Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular targets for therapy

Constitutively active ABL family kinases, TEL/ABL and TEL/ARG, harbor distinct leukemogenic activities in vivo

Abstract

ABL (ABL1) and ARG (ABL2) are highly homologous to each other in overall domain structure and amino-acid sequence, with the exception of their C termini. As with ABL, translocations that fuse ARG to ETV6/TEL have been identified in patients with leukemia. To assess the in vivo leukemogenic activity of constitutively active ABL and ARG, we generated a bone marrow (BM) transplantation model using the chimeric forms TEL/ABL and TEL/ARG, which have comparable kinase activities. TEL/ABL rapidly induced fatal myeloid leukemia in recipient mice, whereas recipients of TEL/ARG-transduced cells did not develop myeloid leukemia, instead, they succumbed to a long-latency infiltrative mastocytosis that could be adoptively transferred to secondary recipients. Swapping of the C termini of ABL and ARG altered disease latency and phenotypes. In a detailed in vitro study, TEL/ARG strongly promoted mast cell differentiation in response to stem cell factor or interleukin-3, whereas TEL/ABL preferentially induced myeloid differentiation of hematopoietic stem/progenitor cells. These results indicate that ABL and ARG kinase activate distinct differentiation pathways to induce specific diseases in vivo, that is, myeloid leukemia and mastocytosis, respectively. Further elucidation of the differences in their properties should provide important insight into the pathogenic mechanisms of oncogenes of the ABL kinase family.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kruh GD, King CR, Kraus MH, Popescu NC, Amsbaugh SC, McBride WO et al. A novel human gene closely related to the abl proto-oncogene. Science 1986; 234: 1545–1548.

    Article  CAS  PubMed  Google Scholar 

  2. Kruh GD, Perego R, Miki T, Aaronson SA . The complete coding sequence of arg defines the Abelson subfamily of cytoplasmic tyrosine kinases. Proc Natl Acad Sci USA 1990; 87: 5802–5806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Perego R, Ron D, Kruh GD . Arg encodes a widely expressed 145-kDa protein-tyrosine kinase. Oncogene 1991; 6: 1899–1902.

    CAS  PubMed  Google Scholar 

  4. van Limbergen H, Beverloo HB, van Drunen E, Janssens A, Hahlen K, Poppe B et al. Molecular cytogenetic and clinical findings in EGV6/ABL1-positive leukemia. Genes Chromosome Cancer 2001; 30: 274–282.

    Article  CAS  Google Scholar 

  5. Papadopoulos P, Ridge SA, Boucher DA, Stocking C, Wiedemann LM . The novel activation of ABL by fusion to an ets-related gene, TEL. Cancer Res 1995; 55: 34–38.

    CAS  PubMed  Google Scholar 

  6. Golub TR, Goga A, Barker GF, Afar DEH, McLaughlin J, Bohlander SK et al. Oligomerization of the ABL tyrosine kinase by the Ets protein TEL in human leukemia. Mol Cell Biol. 1996; 16: 4107–4116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brunel V, Sainty D, Carbuccia N, Mozzicolacci M, Fernandez F, Simonetti J et al. A TEL/ABL fusion gene on chromosome 12p13 in a case of Ph-, BCR- atypical CML. Leukemia 1996; 10: 2003.

    Google Scholar 

  8. Andreasson P, Johansson B, Carlsson M, Jarlsfelt I, Fioretos T, Mitelman F et al. BCR/ABL-negative chronic myeloid leukemia with ETV6/ABL fusion. Genes Chromosomes Cancer 1997; 20: 299–304.

    Article  CAS  PubMed  Google Scholar 

  9. van Limbergen H, Beverloo HB, van Drunen E, Janssens A, Hahlen K, Poppe B et al. Molecular cytogenetic and clinical findings in ETV6/ABL1-positive leukemia. Genes Chromosome Cancer 2001; 30: 274–282.

    Article  CAS  Google Scholar 

  10. Iijima Y, Ito T, Oikawa T, Eguchi M, Eguchi-Ishimae M, Kamada N, Kishi K et al. A new ETV6/TEL partner gene ARG (ABL-related gene or ABL2), identified in an AML-M3 cell line with a t(1;12)(q25;p13) translocation. Blood 2000; 95: 2126–2131.

