Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Measurable residual disease testing in acute myeloid leukaemia

Abstract

There is considerable interest in developing techniques to detect and/or quantify remaining leukaemia cells termed measurable or, less precisely, minimal residual disease (MRD) in persons with acute myeloid leukaemia (AML) in complete remission defined by cytomorphological criteria. An important reason for AML MRD-testing is the possibility of estimating the likelihood (and timing) of leukaemia relapse. A perfect MRD-test would precisely quantify leukaemia cells biologically able and likely to cause leukaemia relapse within a defined interval. AML is genetically diverse and there is currently no uniform approach to detecting such cells. Several technologies focused on immune phenotype or cytogenetic and/or molecular abnormalities have been developed, each with advantages and disadvantages. Many studies report a positive MRD-test at diverse time points during AML therapy identifies persons with a higher risk of leukaemia relapse compared with those with a negative MRD-test even after adjusting for other prognostic and predictive variables. No MRD-test in AML has perfect sensitivity and specificity for relapse prediction at the cohort- or subject levels and there are substantial rates of false-positive and -negative tests. Despite these limitations, correlations between MRD-test results and relapse risk have generated interest in MRD-test result-directed therapy interventions. However, convincing proof that a specific intervention will reduce relapse risk in persons with a positive MRD-test is lacking and needs testing in randomized trials. Routine clinical use of MRD-testing requires further refinements and standardization/harmonization of assay platforms and results reporting. Such data are needed to determine whether results of MRD-testing can be used as a surrogate end point in AML therapy trials. This could make drug-testing more efficient and accelerate regulatory approvals. Although MRD-testing in AML has advanced substantially, much remains to be done.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bisel HF . Letter to the editor: criteria for the evaluation of response to treatment in acute leukemia. Blood 1956; 11: 676–677.

    Google Scholar 

  2. Freireich EJ, Gehan EA, Sulman D, Boggs DR, Frei E 3rd . The effect of chemotherapy on acute leukemia in the human. J Chronic Dis 1961; 14: 593–608.

    Article  CAS  PubMed  Google Scholar 

  3. Martens ACM, Schultz FW, Hagenbeek A . Nonhomogeneous distribution of leukemia in the bone marrow during minimal residual disease. Blood 1987; 70: 1073–1078.

    CAS  PubMed  Google Scholar 

  4. Harrison WJ . The total cellularity of the bone marrow in man. J Clin Pathol 1962; 15: 254–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hagenbeek A, Martens ACM . Minimal residual disease in acute leukaemia: preclinical studies in a relevant rat model (BNML). Baillieres Clin Haematol 1991; 4: 609–635.

    Article  CAS  PubMed  Google Scholar 

  6. Hagenbeek A . Minimal residual disease in leukemia: state of the art 1991. Leukemia 1992; 2: 12–16.

    Google Scholar 

  7. Harriss EB, Hoelzer D . Proliferation kinetics of the L 5222 leukaemia in vivo. Leuk Res 1977; 1: 93–95.

    Article  Google Scholar 

  8. Campana D, Pui CH . Detection of minimal residual disease in acute leukemia: methodologic advances and clinical significance. Blood 1995; 85: 1416–1434.

    CAS  PubMed  Google Scholar 

  9. Hagenbeek A, Martens ACM. Kinetics of minimal residual disease in a rat model for human acute myelocytic leukemia. In: Baum SJ, Ledney GD, van Bekkum DW (eds). Experimental Hematology Today. Springer: New York, NY, USA, 1980, pp 215–221..

  10. Goldman JM, Gale RP . What does MRD in leukemia really mean? Leukemia 2014; 28: 1131.

    Article  CAS  PubMed  Google Scholar 

  11. Shtivelman E, Lifshitz B, Gale RP, Canaani E . Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature 1985; 315: 550–554.

    Article  CAS  PubMed  Google Scholar 

  12. Hanfstein B, Müller MC, Hehlmann R, Erben P, Lauseker M, Fabarius A et al. Early molecular and cytogenetic response is predictive for long-term progression-free and overall survival in chronic myeloid leukemia (CML). Leukemia 2012; 26: 2096–2102.

    Article  CAS  PubMed  Google Scholar 

  13. Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, Apperley JF et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia. 2013 Blood 2013; 122: 872–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hoffmann VS, Baccarani M, Hasford J, Castagnetti F, Di Raimondo F, Casado LF et al. Treatment and outcome of 2904 CML patients from the EUTOS population-based registry. Leukemia 2017; 31: 593–601.

    Article  CAS  PubMed  Google Scholar 

  15. Paschka P, Müller MC, Merx K, Kreil S, Schoch C, Lahaye T et al. Molecular monitoring of response to imatinib (Glivec) in CML patients pretreated with interferon alpha. Low levels of residual disease are associated with continuous remission. Leukemia 2003; 17: 1687–1694.

    Article  CAS  PubMed  Google Scholar 

  16. Hughes T, Deininger M, Hochhaus A, Branford S, Radich J, Kaeda J et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood 2006; 108: 28–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hanfstein B, Shlyakhto V, Lauseker M, Hehlmann R, Saussele S, Dietz C et al. Velocity of early BCR-ABL transcript elimination as an optimized predictor of outcome in chronic myeloid leukemia (CML) patients in chronic phase on treatment with imatinib. Leukemia 2014; 28: 1988–1992.

