Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Multiple Myeloma, Gammopathies

Targeting proteasome ubiquitin receptor Rpn13 in multiple myeloma

Abstract

Proteasome inhibitor bortezomib is an effective therapy for relapsed and newly diagnosed multiple myeloma (MM); however, dose-limiting toxicities and the development of resistance can limit its long-term utility. Recent research has focused on targeting ubiquitin receptors upstream of 20S proteasome, with the aim of generating less toxic therapies. Here we show that 19S proteasome-associated ubiquitin receptor Rpn13 is more highly expressed in MM cells than in normal plasma cells. Rpn13-siRNA (small interfering RNA) decreases MM cell viability. A novel agent RA190 targets Rpn13 and inhibits proteasome function, without blocking the proteasome activity or the 19S deubiquitylating activity. CRISPR/Cas9 Rpn13-knockout demonstrates that RA190-induced activity is dependent on Rpn13. RA190 decreases viability in MM cell lines and patient MM cells, inhibits proliferation of MM cells even in the presence of bone marrow stroma and overcomes bortezomib resistance. Anti-MM activity of RA190 is associated with induction of caspase-dependent apoptosis and unfolded protein response-related apoptosis. MM xenograft model studies show that RA190 is well tolerated, inhibits tumor growth and prolongs survival. Combining RA190 with bortezomib, lenalidomide or pomalidomide induces synergistic anti-MM activity. Our preclinical data validates targeting Rpn13 to overcome bortezomib resistance, and provides the framework for clinical evaluation of Rpn13 inhibitors, alone or in combination, to improve patient outcome in MM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Adams J . The proteasome: a suitable antineoplastic target. Nat Rev Cancer 2004; 4: 349–360.

    Article  CAS  Google Scholar 

  2. Chauhan D, Hideshima T, Anderson KC . Proteasome inhibition in multiple myeloma: therapeutic implication. Annu Rev Pharmacol Toxicol 2005; 45: 465–476.

    Article  CAS  Google Scholar 

  3. Goldberg AL . Protein degradation and protection against misfolded or damaged proteins. Nature 2003; 426: 895–899.

    Article  CAS  Google Scholar 

  4. Hershko A . The ubiquitin system for protein degradation and some of its roles in the control of the cell-division cycle (Nobel lecture). Angew Chem 2005; 44: 5932–5943.

    Article  CAS  Google Scholar 

  5. Finley D . Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 2009; 78: 477–513.

    Article  CAS  Google Scholar 

  6. