Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute myeloid leukemia

A CpG island methylator phenotype in acute myeloid leukemia independent of IDH mutations and associated with a favorable outcome

Subjects

Abstract

Genetic changes are infrequent in acute myeloid leukemia (AML) compared with other malignancies and often involve epigenetic regulators, suggesting that an altered epigenome may underlie AML biology and outcomes. In 96 AML cases including 65 pilot samples selected for cured/not-cured, we found higher CpG island (CGI) promoter methylation in cured patients. Expanded genome-wide digital restriction enzyme analysis of methylation data revealed a CGI methylator phenotype independent of IDH1/2 mutations we term AML-CGI methylator phenotype (CIMP) (A-CIMP+). A-CIMP was associated with longer overall survival (OS) in this data set (median OS, years: A-CIMP+=not reached, CIMP-=1.17; P=0.08). For validation we used 194 samples from The Cancer Genome Atlas interrogated with Illumina 450k methylation arrays where we confirmed longer OS in A-CIMP (median OS, years: A-CIMP+=2.34, A-CIMP-=1.00; P=0.01). Hypermethylation in A-CIMP+ favored CGIs (OR: CGI/non-CGI=5.21), and while A-CIMP+ was enriched in CEBPA (P=0.002) and WT1 mutations (P=0.02), 70% of cases lacked either mutation. Hypermethylated genes in A-CIMP+ function in pluripotency maintenance, and a gene expression signature of A-CIMP was associated with outcomes in multiple data sets. We conclude that CIMP in AML cannot be explained solely by gene mutations (for example, IDH1/2, TET2), and that curability in A-CIMP+ AML should be validated prospectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Gene Expression Omnibus

References

  1. Bienz M, Ludwig M, Leibundgut EO, Mueller BU, Ratschiller D, Solenthaler M et al. Risk assessment in patients with acute myeloid leukemia and a normal karyotype. Clin Cancer Res 2005; 11: 1416–1424.

    Article  CAS  Google Scholar 

  2. Breems DA, Van Putten WL, De Greef GE, Van Zelderen-Bhola SL, Gerssen-Schoorl KB, Mellink CH et al. Monosomal karyotype in acute myeloid leukemia: a better indicator of poor prognosis than a complex karyotype. J Clin Oncol 2008; 26: 4791–4797.

    Article  Google Scholar 

  3. Döhner K, Schlenk RF, Habdank M, Scholl C, Rücker FG, Corbacioglu A et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood 2005; 106: 3740–3746.

    Article  Google Scholar 

  4. Schlenk RF, Döhner K, Krauter J, Fröhling S, Corbacioglu A, Bullinger L et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008; 358: 1909–1918.

    Article  CAS  Google Scholar 

  5. Campbell LJ, Challis J, Fok T, Garson OM . Chromosome 16 abnormalities associated with myeloid malignancies. Genes Chromosomes Cancer 1991; 3: 55–61.

    Article  CAS  Google Scholar 

  6. Cheng FJ, Yang AD, Fei HB, Tian H . Clinical and prognostic investigations on M2/t(8;21) acute nonlymphocytic leukemia. J Tongji Med Univ 1993; 13: 218–220.

    Article  CAS  Google Scholar 

  7. Dastugue N, Payen C, Lafage-Pochitaloff M, Bernard P, Leroux D, Huguet-Rigal F et al. Prognostic significance of karyotype in de novo adult acute myeloid leukemia. The BGMT group. Leukemia 1995; 9: 1491–1498.

    CAS  PubMed  Google Scholar 

  8. Jung HA, Maeng CH, Park S, Kim SJ, Kim K, Jang JH et al. Prognostic factor analysis in core-binding factor-positive acute myeloid leukemia. Anticancer Res 2014; 34: 1037–1045.

    CAS  PubMed  Google Scholar 

  9. Numata A, Fujimaki K, Aoshima T, Onizuka M, Hagihara M, Miyazaki K et al. [Retrospective analysis of treatment outcomes in 70 patients with t(8;21) acute myeloid leukemia]. Rinsho Ketsueki 2012; 53: 698–704.

    PubMed  Google Scholar 

  10. O'Donnell MR, Tallman MS, Abboud CN, Altman JK, Appelbaum FR, Arber DA et al. Acute myeloid leukemia, version 2. 2013 J Natl Compr Canc Netw 2013; 11: 1047–1055.

    Article  CAS  Google Scholar 

  11. Coenen EA, Raimondi SC, Harbott J, Zimmermann M, Alonzo TA, Auvrignon A et al. Prognostic significance of additional cytogenetic aberrations in 733 de novo pediatric 11q23/MLL-rearranged AML patients: results of an international study. Blood 2011; 117: 7102–7111.