    Article  CAS  PubMed  Google Scholar 

  18. Hochhaus A, Saglio G, Hughes TP, Larson RA, Kim DW, Issaragrisil S et al. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia 2016; 30: 1044–1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cancer Genome Atlas Research N. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368: 2059–2074.

    Article  CAS  Google Scholar 

  20. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 2016; 374: 2209–2221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Döhner H, Weisdorf DJ, Bloomfield CD . Acute myeloid leukemia. N Engl J Med 2015; 373: 1136–1152.

    Article  CAS  PubMed  Google Scholar 

  22. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016; 127: 2391–2405.

    Article  CAS  PubMed  Google Scholar 

  23. Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Buchner T et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017; 129: 424–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Buccisano F, Maurillo L, Del Principe MI, Del Poeta G, Sconocchia G, Lo-Coco F et al. Prognostic and therapeutic implications of minimal residual disease detection in acute myeloid leukemia. Blood 2012; 119: 332–341.

    Article  CAS  PubMed  Google Scholar 

  25. Ravandi F, Jorgensen JL . Monitoring minimal residual disease in acute myeloid leukemia: ready for prime time? J Natl Compr Canc Netw 2012; 10: 1029–1036.

    Article  PubMed  Google Scholar 

  26. Hourigan CS, Karp JE . Minimal residual disease in acute myeloid leukaemia. Nat Rev Clin Oncol 2013; 10: 460–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grimwade D, Freeman SD . Defining minimal residual disease in acute myeloid leukemia: which platforms are ready for ‘prime time’? Blood 2014; 124: 3345–3355.

    Article  CAS  PubMed  Google Scholar 

  28. Hokland P, Ommen HB, Mulé MP, Hourigan CS . Advancing the minimal residual disease concept in acute myeloid leukemia. Semin Hematol 2015; 52: 184–192.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Duncavage EJ, Tandon B . The utility of next-generation sequencing in diagnosis and monitoring of acute myeloid leukemia and myelodysplastic syndromes. Int J Lab Hematol 2015; 37: 115–121.

    Article  PubMed  Google Scholar 

  30. Ommen HB . Monitoring minimal residual disease in acute myeloid leukaemia: a review of the current evolving strategies. Ther Adv Hematol 2016; 7: 3–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wood BL . Principles of minimal residual disease detection for hematopoietic neoplasms by flow cytometry. Cytometry B Clin Cytom 2016; 90: 47–53.

    Article  PubMed  Google Scholar 

  32. Bahia DM, Yamamoto M, Chauffaille Mde L, Kimura EY, Bordin JO, Filgueiras MA et al. Aberrant phenotypes in acute myeloid leukemia: a high frequency and its clinical significance. Haematologica 2001; 86: 801–806.

    CAS  PubMed  Google Scholar 

  33. Zelezníková T, Babusíková O . The impact of cell heterogeneity and immunophenotypic changes on monitoring minimal residual disease in acute myeloid leukemia. Neoplasma 2006; 53: 500–506.

    PubMed  Google Scholar 

  34. Voskova D, Schnittger S, Schoch C, Haferlach T, Kern W . Use of five-color staining improves the sensitivity of multiparameter flow cytomeric assessment of minimal residual disease in patients with acute myeloid leukemia. Leuk Lymphoma 2007; 48: 80–88.

    Article  CAS  PubMed  Google Scholar 

  35. van Rhenen A, Moshaver B, Kelder A, Feller N, Nieuwint AW, Zweegman S et al. Aberrant marker expression patterns on the CD34+CD38- stem cell compartment in acute myeloid leukemia allows to distinguish the malignant from the normal stem cell compartment both at diagnosis and in remission. Leukemia 2007; 21: 1700–1707.

    Article  CAS  PubMed  Google Scholar 

  36. Zeijlemaker W, Kelder A, Oussoren-Brockhoff YJ, Scholten WJ, Snel AN, Veldhuizen D et al. A simple one-tube assay for immunophenotypical quantification of leukemic stem cells in acute myeloid leukemia. Leukemia 2016; 30: 439–446.

    Article  CAS  PubMed  Google Scholar 

  37. Zeijlemaker W, Gratama JW, Schuurhuis GJ . Tumor heterogeneity makes AML a ‘moving target’ for detection of residual disease. Cytometry B Clin Cytom 2014; 86: 3–14.

    Article  CAS  PubMed  Google Scholar 

  38. Quesenberry PJ, Goldberg LR, Dooner MS . Concise reviews: a stem cell apostasy: a tale of four H words. Stem Cells 2015; 33: 15–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Flanders A, Stetler-Stevenson M, Landgren O . Minimal residual disease testing in multiple myeloma by flow cytometry: major heterogeneity. Blood 2013; 122: 1088–1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Keeney M, Halley JG, Rhoads DD, Ansari MQ, Kussick SJ, Karlon WJ et al. Marked variability in reported minimal residual disease lower level of detection of 4 hematolymphoid neoplasms: a survey of participants in the College of American Pathologists flow cytometry proficiency testing program. Arch Pathol Lab Med 2015; 139: 1276–1280.

    Article  PubMed  Google Scholar 

  41. Kalina T, Flores-Montero J, van der Velden VHJ, Martin-Ayuso M, Böttcher S, Ritgen M et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia 2012; 26: 1986–2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Finak G, Langweiler M, Jaimes M, Malek M, Taghiyar J, Korin Y et al. Standardizing flow cytometry immunophenotyping analysis from the Human ImmunoPhenotyping Consortium. Sci Rep 2016; 6: 20686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kalina T, Flores-Montero J, Lecrevisse Q, Pedreira CE, van der Velden VH, Novakova M et al. Quality assessment program for EuroFlow protocols: summary results of four-year (2010-2013) quality assurance rounds. Cytometry A 2015; 87: 145–156.

    Article  PubMed  Google Scholar 

  44. Cross NC, White HE, Müller MC, Saglio G, Hochhaus A . Standardized definitions of molecular response in chronic myeloid leukemia. Leukemia 2012; 26: 2172–2175.

    Article  CAS  PubMed  Google Scholar 

  45. Cross NC, White HE, Colomer D, Ehrencrona H, Foroni L, Gottardi E et al. Laboratory recommendations for scoring deep molecular responses following treatment for chronic myeloid leukemia. Leukemia 2015; 29: 999–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gabert J, Beillard E, van der Velden VHJ, Bi W, Grimwade D, Pallisgaard N et al. Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia - a Europe Against Cancer program. Leukemia 2003; 17: 2318–2357.

    Article  CAS  PubMed  Google Scholar 

  47. Agrawal M, Corbacioglu A, Paschka P, Weber D, Gaidzik VI, Jahn N et al. Minimal residual disease monitoring in acute myeloid leukemia (AML) with translocation t(8;21)(q22;q22): results of the AML Study Group (AMLSG). Blood 2016; 128: 1207–1207.

    Google Scholar 

  48. Willekens C, Blanchet O, Renneville A, Cornillet-Lefebvre P, Pautas C, Guieze R et al. Prospective long-term minimal residual disease monitoring using RQ-PCR in RUNX1-RUNX1T1-positive acute myeloid leukemia: results of the French CBF-2006 trial. Haematologica 2016; 101: 328–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yin JA, O'Brien MA, Hills RK, Daly SB, Wheatley K, Burnett AK . Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: results of the United Kingdom MRC AML-15 trial. Blood 2012; 120: 2826–2835.

    Article  CAS  PubMed  Google Scholar 

  50. Weisser M, Haferlach C, Hiddemann W, Schnittger S . The quality of molecular response to chemotherapy is predictive for the outcome of AML1-ETO-positive AML and is independent of pretreatment risk factors. Leukemia 2007; 21: 1177–1182.

    Article  CAS  PubMed  Google Scholar 

  51. Schnittger S, Weisser M, Schoch C, Hiddemann W, Haferlach T, Kern W . New score predicting for prognosis in PML-RARA+, AML1-ETO+, or CBFBMYH11+ acute myeloid leukemia based on quantification of fusion transcripts. Blood 2003; 102: 2746–2755.

    Article  CAS  PubMed  Google Scholar 

  52. Ivey A, Hills RK, Simpson MA, Jovanovic JV, Gilkes A, Grech A et al. Assessment of minimal residual disease in standard-risk AML. N Engl J Med 2016; 374: 422–433.

    Article  CAS  PubMed  Google Scholar 

  53. Gorello P, Cazzaniga G, Alberti F, Dell'Oro MG, Gottardi E, Specchia G et al. Quantitative assessment of minimal residual disease in acute myeloid leukemia carrying nucleophosmin (NPM1) gene mutations. Leukemia 2006; 20: 1103–1108.

    Article  CAS  PubMed  Google Scholar 

  54. Krönke J, Schlenk RF, Jensen KO, Tschürtz F, Corbacioglu A, Gaidzik VI et al. Monitoring of minimal residual disease in NPM1-mutated acute myeloid leukemia: a study from the German-Austrian acute myeloid leukemia study group. J Clin Oncol 2011; 29: 2709–2716.

    Article  PubMed  Google Scholar 

  55. Shayegi N, Kramer M, Bornhäuser M, Schaich M, Schetelig J, Platzbecker U et al. The level of residual disease based on mutant NPM1 is an independent prognostic factor for relapse and survival in AML. Blood 2013; 122: 83–92.

    Article  CAS  PubMed  Google Scholar 

  56. Cilloni D, Renneville A, Hermitte F, Hills RK, Daly S, Jovanovic JV et al. Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European LeukemiaNet study. J Clin Oncol 2009; 27: 5195–5201.

    Article  CAS  PubMed  Google Scholar 

  57. Nomdedéu JF, Hoyos M, Carricondo M, Bussaglia E, Estivill C, Esteve J et al. Bone marrow WT1 levels at diagnosis, post-induction and post-intensification in adult de novo AML. Leukemia 2013; 27: 2157–2164.

