Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Multiple Myeloma, Gammopathies

HDAC3 regulates DNMT1 expression in multiple myeloma: therapeutic implications

Abstract

Epigenetic signaling pathways are implicated in tumorigenesis and therefore histone deacetylases (HDACs) represent novel therapeutic targets for cancers, including multiple myeloma (MM). Although non-selective HDAC inhibitors show anti-MM activities, unfavorable side effects limit their clinical efficacy. Isoform- and/or class-selective HDAC inhibition offers the possibility to maintain clinical activity while avoiding adverse events attendant to broad non-selective HDAC inhibition. We have previously reported that HDAC3 inhibition, either by genetic knockdown or selective inhibitor BG45, abrogates MM cell proliferation. Here we show that knockdown of HDAC3, but not HDAC1 or HDAC2, as well as BG45, downregulate expression of DNA methyltransferase 1 (DNMT1) mediating MM cell proliferation. DNMT1 expression is regulated by c-Myc, and HDAC3 inhibition triggers degradation of c-Myc protein. Moreover, HDAC3 inhibition results in hyperacetylation of DNMT1, thereby reducing the stability of DNMT1 protein. Combined inhibition of HDAC3 and DNMT1 with BG45 and DNMT1 inhibitor 5-azacytidine (AZA), respectively, triggers synergistic downregulation of DNMT1, growth inhibition and apoptosis in both MM cell lines and patient MM cells. Efficacy of this combination treatment is confirmed in a murine xenograft MM model. Our results therefore provide the rationale for combination treatment using HDAC3 inhibitor with DNMT1 inhibitor to improve patient outcome in MM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Dawson MA, Kouzarides T . Cancer epigenetics: from mechanism to therapy. Cell 2012; 150: 12–27.

    Article  CAS  PubMed  Google Scholar 

  2. Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M . Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 2012; 11: 384–400.

    Article  CAS  PubMed  Google Scholar 

  3. Falkenberg KJ, Johnstone RW . Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 2014; 13: 673–691.

    Article  CAS  PubMed  Google Scholar 

  4. Harada T, Hideshima T, Anderson KC . Histone deacetylase inhibitors in multiple myeloma: from bench to bedside. Int J Hematol 2016; 104: 300–309.

    Article  CAS  PubMed  Google Scholar 

  5. Dimopoulos M, Siegel DS, Lonial S, Qi J, Hajek R, Facon T et al. Vorinostat or placebo in combination with bortezomib in patients with multiple myeloma (VANTAGE 088): a multicentre, randomised, double-blind study. Lancet Oncol 2013; 14: 1129–1140.

    Article  CAS  PubMed  Google Scholar 

  6. San-Miguel JF, Hungria VT, Yoon SS, Beksac M, Dimopoulos MA, Elghandour A et al. Panobinostat plus bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: a multicentre, randomised, double-blind phase 3 trial. Lancet Oncol 2014; 15: 1195–1206.

    Article  CAS  PubMed  Google Scholar 

  7. Minami J, Suzuki R, Mazitschek R, Gorgun G, Ghosh B, Cirstea D et al. Histone deacetylase 3 as a novel therapeutic target in multiple myeloma. Leukemia 2014; 28: 680–689.

    Article  CAS  PubMed  Google Scholar 

  8. Dang CV . MYC on the path to cancer. Cell 2012; 149: 22–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV . MYC, metabolism, and cancer. Cancer Discov 2015; 5: 1024–1039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Palumbo A, Anderson K . Multiple myeloma. N Engl J Med 2011; 364: 1046–1060.

    Article  CAS  PubMed  Google Scholar 

  11. Landgren O, Kyle RA, Pfeiffer RM, Katzmann JA, Caporaso NE, Hayes RB et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood 2009; 113: 5412–5417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weiss BM, Abadie J, Verma P, Howard RS, Kuehl WM . A monoclonal gammopathy precedes multiple myeloma in most patients. Blood 2009; 113: 5418–5422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chesi M, Robbiani DF, Sebag M, Chng WJ, Affer M, Tiedemann R et al. AID-dependent activation of a MYC transgene induces multiple myeloma in a conditional mouse model of post-germinal center malignancies. Cancer Cell 2008; 13: 167–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Anguiano A, Tuchman SA, Acharya C, Salter K, Gasparetto C, Zhan F et al. Gene expression profiles of tumor biology provide a novel approach to prognosis and may guide the selection of therapeutic targets in multiple myeloma. J Clin Oncol 2009; 27: 4197–4203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chng WJ, Huang GF, Chung TH, Ng SB, Gonzalez-Paz N, Troska-Price T et al. Clinical and biological implications of MYC activation: a common difference between MGUS and newly diagnosed multiple myeloma. Leukemia 2011; 25: 1026–1035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Holien T, Vatsveen TK, Hella H, Waage A, Sundan A . Addiction to c-MYC in multiple myeloma. Blood 2012; 120: 2450–2453.

    Article  CAS  PubMed  Google Scholar 

  17. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009; 325: 834–840.

    Article  CAS  PubMed  Google Scholar 

  18. West AC, Johnstone RW . New and emerging HDAC inhibitors for cancer treatment. J Clin Invest 2014; 124: 30–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gregory MA, Hann SR . c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt's lymphoma cells. Mol Cell Biol 2000; 20: 2423–2435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Faiola F, Liu X, Lo S, Pan S, Zhang K, Lymar E et al. Dual regulation of c-Myc by p300 via acetylation-dependent control of Myc protein turnover and coactivation of Myc-induced transcription. Mol Cell Biol 2005; 25: 10220–10234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang L, He X, Liu L, Jiang M, Zhao C, Wang H et al. Hdac3 interaction with p300 histone acetyltransferase regulates the oligodendrocyte and astrocyte lineage fate switch. Dev Cell 2016; 36: 316–330.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hideshima T, Cottini F, Ohguchi H, Jakubikova J, Gorgun G, Mimura N et al. Rational combination treatment with histone deacetylase inhibitors and immunomodulatory drugs in multiple myeloma. Blood Cancer J 2015; 5: e312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Angela N, Carafa V, Conte M, Tambaro FP, Abbondanza C, Martens JH et al. c-Myc modulation & acetylation is a key HDAC inhibitor target in cancer. Clin Cancer Res 2016.