    Article  CAS  Google Scholar 

  12. Baldus CD, Mrózek K, Marcucci G, Bloomfield CD . Clinical outcome of de novo acute myeloid leukaemia patients with normal cytogenetics is affected by molecular genetic alterations: a concise review. Br J Haematol 2007; 137: 387–400.

    Article  CAS  Google Scholar 

  13. Kroeger H, Jelinek J, Estécio MR, He R, Kondo K, Chung W et al. Aberrant CpG island methylation in acute myeloid leukemia is accentuated at relapse. Blood 2008; 112: 1366–1373.

    Article  CAS  Google Scholar 

  14. Toyota M, Kopecky KJ, Toyota MO, Jair KW, Willman CL, Issa JP . Methylation profiling in acute myeloid leukemia. Blood 2001; 97: 2823–2829.

    Article  CAS  Google Scholar 

  15. Galm O, Wilop S, Lüders C, Jost E, Gehbauer G, Herman JG et al. Clinical implications of aberrant DNA methylation patterns in acute myelogenous leukemia. Ann Hematol 2005; 84: 39–46.

    Article  CAS  Google Scholar 

  16. Damm F, Markus B, Thol F, Morgan M, Göhring G, Schlegelberger B et al. TET2 mutations in cytogenetically normal acute myeloid leukemia: clinical implications and evolutionary patterns. Genes Chromosomes Cancer 2014; 53: 824–832.

    Article  CAS  Google Scholar 

  17. Kroeze LI, Aslanyan MG, van Rooij A, Koorenhof-Scheele TN, Massop M, Carell T et al. Characterization of acute myeloid leukemia based on levels of global hydroxymethylation. Blood 2014; 124: 1110–1118.

    Article  CAS  Google Scholar 

  18. Tian X, Xu Y, Yin J, Tian H, Chen S, Wu D et al. TET2 gene mutation is unfavorable prognostic factor in cytogenetically normal acute myeloid leukemia patients with NPM1(+) and FLT3-ITD (-) mutations. Int J Hematol 2014; 100: 96–104.

    Article  CAS  Google Scholar 

  19. Tie R, Zhang T, Fu H, Wang L, Wang Y, He Y et al. Association between DNMT3A mutations and prognosis of adults with de novo acute myeloid leukemia: a systematic review and meta-analysis. PLoS One 2014; 9: e93353.

    Article  Google Scholar 

  20. Hájková H, Marková J, Haškovec C, Sárová I, Fuchs O, Kostečka A et al. Decreased DNA methylation in acute myeloid leukemia patients with DNMT3A mutations and prognostic implications of DNA methylation. Leuk Res 2012; 36: 1128–1133.

    Article  Google Scholar 

  21. Issa JP . CpG island methylator phenotype in cancer. Nat Rev Cancer 2004; 4: 988–993.

    Article  CAS  Google Scholar 

  22. Shiovitz S, Bertagnolli MM, Renfro LA, Nam E, Foster NR, Dzieciatkowski S et al. CpG island methylator phenotype is associated with response to adjuvant irinotecan-based therapy for stage 3 colon cancer. Gastroenterology 2014; 147: 637–645.

    Article  CAS  Google Scholar 

  23. Dumenil TD, Wockner LF, Bettington M, McKeone DM, Klein K, Bowdler LM et al. Genome-wide DNA methylation analysis of formalin-fixed paraffin embedded colorectal cancer tissue. Genes Chromosomes Cancer 2014; 53: 537–548.

    Article  CAS  Google Scholar 

  24. Nazemalhosseini Mojarad E, Kuppen PJ, Aghdaei HA, Zali MR . The CpG island methylator phenotype (CIMP) in colorectal cancer. Gastroenterol Hepatol Bed Bench 2013; 6: 120–128.

    PubMed  Google Scholar 

  25. Yagi K, Akagi K, Hayashi H, Nagae G, Tsuji S, Isagawa T et al. Three DNA methylation epigenotypes in human colorectal cancer. Clin Cancer Res 2010; 16: 21–33.

    Article  CAS  Google Scholar 

  26. Wang Y, Long Y, Xu Y, Guan Z, Lian P, Peng J et al. Prognostic and predictive value of CpG island methylator phenotype in patients with locally advanced nonmetastatic sporadic colorectal cancer. Gastroenterol Res Pract 2014; 2014: 436985.

    PubMed  PubMed Central  Google Scholar 

  27. Bady P, Sciuscio D, Diserens AC, Bloch J, van den Bent MJ, Marosi C et al. MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status. Acta Neuropathol 2012; 124: 547–560.

    Article  CAS  Google Scholar 

  28. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 2010; 17: 510–522.