    Article  CAS  PubMed  Google Scholar 

  58. Steinbach D, Schramm A, Eggert A, Onda M, Dawczynski K, Rump A et al. Identification of a set of seven genes for the monitoring of minimal residual disease in pediatric acute myeloid leukemia. Clin Cancer Res 2006; 12: 2434–2441.

    Article  CAS  PubMed  Google Scholar 

  59. Goswami M, McGowan KS, Lu K, Jain N, Candia J, Hensel NF et al. A multigene array for measurable residual disease detection in AML patients undergoing SCT. Bone Marrow Transplant 2015; 50: 642–651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Steinbach D, Bader P, Willasch A, Bartholomae S, Debatin KM, Zimmermann M et al. Prospective validation of a new method of monitoring minimal residual disease in childhood acute myelogenous leukemia. Clin Cancer Res 2015; 21: 1353–1359.

    Article  CAS  PubMed  Google Scholar 

  61. Mulé MP, Mannis GN, Wood BL, Radich JP, Hwang J, Ramos NR et al. Multigene measurable residual disease assessment improves acute myeloid leukemia relapse risk stratification in autologous hematopoietic cell transplantation. Biol Blood Marrow Transplant 2016; 22: 1974–1982.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Klco JM, Miller CA, Griffith M, Petti A, Spencer DH, Ketkar-Kulkarni S et al. Association between mutation clearance after induction therapy and outcomes in acute myeloid leukemia. JAMA 2015; 314: 811–822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Uy GL, Duncavage EJ, Chang GS, Jacoby MA, Miller CA, Shao J et al. Dynamic changes in the clonal structure of MDS and AML in response to epigenetic therapy. Leukemia 2016; 31: 872–881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 2012; 481: 506–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Klco JM, Spencer DH, Miller CA, Griffith M, Lamprecht TL, O'Laughlin M et al. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell 2014; 25: 379–392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Grimwade D, Ivey A, Huntly BJ . Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. Blood 2016; 127: 29–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Young AL, Wong TN, Hughes AE, Heath SE, Ley TJ, Link DC et al. Quantifying ultra-rare pre-leukemic clones via targeted error-corrected sequencing. Leukemia 2015; 29: 1608–1611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Griffith M, Miller CA, Griffith OL, Krysiak K, Skidmore ZL, Ramu A et al. Optimizing cancer genome sequencing and analysis. Cell Syst 2015; 1: 210–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 2014; 371: 2477–2487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 2014; 371: 2488–2498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 2015; 126: 9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Young AL, Challen GA, Birmann BM, Druley TE . Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun 2016; 7: 12484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Miyamoto T, Weissman IL, Akashi K . AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc Natl Acad Sci USA 2000; 97: 7521–7526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Corces-Zimmerman MR, Hong WJ, Weissman IL, Medeiros BC, Majeti R . Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci USA 2014; 111: 2548–2553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pløen GG, Nederby L, Guldberg P, Hansen M, Ebbesen LH, Jensen UB et al. Persistence of DNMT3A mutations at long-term remission in adult patients with AML. Br J Haematol 2014; 167: 478–486.

    Article  CAS  PubMed  Google Scholar 

  76. Wong TN, Miller CA, Klco JM, Petti A, Demeter R, Helton NM et al. Rapid expansion of preexisting nonleukemic hematopoietic clones frequently follows induction therapy for de novo AML. Blood 2016; 127: 893–897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gale RP . Measureable residual disease (MRD): much ado about nothing? Bone Marrow Transplant 2015; 50: 163–164.

    Article  CAS  PubMed  Google Scholar 

  78. Prasad V, Gale RP . Precision medicine in acute myeloid leukemia: hope, hype or both? Leuk Res 2016; 48: 73–77.

    Article  PubMed  Google Scholar 

  79. Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 2012; 150: 264–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li S, Garrett-Bakelman FE, Chung SS, Sanders MA, Hricik T, Rapaport F et al. Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nat Med 2016; 22: 792–799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Butturini A, Klein J, Gale RP . Modeling minimal residual disease (MRD)-testing. Leuk Res 2003; 27: 293–300.

    Article  PubMed  Google Scholar 

  82. Deininger MW . Molecular monitoring in CML and the prospects for treatment-free remissions. Hematology Am Soc Hematol Educ Program 2015; 2015: 257–263.

    Article  PubMed  Google Scholar 

  83. Saußele S, Richter J, Hochhaus A, Mahon FX . The concept of treatment-free remission in chronic myeloid leukemia. Leukemia 2016; 30: 1638–1647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rea D, Nicolini FE, Tulliez M, Guilhot F, Guilhot J, Guerci-Bresler A et al. Discontinuation of dasatinib or nilotinib in chronic myeloid leukemia: interim analysis of the STOP 2G-TKI study. Blood 2017; 129: 846–854.

    Article  CAS  PubMed  Google Scholar 

  85. Ommen HB, Schnittger S, Jovanovic JV, Ommen IB, Hasle H, Østergaard M et al. Strikingly different molecular relapse kinetics in NPM1c, PML-RARA, RUNX1-RUNX1T1, and CBFB-MYH11 acute myeloid leukemias. Blood 2010; 115: 198–205.