  24. Yang L, Rau R, Goodell MA . DNMT3A in haematological malignancies. Nat Rev Cancer 2015; 15: 152–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen T, Hevi S, Gay F, Tsujimoto N, He T, Zhang B et al. Complete inactivation of DNMT1 leads to mitotic catastrophe in human cancer cells. Nat Genet 2007; 39: 391–396.

    Article  CAS  PubMed  Google Scholar 

  26. Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP . DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet 2000; 25: 338–342.

    Article  CAS  PubMed  Google Scholar 

  27. Du Z, Song J, Wang Y, Zhao Y, Guda K, Yang S et al. DNMT1 stability is regulated by proteins coordinating deubiquitination and acetylation-driven ubiquitination. Sci Signal 2010; 3: ra80.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cheng J, Yang H, Fang J, Ma L, Gong R, Wang P et al. Molecular mechanism for USP7-mediated DNMT1 stabilization by acetylation. Nat Commun 2015; 6: 7023.

    Article  CAS  PubMed  Google Scholar 

  29. Lin CY, Loven J, Rahl PB, Paranal RM, Burge CB, Bradner JE et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 2012; 151: 56–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kalac M, Scotto L, Marchi E, Amengual J, Seshan VE, Bhagat G et al. HDAC inhibitors and decitabine are highly synergistic and associated with unique gene-expression and epigenetic profiles in models of DLBCL. Blood 2011; 118: 5506–5516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pathania R, Ramachandran S, Mariappan G, Thakur P, Shi H, Choi JH et al. Combined inhibition of DNMT and HDAC blocks the tumorigenicity of cancer stem-like cells and attenuates mammary tumor growth. Cancer Res 2016; 76: 3224–3235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Silverman LR, McKenzie DR, Peterson BL, Holland JF, Backstrom JT, Beach CL et al. Further analysis of trials with azacitidine in patients with myelodysplastic syndrome: studies 8421, 8921, and 9221 by the Cancer and Leukemia Group B. J Clin Oncol 2006; 24: 3895–3903.

    Article  CAS  PubMed  Google Scholar 

  33. Zhou Q, Agoston AT, Atadja P, Nelson WG, Davidson NE . Inhibition of histone deacetylases promotes ubiquitin-dependent proteasomal degradation of DNA methyltransferase 1 in human breast cancer cells. Mol Cancer Res 2008; 6: 873–883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kimura H, Nakamura T, Ogawa T, Tanaka S, Shiota K . Transcription of mouse DNA methyltransferase 1 (Dnmt1) is regulated by both E2F-Rb-HDAC-dependent and -independent pathways. Nucleic Acids Res 2003; 31: 3101–3113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lin RK, Wu CY, Chang JW, Juan LJ, Hsu HS, Chen CY et al. Dysregulation of p53/Sp1 control leads to DNA methyltransferase-1 overexpression in lung cancer. Cancer Res 2010; 70: 5807–5817.

    Article  CAS  PubMed  Google Scholar 

  36. Denis H, Ndlovu MN, Fuks F . Regulation of mammalian DNA methyltransferases: a route to new mechanisms. EMBO Rep 2011; 12: 647–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pathania R, Ramachandran S, Elangovan S, Padia R, Yang P, Cinghu S et al. DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis. Nat Commun 2015; 6: 6910.

    Article  CAS  PubMed  Google Scholar 

  38. Bradner JE, West N, Grachan ML, Greenberg EF, Haggarty SJ, Warnow T et al. Chemical phylogenetics of histone deacetylases. Nat Chem Biol 2010; 6: 238–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Richardson P, Mitsiades C, Colson K, Reilly E, McBride L, Chiao J et al. Phase I trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) in patients with advanced multiple myeloma. Leuk Lymphoma 2008; 49: 502–507.

    Article  CAS  PubMed  Google Scholar 

  40. Wolf JL, Siegel D, Goldschmidt H, Hazell K, Bourquelot PM, Bengoudifa BR et al. Phase II trial of the pan-deacetylase inhibitor panobinostat as a single agent in advanced relapsed/refractory multiple myeloma. Leuk Lymphoma 2012; 53: 1820–1823.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Institute of Health Grants SPORE-P50100707 (KCA), P01-CA078378 (KCA), R01-CA050947 (KCA), and R01-CA178264 (T Hideshima and KCA). KCA is an American Cancer Society Clinical Research Professor.

Author contributions

T Harada, HO and T Hideshima designed the research. T Harada performed experiments. YG performed the bioinformatics analysis. RM synthesized BG45. T Harada, HO, SK, MS, T Hideshima and KCA analyzed the data. YT and KCA provided MM patient samples. HO, T Hideshima and KCA supervised the study. T Harada, HO, YG, T Hideshima and KCA wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K C Anderson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harada, T., Ohguchi, H., Grondin, Y. et al. HDAC3 regulates DNMT1 expression in multiple myeloma: therapeutic implications. Leukemia 31, 2670–2677 (2017). https://doi.org/10.1038/leu.2017.144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.144

This article is cited by

Search

Quick links