    CAS  PubMed  Google Scholar 

  11. Cazzaniga G, Tosi S, Aloisi A, Giudici G, Daniotti M, Pioltelli P et al. The tyrosine kinase abl-related gene ARG is fused to ETV6 in an AML-M4Eo patient with a t(1;12)(q25;p13):molecular cloning of both reciprocal transcripts. Blood 1999; 94: 4370–4373.

    CAS  PubMed  Google Scholar 

  12. Griesinger F, Janke A, Podleschny M, Bohlander SK . Identification of an ETV6-ABL2 fusion transcript in combination with an ETV6 point mutation in a T-cell acute lymphoblastic leukaemia cell line. Br J Haematol 2002; 119: 454–458.

    Article  CAS  PubMed  Google Scholar 

  13. Kishi K, Toba K, Azegami T, Tsukada N, Uesugi Y, Masuko M et al. Hematopoietic cytokine-dependent deifferentiation to eosinophils and neutrophils in a newly established acute promyeloytic leukemia cell laine with t(15;17). Exp Hematol 1998; 26: 135–142.

    CAS  PubMed  Google Scholar 

  14. Okuda K, Oda A, Sato Y, Nakayama A, Fujita H, Sonoda Y et al. Signal transduction and cellular functions of the TEL/ARG oncoprotein. Leukemia 2005; 19: 603–610.

    Article  CAS  PubMed  Google Scholar 

  15. Iijima Y, Okuda K, Tri NK, Tojo A, Setoyama M, Kruh GD et al. Transformation of Ba/F3 cells and Rat-1 cells by ETV6/ARG. Oncogene 2002; 21: 4374–4383.

    Article  CAS  PubMed  Google Scholar 

  16. Okuda K, Weisberg E, Gilliland DG, Griffin JD . ARG tyrosine kinase activity is inhibited by STI571. Blood 2001; 15: 2440–2448.

    Article  Google Scholar 

  17. Okuda K, Sato Y, Sonoda Y, Grifffin JD . The TEL/ARG leukemia oncogene promotes viability and hyper-responsiveness to hematopoietic growth factors. Int J Hematol 2004; 79: 138–146.

    Article  CAS  PubMed  Google Scholar 

  18. Van Etten RA, Jackson P, Baltimore D . The mouse type IV c-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization. Cell 1989; 58: 669–678.

    Article  CAS  PubMed  Google Scholar 

  19. Kipreos ET, Wang JY . Cell cycle-regulated binding of c-Abl tyrosine kinase to DNA. Science 1992; 256: 382–385.

    Article  CAS  PubMed  Google Scholar 

  20. Van Etten RA, Fackson P, Baltimore D, Sanders MC, Matsudaira PT, Janmey PA . The COOH terminus of the c-Abl tyrosine kinase contains distinct F- and G-actin binding domains with bundling activity. J Cell Biol 1994; 124: 325–340.

    Article  CAS  PubMed  Google Scholar 

  21. Wang B, Kruh GD . Subcellular localization of the Arg protein tyrosine kinase. Oncogene 1996; 13: 193–197.

    CAS  PubMed  Google Scholar 

  22. Wang Y, Miller AL, Mooseker MS, Koleske AJ . The Abl-related gene (Arg) nonreceptor tyrosine kinase uses two F-actin-binding domains to bundle F-actin. Proc Natl Acad Sci USA 2001; 98: 14865–14870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miller AL, Wang Y, Mooseker MS, Koleske AJ . The Abl-related gene (Arg) requires its F-actin-microtubule cross-linking activity to regulate lamelipodial dynamics during fibroblast adhesion. J Cell Biol 2004; 165: 407–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Okuda K, Hirai H . Distinct transforming activity of ABL family tyrosine kinase oncogenes is induced by their C-terminal domain. Open J Blood Dis 2013; 3: 23–33.

    Article  Google Scholar 

  25. Hawley RG, Lieu FH, Fong AZ, Hawley TS . Versatile retroviral vectors for potential us in gene therapy. Gene Ther 1994; 1: 136–138.

    CAS  PubMed  Google Scholar 

  26. Kitamura T, Tange T, Terasawa T, Chiba S, Kuwaki T, Miyagawa K et al. Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3 or erythropoietin. J Cell Physiol 1989; 140: 323–334.