    Article  CAS  PubMed  Google Scholar 

  86. Hokland P, Ommen HB . Towards individualized follow-up in adult acute myeloid leukemia in remission. Blood 2011; 117: 2577–2584.

    Article  CAS  PubMed  Google Scholar 

  87. Hills RK, Ivey A, Grimwade D Group UKNCRIAW. Assessment of minimal residual disease in standard-risk AML. N Engl J Med 2016; 375: e9.

    Article  PubMed  Google Scholar 

  88. Song J, Mercer D, Hu X, Liu H, Li MM . Common leukemia- and lymphoma-associated genetic aberrations in healthy individuals. J Mol Diagn 2011; 13: 213–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tobal K, Liu Yin JA . RT-PCR method with increased sensitivity shows persistence of PML-RARA fusion transcripts in patients in long-term remission of APL. Leukemia 1998; 12: 1349–1354.

    Article  CAS  PubMed  Google Scholar 

  90. Showel MM, Brodsky RA, Tsai HL, Briel KM, Kowalski J, Griffin CA et al. Isolated clonal cytogenetic abnormalities after high-dose therapy. Biol Blood Marrow Transplant 2014; 20: 1130–1138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Farina M, Rossi G, Bellotti D, Marchina E, Gale RP . Is having clonal cytogenetic abnormalities the same as having leukaemia. Acta Haematol 2016; 135: 39–42.

    Article  PubMed  Google Scholar 

  92. Bäsecke J, Griesinger F, Trümper L, Brittinger G . Leukemia- and lymphoma-associated genetic aberrations in healthy individuals. Ann Hematol 2002; 81: 64–75.

    Article  CAS  PubMed  Google Scholar 

  93. Buckley SA, Wood BL, Othus M, Hourigan CS, Ustun C, Linden MA et al. Minimal residual disease prior to allogeneic hematopoietic cell transplantation in acute myeloid leukemia: a meta-analysis. Haematologica 2017; e-pub ahead of print 25 January 2017 doi:10.3324/haematol.2016.159343.

  94. van de Loosdrecht AA, Alhan C, Béné MC, Della Porta MG, Dräger AM, Feuillard J et al. Standardization of flow cytometry in myelodysplastic syndromes: report from the first European LeukemiaNet working conference on flow cytometry in myelodysplastic syndromes. Haematologica 2009; 94: 1124–1134.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Zini G, Kern W, Brereton M, Stephens AD . ICSH: on board for new projects. Int J Lab Hematol 2014; 36: 306–312.

    Article  CAS  PubMed  Google Scholar 

  96. Ni W, Hu B, Zheng C, Tong Y, Wang L, Li QQ et al. Automated analysis of acute myeloid leukemia minimal residual disease using a support vector machine. Oncotarget 2016; 7: 71915–71921.

    PubMed  PubMed Central  Google Scholar 

  97. Foroni L, Wilson G, Gerrard G, Mason J, Grimwade D, White HE et al. Guidelines for the measurement of BCR-ABL1 transcripts in chronic myeloid leukaemia. Br J Haematol 2011; 153: 179–190.

    Article  CAS  PubMed  Google Scholar 

  98. Kern W, Voskova D, Schoch C, Schnittger S, Hiddemann W, Haferlach T . Prognostic impact of early response to induction therapy as assessed by multiparameter flow cytometry in acute myeloid leukemia. Haematologica 2004; 89: 528–540.

    PubMed  Google Scholar 

  99. Maurillo L, Buccisano F, Del Principe MI, Del Poeta G, Spagnoli A, Panetta P et al. Toward optimization of postremission therapy for residual disease-positive patients with acute myeloid leukemia. J Clin Oncol 2008; 26: 4944–4951.

    Article  PubMed  Google Scholar 

  100. Buccisano F, Maurillo L, Spagnoli A, Del Principe MI, Fraboni D, Panetta P et al. Cytogenetic and molecular diagnostic characterization combined to postconsolidation minimal residual disease assessment by flow cytometry improves risk stratification in adult acute myeloid leukemia. Blood 2010; 116: 2295–2303.

    Article  CAS  PubMed  Google Scholar 

  101. Rubnitz JE, Inaba H, Dahl G, Ribeiro RC, Bowman WP, Taub J et al. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol 2010; 11: 543–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Loken MR, Alonzo TA, Pardo L, Gerbing RB, Raimondi SC, Hirsch BA et al. Residual disease detected by multidimensional flow cytometry signifies high relapse risk in patients with de novo acute myeloid leukemia: a report from Children's Oncology Group. Blood 2012; 120: 1581–1588.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Inaba H, Coustan-Smith E, Cao X, Pounds SB, Shurtleff SA, Wang KY et al. Comparative analysis of different approaches to measure treatment response in acute myeloid leukemia. J Clin Oncol 2012; 30: 3625–3632.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Freeman SD, Virgo P, Couzens S, Grimwade D, Russell N, Hills RK et al. Prognostic relevance of treatment response measured by flow cytometric residual disease detection in older patients with acute myeloid leukemia. J Clin Oncol 2013; 31: 4123–4131.