    Article  CAS  Google Scholar 

  29. Ohka F, Natsume A, Motomura K, Kishida Y, Kondo Y, Abe T et al. The global DNA methylation surrogate LINE-1 methylation is correlated with MGMT promoter methylation and is a better prognostic factor for glioma. PLoS One 2011; 6: e23332.

    Article  CAS  Google Scholar 

  30. Branham MT, Marzese DM, Laurito SR, Gago FE, Orozco JI, Tello OM et al. Methylation profile of triple-negative breast carcinomas. Oncogenesis 2012; 1: e17.

    Article  CAS  Google Scholar 

  31. Fang F, Turcan S, Rimner A, Kaufman A, Giri D, Morris LG et al. Breast cancer methylomes establish an epigenomic foundation for metastasis. Sci Transl Med 2011; 3: 75ra25.

    Article  Google Scholar 

  32. Marcucci G, Yan P, Maharry K, Frankhouser D, Nicolet D, Metzeler KH et al. Epigenetics meets genetics in acute myeloid leukemia: clinical impact of a novel seven-gene score. J Clin Oncol 2014; 32: 548–556.

    Article  Google Scholar 

  33. Jelinek J, Mannari R, Issa J-P . Identification of 41 novel promoter-associated CpG islands methylated in leukemias. ASH Annual Meeting Abstracts 2004 November 16 2004; 104: 1126.

    Google Scholar 

  34. Kroeger H, Jelinek J, Kornblau SM, Bueso-Ramos CE, Issa J-P . Increased DNA methylation is associated with good prognosis in AML. ASH Annual Meeting Abstracts 2007; 110: 595.

    Google Scholar 

  35. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009; 462: 739–744.

    Article  CAS  Google Scholar 

  36. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 2010; 17: 225–234.

    Article  CAS  Google Scholar 

  37. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010; 18: 553–567.

    Article  CAS  Google Scholar 

  38. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 2011; 19: 17–30.

    Article  CAS  Google Scholar 

  39. Jelinek J, Liang S, Lu Y, He R, Ramagli LS, Shpall EJ et al. Conserved DNA methylation patterns in healthy blood cells and extensive changes in leukemia measured by a new quantitative technique. Epigenetics 2012; 7: 1368–1378.

    Article  CAS  Google Scholar 

  40. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368: 2059–2074.

    Article  Google Scholar 

  41. Fortin JP, Labbe A, Lemire M, Zanke BW, Hudson TJ, Fertig EJ et al. Functional normalization of 450k methylation array data improves replication in large cancer studies. Genome Biol 2014; 15: 503.

    Article  Google Scholar 

  42. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res 2013; 41: D991–D995.

    Article  CAS  Google Scholar 

  43. de Jonge HJ, Valk PJ, Veeger NJ, ter Elst A, den Boer ML, Cloos J et al. High VEGFC expression is associated with unique gene expression profiles and predicts adverse prognosis in pediatric and adult acute myeloid leukemia. Blood 2010; 116: 1747–1754.

    Article  CAS  Google Scholar 

  44. Gaidzik VI, Bullinger L, Schlenk RF, Zimmermann AS, Röck J, Paschka P et al. RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML study group. J Clin Oncol 2011; 29: 1364–1372.

    Article  Google Scholar 

  45. R Core Development Team R: A language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria, 2014.

  46. Benjamini Y, Hochberg Y . Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc: Series B 1995; 57: 289–300.

    Google Scholar 

  47. Therneau T . A Package for Survival Analysis in S. R package version 2.37-7 ed 2014.

  48. Maegawa S, Gough SM, Watanabe-Okochi N, Lu Y, Zhang N, Castoro RJ et al. Age-related epigenetic drift in the pathogenesis of MDS and AML. Genome Res 2014; 24: 580–591.

    Article  CAS  Google Scholar 

  49. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP . CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA 1999; 96: 8681–8686.

    Article  CAS  Google Scholar 

  50. Verhaak RG, Wouters BJ, Erpelinck CA, Abbas S, Beverloo HB, Lugthart S et al. Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling. Haematologica 2009; 94: 131–134.

    Article  Google Scholar 

  51. Zhao Y, Sun H, Wang H . Long noncoding RNAs in DNA methylation: new players stepping into the old game. Cell Biosci 2016; 6: 45.

    Article  Google Scholar 

  52. Di Ruscio A, Ebralidze AK, Benoukraf T, Amabile G, Goff LA, Terragni J et al. DNMT1-interacting RNAs block gene-specific DNA methylation. Nature 2013; 503: 371–376.

