2012; 18: 1651–1657.

    Article  CAS  PubMed  Google Scholar 

  75. Hooper AT, Butler JM, Nolan DJ, Kranz A, Iida K, Kobayashi M et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 2009; 4: 263–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Arai F, Hosokawa K, Toyama H, Matsumoto Y, Suda T . Role of N-cadherin in the regulation of hematopoietic stem cells in the bone marrow niche. Ann NY Acad Sci 2012; 1266: 72–77.

    Article  CAS  PubMed  Google Scholar 

  77. Haylock DN, Nilsson SK . Osteopontin: a bridge between bone and blood. Br J Haematol 2006; 134: 467–474.

    Article  CAS  PubMed  Google Scholar 

  78. Driessen RL, Johnston HM, Nilsson SK . Membrane-bound stem cell factor is a key regulator in the initial lodgment of stem cells within the endosteal marrow region. Exp Hematol 2003; 31: 1284–1291.

    Article  CAS  PubMed  Google Scholar 

  79. Morikawa T, Takubo K . Hypoxia regulates the hematopoietic stem cell niche. Pflugers Arch 2015; 468: 13–22.

    Article  CAS  PubMed  Google Scholar 

  80. Macario AJ, Dugan CB, Conway De Macario E . The erythroblastic nest (EN): cytochemical evidence for its role in the hemoglobinization of maturing erythroid cells. Haematologica 1984; 69: 521–531.

    CAS  PubMed  Google Scholar 

  81. Colvin GA, Lambert JF, Abedi M, Hsieh CC, Carlson JE, Stewart FM et al. Murine marrow cellularity and the concept of stem cell competition: geographic and quantitative determinants in stem cell biology. Leukemia 2004; 18: 575–583.

    Article  CAS  PubMed  Google Scholar 

  82. Ratajczak MZ . Regenerative medicine and the search for pluripotent/multipotent stem cells. In: Rtajczak MZ (ed.). Adult Stem Cell Therapies: Alternative to Plasticity. Humana Press, 2014.

  83. Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM . Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 2002; 30: 896–904, [Erratum in Exp Hematol 2006; 34: 809].

    Article  CAS  PubMed  Google Scholar 

  84. D’Ippolitol G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC . Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 2004; 117: 2971–2981.

    Article  CAS  Google Scholar 

  85. Kögler G, Sensken S, Airey JA, Trapp T, Müschen M, Feldhahn N et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 2004; 200: 123–135.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ratajczak MZ, Zuba-Surma EK, Machalinski B, Ratajczak J, Kucia M . Very small embryonic-like (VSEL) stem cells: purification from adult organs, characterization, and biologic significance. Stem Cell Rev 2008; 4: 89–99.

    Article  PubMed  Google Scholar 

  87. Cairns J . Mutation selection and the natural history of cancer. Nature 1975; 255: 197–200.

    Article  CAS  PubMed  Google Scholar 

  88. Lark KG, Consigli RA, Minocha HC . Segregation of sister chromatids in mammalian cells. Science 1966; 154: 1202–1205.

    Article  CAS  PubMed  Google Scholar 

  89. Potten CS, Hume WJ, Reid P, Cairns J . The segregation of DNA in epithelial stem cells. Cell 1978; 15: 899–906.

    Article  CAS  PubMed  Google Scholar 

  90. Kiel MJ, He S, Ashkenazi R, Gentry SN, Teta M, Kushner JA et al. Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 2007; 449: 238–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Karpowicz P, Morshead C, Kam A, Jervis E, Ramunas J, Cheng V et al. Support for the immortal strand hypothesis: neural stem cells partition DNA asymmetrically in vitro. J Cell Biol 2005; 170: 721–732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Merok JR, Lansita JA, Tunstead JR, Sherley JL . Cosegregation of chromosomes containing immortal DNA strands in cells that cycle with asymmetric stem cell kinetics. Cancer Res 2002; 62: 6791–6795.

    CAS  PubMed  Google Scholar 

  93. Conboy MJ, Karasov AO, Rando TA . High incidence of non-random template strand segregation and asymmetric fate determination in dividing stem cells and their progeny. PLoS Biol 2007; 5: e102 [Erratum in PLoS Biol 2007; 5: e182].

    Article  PubMed  PubMed Central  Google Scholar 

  94. Sun J, Ramos A, Chapman B, Johnnidis JB, Le L, Ho YJ et al. Clonal dynamics of native haematopoiesis. Nature 2014; 514: 322–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Quesenberry PJ, Aliotta J, Deregibus MC, Camussi G . Role of extracellular RNA-carrying vesicles in cell differentiation and reprogramming. Stem Cell Res Ther 2015; 6: 153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Quesenberry PJ, Goldberg LR, Aliotta JM, Dooner MS, Pereira MG, Wen S et al. Cellular phenotype and extracellular vesicles: basic and clinical considerations. Stem Cells Dev 2014; 23: 1429–1436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wen S, Dooner M, Cheng Y, Papa E, Del Tatto M, Pereira M et al. Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells. Leukemia 2016; 30: 2221–2231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. D'Hondt L, McAuliffe C, Damon J, Reilly J, Carlson J, Dooner M et al. Circadian variations of bone marrow engraftability. J Cell Physiol 2004; 200: 63–70.

    Article  CAS  PubMed  Google Scholar 

  99. Aardal N, Laerum O . Circadian variations in mouse bone marrow. Exp Hematol 1983; 9: 792–801.

    Google Scholar 

  100. Méndez-Ferrer S, Lucas D, Battista M, Frenette PS . Haematopoietic stem cell release is regulated by circadian oscillations. Nature 2008; 452: 442–447.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Quesenberry.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quesenberry, P., Goldberg, L. A revisionist history of adult marrow stem cell biology or ‘they forgot about the discard’. Leukemia 31, 1678–1685 (2017). https://doi.org/10.1038/leu.2017.155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.155

This article is cited by

Search

Quick links