    Article  PubMed  Google Scholar 

  105. Terwijn M, van Putten WL, Kelder A, van der Velden VH, Brooimans RA, Pabst T et al. High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: data from the HOVON/SAKK AML 42A study. J Clin Oncol 2013; 31: 3889–3897.

    Article  PubMed  Google Scholar 

  106. Jourdan E, Boissel N, Chevret S, Delabesse E, Renneville A, Cornillet P et al. Prospective evaluation of gene mutations and minimal residual disease in patients with core binding factor acute myeloid leukemia. Blood 2013; 121: 2213–2223.

    Article  CAS  PubMed  Google Scholar 

  107. Marani C, Clavio M, Grasso R, Colombo N, Guolo F, Kunkl A et al. Integrating post induction WT1 quantification and flow-cytometry results improves minimal residual disease stratification in acute myeloid leukemia. Leuk Res 2013; 37: 1606–1611.

    Article  PubMed  Google Scholar 

  108. Chen X, Xie H, Wood BL, Walter RB, Pagel JM, Becker PS et al. Relation of clinical response and minimal residual disease and their prognostic impact on outcome in acute myeloid leukemia. J Clin Oncol 2015; 33: 1258–1264.

    Article  PubMed  Google Scholar 

  109. Chen X, Xie H, Estey EH . Reply to D. Przepiorka et al. J Clin Oncol 2015; 33: 3676–3677.

    Article  CAS  PubMed  Google Scholar 

  110. Araki D, Wood BL, Othus M, Radich JP, Halpern AB, Zhou Y et al. Allogeneic hematopoietic cell transplantation for acute myeloid leukemia: time to move toward a minimal residual disease-based definition of complete remission? J Clin Oncol 2016; 34: 329–336.

    Article  PubMed  Google Scholar 

  111. Zhou Y, Othus M, Araki D, Wood BL, Radich JP, Halpern AB et al. Pre- and post-transplant quantification of measurable ('minimal') residual disease via multiparameter flow cytometry in adult acute myeloid leukemia. Leukemia 2016; 30: 1456–1464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Othus M, Wood BL, Stirewalt DL, Estey EH, Petersdorf SH, Appelbaum FR et al. Effect of measurable ('minimal') residual disease (MRD) information on prediction of relapse and survival in adult acute myeloid leukemia. Leukemia 2016; 30: 2080–2083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Vidriales MB, Pérez-López E, Pegenaute C, Castellanos M, Pérez JJ, Chandía M et al. Minimal residual disease evaluation by flow cytometry is a complementary tool to cytogenetics for treatment decisions in acute myeloid leukaemia. Leuk Res 2016; 40: 1–9.

    Article  PubMed  Google Scholar 

  114. Tierens A, Bjørklund E, Siitonen S, Marquart HV, Wulff-Juergensen G, Pelliniemi TT et al. Residual disease detected by flow cytometry is an independent predictor of survival in childhood acute myeloid leukaemia; results of the NOPHO-AML 2004 study. Br J Haematol 2016; 174: 600–609.

    Article  PubMed  Google Scholar 

  115. Campana D, Leung W . Clinical significance of minimal residual disease in patients with acute leukaemia undergoing haematopoietic stem cell transplantation. Br J Haematol 2013; 162: 147–161.

    Article  PubMed  Google Scholar 

  116. Buckley SA, Appelbaum FR, Walter RB . Prognostic and therapeutic implications of minimal residual disease at the time of transplantation in acute leukemia. Bone Marrow Transplant 2013; 48: 630–641.

    Article  CAS  PubMed  Google Scholar 

  117. San Miguel JF, Martinez A, Macedo A, Vidriales MB, Lopez-Berges C, Gonzalez M et al. Immunophenotyping investigation of minimal residual disease is a useful approach for predicting relapse in acute myeloid leukemia patients. Blood 1997; 90: 2465–2470.

    CAS  PubMed  Google Scholar 

  118. Venditti A, Buccisano F, Del Poeta G, Maurillo L, Tamburini A, Cox C et al. Level of minimal residual disease after consolidation therapy predicts outcome in acute myeloid leukemia. Blood 2000; 96: 3948–3952.

    CAS  PubMed  Google Scholar 

  119. Buccisano F, Maurillo L, Gattei V, Del Poeta G, Del Principe MI, Cox MC et al. The kinetics of reduction of minimal residual disease impacts on duration of response and survival of patients with acute myeloid leukemia. Leukemia 2006; 20: 1783–1789.

    Article  CAS  PubMed  Google Scholar 

  120. Walter RB, Gooley TA, Wood BL, Milano F, Fang M, Sorror ML et al. Impact of pretransplantation minimal residual disease, as detected by multiparametric flow cytometry, on outcome of myeloablative hematopoietic cell transplantation for acute myeloid leukemia. J Clin Oncol 2011; 29: 1190–1197.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ommen HB, Hokland P, Haferlach T, Abildgaard L, Alpermann T, Haferlach C et al. Relapse kinetics in acute myeloid leukaemias with MLL translocations or partial tandem duplications within the MLL gene. Br J Haematol 2014; 165: 618–628.

    Article  CAS  PubMed  Google Scholar 

  122. Hourigan CS, Goswami M, Battiwalla M, Barrett AJ, Sheela S, Karp JE et al. When the minimal becomes measurable. J Clin Oncol 2016; 34: 2557–2558.

    Article  PubMed  Google Scholar 

  123. Yeoh AE, Ariffin H, Chai EL, Kwok CS, Chan YH, Ponnudurai K et al. Minimal residual disease-guided treatment deintensification for children with acute lymphoblastic leukemia: results from the Malaysia-Singapore acute lymphoblastic leukemia 2003 study. J Clin Oncol 2012; 30: 2384–2392.

    Article  CAS  PubMed  Google Scholar 

  124. Eckert C, Henze G, Seeger K, Hagedorn N, Mann G, Panzer-Grümayer R et al. Use of allogeneic hematopoietic stem-cell transplantation based on minimal residual disease response improves outcomes for children with relapsed acute lymphoblastic leukemia in the intermediate-risk group. J Clin Oncol 2013; 31: 2736–2742.

    Article  PubMed  Google Scholar 

  125. Roberts KG, Pei D, Campana D, Payne-Turner D, Li Y, Cheng C et al. Outcomes of children with BCR-ABL1-like acute lymphoblastic leukemia treated with risk-directed therapy based on the levels of minimal residual disease. J Clin Oncol 2014; 32: 3012–3020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Pui CH, Pei D, Coustan-Smith E, Jeha S, Cheng C, Bowman WP et al. Clinical utility of sequential minimal residual disease measurements in the context of risk-based therapy in childhood acute lymphoblastic leukaemia: a prospective study. Lancet Oncol 2015; 16: 465–474.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Vora A, Goulden N, Wade R, Mitchell C, Hancock J, Hough R et al. Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual disease (UKALL 2003): a randomised controlled trial. Lancet Oncol 2013; 14: 199–209.

    Article  CAS  PubMed  Google Scholar 

  128. Vora A, Goulden N, Mitchell C, Hancock J, Hough R, Rowntree C et al. Augmented post-remission therapy for a minimal residual disease-defined high-risk subgroup of children and young people with clinical standard-risk and intermediate-risk acute lymphoblastic leukaemia (UKALL 2003): a randomised controlled trial. Lancet Oncol 2014; 15: 809–818.

    Article  PubMed  Google Scholar 

  129. Schrappe M, Zimmermann M, Möricke A, Mann G, Valsecchi MG, Bartram CT et al. Reduced intensity delayed intensification in standard-risk patients defined by minimal residual disease in childhood acute lymphoblastic leukemia: results of an international randomized trial in 1164 patients (trial AIEOP-BFM ALL 2000) [abstract]. Blood 2016; 126: 4.

    Google Scholar 

  130. Lo Coco F, Diverio D, Avvisati G, Petti MC, Meloni G, Pogliani EM et al. Therapy of molecular relapse in acute promyelocytic leukemia. Blood 1999; 94: 2225–2229.

    CAS  PubMed  Google Scholar 

  131. Esteve J, Escoda L, Martín G, Rubio V, Díaz-Mediavilla J, González M et al. Outcome of patients with acute promyelocytic leukemia failing to front-line treatment with all-trans retinoic acid and anthracycline-based chemotherapy (PETHEMA protocols LPA96 and LPA99): benefit of an early intervention. Leukemia 2007; 21: 446–452.

    Article  CAS  PubMed  Google Scholar 

  132. Grimwade D, Jovanovic JV, Hills RK . Can we say farewell to monitoring minimal residual disease in acute promyelocytic leukaemia? Best Pract Res Clin Haematol 2014; 27: 53–61.

    Article  PubMed  Google Scholar 

  133. Zhu HH, Zhang XH, Qin YZ, Liu DH, Jiang H, Chen H et al. MRD-directed risk stratification treatment may improve outcomes of t(8;21) AML in the first complete remission: results from the AML05 multicenter trial. Blood 2013; 121: 4056–4062.

    Article  CAS  PubMed  Google Scholar 

  134. Balsat M, Renneville A, Thomas X, de Botton S, Caillot D, Marceau A et al. Postinduction minimal residual disease predicts outcome and benefit from allogeneic stem cell transplantation in acute myeloid leukemia with NPM1 mutation: a study be the Acute Leukemia French Association Group. J Clin Oncol 2017; 35: 185–193.

    Article  CAS  PubMed  Google Scholar 

  135. Sockel K, Wermke M, Radke J, Kiani A, Schaich M, Bornhäuser M et al. Minimal residual disease-directed preemptive treatment with azacitidine in patients with NPM1-mutant acute myeloid leukemia and molecular relapse. Haematologica 2011; 96: 1568–1570.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Platzbecker U, Wermke M, Radke J, Oelschlaegel U, Seltmann F, Kiani A et al. Azacitidine for treatment of imminent relapse in MDS or AML patients after allogeneic HSCT: results of the RELAZA trial. Leukemia 2012; 26: 381–389.

    Article  CAS  PubMed  Google Scholar 

  137. Burnett AK, Goldstone A, Hills RK, Milligan D, Prentice A, Yin J et al. Curability of patients with acute myeloid leukemia who did not undergo transplantation in first remission. J Clin Oncol 2013; 31: 1293–1301.