    Article  CAS  Google Scholar 

  53. Xiong J, Zhang Z, Chen J, Huang H, Xu Y, Ding X et al. Cooperative action between SALL4A and TET proteins in stepwise oxidation of 5-methylcytosine. Mol Cell 2016; 64: 913–925.

    Article  CAS  Google Scholar 

  54. Tahara T, Yamamoto E, Suzuki H, Maruyama R, Chung W, Garriga J et al. Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res 2014; 74: 1311–1318.

    Article  CAS  Google Scholar 

  55. He D, Zhang YW, Zhang NN, Zhou L, Chen JN, Jiang Y et al. Aberrant gene promoter methylation of p16, FHIT, CRBP1, WWOX, and DLC-1 in Epstein-Barr virus-associated gastric carcinomas. Med Oncol 2015; 32: 92.

    Article  Google Scholar 

  56. Rampal R, Alkalin A, Madzo J, Vasanthakumar A, Pronier E, Patel J et al. DNA hydroxymethylation profiling reveals that WT1 mutations result in loss of TET2 function in acute myeloid leukemia. Cell Rep 2014; 9: 1841–1855.

    Article  CAS  Google Scholar 

  57. Wang Y, Xiao M, Chen X, Chen L, Xu Y, Lv L et al. WT1 recruits TET2 to regulate its target gene expression and suppress leukemia cell proliferation. Mol Cell 2015; 57: 662–673.

    Article  Google Scholar 

  58. Kallin EM, Rodríguez-Ubreva J, Christensen J, Cimmino L, Aifantis I, Helin K et al. Tet2 facilitates the derepression of myeloid target genes during CEBPα-induced transdifferentiation of pre-B cells. Mol Cell 2012; 48: 266–276.

    Article  CAS  Google Scholar 

  59. Di Stefano B, Sardina JL, van Oevelen C, Collombet S, Kallin EM, Vicent GP et al. C/EBPα poises B cells for rapid reprogramming into induced pluripotent stem cells. Nature 2014; 506: 235–239.

    Article  CAS  Google Scholar 

  60. Sinha S, Thomas D, Yu L, Gentles AJ, Jung N, Corces-Zimmerman MR et al. Mutant WT1 is associated with DNA hypermethylation of PRC2 targets in AML and responds to EZH2 inhibition. Blood 2015; 125: 316–326.

    Article  CAS  Google Scholar 

  61. Maegawa S, Hinkal G, Kim HS, Shen L, Zhang L, Zhang J et al. Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res 2010; 20: 332–340.

    Article  CAS  Google Scholar 

  62. An B, Kondo Y, Okamoto Y, Shinjo K, Kanemitsu Y, Komori K et al. Characteristic methylation profile in CpG island methylator phenotype-negative distal colorectal cancers. Int J Cancer 2010; 127: 2095–2105.

    Article  CAS  Google Scholar 

  63. Flavahan WA, Drier Y, Liau BB, Gillespie SM, Venteicher AS, Stemmer-Rachamimov AO et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 2016; 529: 110–114.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants R01CA158112 and P50CA100632. J-PJI. is an American Cancer Society Clinical Research professor supported by a generous gift from the FM Kirby Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-PJ Issa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Supplementary Information (DOCX 16 kb)

Supplementary Table 1 (DOCX 13 kb)

Supplementary Table 2 (DOCX 13 kb)

Supplementary Table 3 (DOCX 12 kb)

Supplementary Table 4 (DOCX 12 kb)

Supplementary Table 5 (DOCX 12 kb)

Supplementary Table 6 (DOCX 12 kb)

Supplementary Table 7 (DOCX 20 kb)

Supplementary Table 8 (DOCX 14 kb)

Supplementary Table 9 (DOCX 15 kb)

Supplementary Table 10 (DOCX 26 kb)

Supplementary Figure 1 (JPG 691 kb)

Supplementary Figure 2 (JPG 420 kb)

Supplementary Figure 3 (JPG 142 kb)

Supplementary Figure 4 (JPG 140 kb)

Supplementary Figure 5 (JPG 200 kb)

Supplementary Figure 6 (JPG 376 kb)

Supplementary Figure 7 (JPG 162 kb)

Supplementary Figure 8 (JPG 300 kb)

Supplementary Figure 9 (JPG 334 kb)

Supplementary Figure 10 (JPG 257 kb)

Supplementary Figure 11 (JPG 332 kb)

Supplementary Figure 12 (JPG 289 kb)

Supplementary Figure 13 (JPG 485 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelly, A., Kroeger, H., Yamazaki, J. et al. A CpG island methylator phenotype in acute myeloid leukemia independent of IDH mutations and associated with a favorable outcome. Leukemia 31, 2011–2019 (2017). https://doi.org/10.1038/leu.2017.12

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.12

This article is cited by

Search

Quick links