    Article  CAS  PubMed  Google Scholar 

  27. Komatsu N, Nakauchi H, Miwa A, Ishikawa T, Eguchi M, Moroi M et al. Establishment and characterization of a human leukemic cell line with megakaryocytic features: dependency on granulocyte-macrophage colony-stimulating factor, interleukin 3, or erythropoietin for growth and survival. Cancer Res 1991; 51: 341–348.

    CAS  PubMed  Google Scholar 

  28. Saleh R, Wedeh G, Herrmann H, Bibi S, Cerny-Reiterer S, Sadovnik I et al. A new human mast cell line expressing a functional IgE receptor converts to tumorigenic growth by KIT D816V transfection. Blood 2014; 124: 111–120.

    Article  CAS  PubMed  Google Scholar 

  29. Butterfield J, Weiler D, Dewald G, Gleich G . Establishment of an immature mast cell line from a patient with mast cell leukemia. Leuk Res 1988; 12: 345–355.

    Article  CAS  PubMed  Google Scholar 

  30. Kitamura T, Koshino Y, Shibata F, Oki T, Nakajima H, Nosaka T et al. Retrovirus-mediated gene transfer and expression cloning: Powerful tools in functional genomics. Exp Hematol 2003; 31: 1007–1014.

    Article  CAS  PubMed  Google Scholar 

  31. Morita S, Kojima T, Kitamura T . Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther 2000; 7: 1063–1066.

    Article  CAS  PubMed  Google Scholar 

  32. Hayashi Y, Hirai H, Kamio N, Yao H, Yoshioka S, Miura Y et al. C/EBPβ promotes BCR-ABL-mediated myeloid expansion and leukemic stem cell exhaustion. Leukemia 2013; 27: 619–628.

    Article  CAS  PubMed  Google Scholar 

  33. Ihle JN, Keller J, Oroszian S, Henderson LE, Copeland TD, Fitch F et al. Biologic properties of homogeneous interleukin 3. Demonstration of WEHI-3 growth factor activity, mast cell growth factor activity, P cell-stimulating factor activity, colony-stimulating factor activity and histamine-producing cell-stimulating factor activity. J Immunol 1983; 131: 282–287.

    CAS  PubMed  Google Scholar 

  34. Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ et al. Integrated genomic and proteomic analyses of gene expression in mammalian cells. Mol Cell Proteomics 2004; 3: 960–969.

    Article  CAS  PubMed  Google Scholar 

  35. Lantz CS, Goesiger J, Song CH, Mach N, Kobayashi T, Mulligan RC et al. Role for interleukin-3 in mast cell and basophil development and in immunity to parasites. Nature 1998; 392: 90–93.

    Article  CAS  PubMed  Google Scholar 

  36. Tsai M, Shih LS, Newlands GFJ, Takeishi T, Langley KE, Sebo KM et al. The rat c-kit ligand, stem cell factor, induces the development of connective tissue-type and mucosal mast cells in vivo. Analysis by anatomical distribution, histochemistry and protease phenotype. J Exp Med 1991; 174: 125–131.

    Article  CAS  PubMed  Google Scholar 

  37. Austin KF, Boyce JA . Mast cell lineage development and phenotypic regulation. Leuk Res 2001; 25: 511–518.

    Article  Google Scholar 

  38. Arock M, Le Nours A, Malbec O, Daeron M . Ex vivo and in vitro primary mast cells. Methods Mol Biol 2008; 415: 241–254.

    CAS  PubMed  Google Scholar 

  39. Million RP, Aster J, Gilliland GD, Van Etten RA . The Tel-Abl (ETV6-Abl) tyrosine kinase, product of complex (9;12) translocations in human leukemia, induces distinct myeloproliferative disease in mice. Blood 2002; 99: 4568–4577.

    Article  CAS  PubMed  Google Scholar 

  40. Roberts KG, Li Y, Payne‐Turner D, Harvey RC, Yang Y-L, Pei D et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med 2014; 371: 1005–1015.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Greuber EK, Smith-Pearson P, Wang J, Pendergast AM . Role of ABL family kinases in cancer: from leukemia to solid tumours. Nature Rev Cancer 2013; 13: 559–571.

    Article  CAS  Google Scholar 

  42. Srinivasan D, Platter R . Activation of Abl tyrosine kinase promotes invasion of aggressive breast cancer cells. Cancer Res 2006; 66: 5648–5655.