    Article  PubMed  Google Scholar 

  138. Appelbaum FR, Rosenblum D, Arceci RJ, Carroll WL, Breitfeld PP, Forman SJ et al. End points to establish the efficacy of new agents in the treatment of acute leukemia. Blood 2007; 109: 1810–1816.

    Article  CAS  PubMed  Google Scholar 

  139. Walter RB, Appelbaum FR, Tallman MS, Weiss NS, Larson RA, Estey EH . Shortcomings in the clinical evaluation of new drugs: acute myeloid leukemia as paradigm. Blood 2010; 116: 2420–2428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Estey E, Othus M, Lee SJ, Appelbaum FR, Gale RP . New drug approvals in acute myeloid leukemia: what's the best end point? Leukemia 2016; 30: 521–525.

    Article  CAS  PubMed  Google Scholar 

  141. US Department of Health and Human Services, Food and Drug Administration Guidance for Industry: Expedited Programs for Serious Conditions - Drugs and Biologics (2014). Available at: http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm358301.pdf, pp17-18 (accessed 15 November 2016).

  142. US Department of Health and Human Services, Food and Drug Administration Guidance for Industry: E9 Statistical Principles for Clinical Trials (1998). Available at: http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm073137.pdf, p. 9 (accessed 9 September 2016).

  143. US Department of Health and Human Services, Food and Drug Administration Guidance for Industry: Clinical Trial Endpoints for the Approval of Cancer Drugs and Biologics (2007). Available at: http://www.fda.gov/downloads/Drugs/.../Guidances/ucm071590.pdf, pp. 8-9 (accessed 9 September 2016).

  144. Buyse M, Burzykowski T, Carroll K, Michiels S, Sargent DJ, Miller LL et al. Progression-free survival is a surrogate for survival in advanced colorectal cancer. J Clin Oncol 2007; 25: 5218–5224.

    Article  CAS  PubMed  Google Scholar 

  145. Sargent DJ, Qian S, De Bedout S, Flowers C, Fowler NH, Fu T et al. Evaluation of complete response rate at 30 months (CR30) as a surrogate for progression-free survival (PFS) in first-line follicular lymphoma (FL) studies: results from the prospectively specified Follicular Lymphoma Analysis of Surrogacy Hypothesis (FLASH) analysis with individual patient data (IPD) of 3,837 patients (pts) [abstract]. J Clin Oncol 2015; 33: 8504.

    Article  Google Scholar 

  146. Topp MS, Kufer P, Gökbuget N, Goebeler M, Klinger M, Neumann S et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol 2011; 29: 2493–2498.

    Article  CAS  PubMed  Google Scholar 

  147. Schlenk RF, Döhner H, Döhner K, Ganser A, Heuser M, Benner A et al. Event-free survival is a surrogate for overall survival in patients treated for acute myeloid leukemia [abstract]. Blood 2015; 126: 3744.

    Google Scholar 

  148. Othus M, van Putten W, Löwenberg B, Petersdorf SH, Nand S, Erba H et al. Relationship between event-free survival and overall survival in acute myeloid leukemia: a report from SWOG, HOVON/SAKK, and MRC/NCRI. Haematologica 2016; 101: e284–e286.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Østergaard M, Nyvold CG, Jovanovic JV, Andersen MT, Kairisto V, Morgan YG et al. Development of standardized approaches to reporting of minimal residual disease data using a reporting software package designed within the European LeukemiaNet. Leukemia 2011; 25: 1168–1173.

    Article  PubMed  Google Scholar 

  150. Sniderman AD, D'Agostino RB Sr, Pencina MJ . The role of physicians in the era of predictive analytics. JAMA 2015; 314: 25–26.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Frederick R Appelbaum (Fred Hutchinson Cancer Research Center), Anton Hagenbeek (University of Utrecht), Jacob M Rowe (Sharee Zedek Medical Centre), Charles A Schiffer (Wayne State University), Jerald P Radich (Fred Hutchinson Cancer Research Center), Paresh Vyas (University of Oxford) and Donna Przepiorka (US Food and Drug Administration) kindly reviewed the typescript. This work was supported in part by the Intramural Research Programs of the National Heart, Lung, and Blood Institute of the National Institutes of Health. RPG acknowledges support from the National Institute of Health Research (NIHR) Biomedical Research Centre funding scheme. RBW is a Leukemia & Lymphoma Society Scholar in Clinical Research. The opinions expressed here are ours and do not represent the official position of the National Institutes of Health, US Food and Drug Administration, or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C S Hourigan or R B Walter.

Ethics declarations

Competing interests

CSH receives research funding from Merck Sharpe and Dohme and SELLAS Life Sciences Group AG. RPG is a part-time employee of Celgene Corp. The remaining authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hourigan, C., Gale, R., Gormley, N. et al. Measurable residual disease testing in acute myeloid leukaemia. Leukemia 31, 1482–1490 (2017). https://doi.org/10.1038/leu.2017.113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.113

This article is cited by

Search

Quick links