    Article  CAS  PubMed  Google Scholar 

  43. Gil-Henn H, Patsialou A, Wang Y, Warren MS, Condeelis JS, Koleske AJ . Arg/Abl2 promotes invasion and attenuates proliferation of breast cancer in vivo. Ocogene 2013; 32: 2622–2630.

    Article  CAS  Google Scholar 

  44. Sos ML, Michel K, Zander T, Weiss J, Frommolt P, Peifer M et al. Predicting drug susceptibility of non-small cell lung cancers based on genetic lesions. J Clin Invest 2009; 119: 1727–1740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ganguly SS, Fiore LS, Sims JT, Friend JW, Srinivasan D, Thacker MA et al. c-Abl and Arg are activated in human primary melanomas, promote melanoma cell invasion via distinct pathways, and drive metastatic progression. Oncogene 2012; 31: 1804–1816.

    Article  CAS  PubMed  Google Scholar 

  46. Shimizu A, Mammoto A, Italiano JE, Pravda E, Dudley AC, Ingber DE et al. ABL2/ARG tyrosine kinase mediates SEMA3F-induced RhoA inactivation and cytoskeleton collapse in human glioma cells. J Biol Chem 2008; 283: 27230–27238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Metcalfe DD . Mast cells and mastcytosis. Blood 2008; 112: 946–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nagata H, Worobec AS, Oh CK, Chowdhury BA, Tannenbaum S, Suzuki Y et al. Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder. Proc Natl Acad Sci USA 1995; 92: 10560–10564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Longley BJ, Tyrrell L, Lu SZ, Ma YS, Langley K, Ding TG et al. Somatic c-KIT activating mutation in urticria pigmentosa and aggressive mastocytosis: establishment of clonality in a human mast cell neoplasm. Nat Genet 1996; 12: 312–314.

    Article  CAS  PubMed  Google Scholar 

  50. Hanssens K, Brenet F, Agopian J, Georgin-Lavialle S, Damaj G, Cabaret L et al. SRSF2-p95 hotspot mutation is highly associated with advanced forms of mastocytosis and mutations in epigenetic regulator genes. Haematologica 2014; 99: 830–835.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tefferi A, Levine RL, Lim KH, Abdel-Wahab O, Lasho TL, Patel J et al. Frequent TET2 mutations in systemic mastocytosis: clinical, KIT816V and FIP1L1-PDGFRA correlates. Leukemia 2009; 23: 900–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kitayama H, Tsujimura T, Matsumura I, Oritani K, Ikeda H, Ishikawa J et al. Neoplastic transformation of normal hematopoietic cells by constitutively activating mutations of c-kit receptor tyrosine kinase. Blood 1996; 88: 995–1004.

    CAS  PubMed  Google Scholar 

  53. Zappulla JP, Dubreuil P, Desbois S, Letard S, Hamouda NB, Daeron M et al. Mastocytosis in mice expressing human kit receptor with the activating Asp816Val mutation. J Exp Med 2005; 202: 1635–1641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Grignani F, Ferrucci PF, Testa U, Talamo G, Fagioli M, Fagioli M et al. The acute promyelocytic leukaemia specific PML-RARα fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell 1993; 74: 423–431.

    Article  CAS  PubMed  Google Scholar 

  55. Poirel H, Radford-Weiss I, Rack K, Troussard X, Veil A, Valensi F et al. Detection of the chromosome 16 CBF beta-MYH11 fusion transcript in myelomonocytic leukemias. Blood 1995; 85: 1313–1322.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Eiichi Morii at Osaka University, Dr Tatsuki R Kataoka at Kyoto University and Dr Yukihiko Kitamura at Shionogi & Co., Ltd. for their kind and valuable advice on our experiments, and all members of the Maekawa lab at Kyoto University Hospital for discussions of the data. This work was supported by JSPS KAKENHI Grant Numbers 25461415 (HH), 25430149 (AY) and 16K07171 (TM).

Author contributions

AY and HH designed and performed the experiments, analyzed the data and wrote the manuscript; TS performed the experiments; TM supervised the project; and KO designed and supervised the project and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H Hirai or K Okuda.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yokota, A., Hirai, H., Shoji, T. et al. Constitutively active ABL family kinases, TEL/ABL and TEL/ARG, harbor distinct leukemogenic activities in vivo. Leukemia 31, 2742–2751 (2017). https://doi.org/10.1038/leu.2017.114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.114

This article is cited by

Search

Quick links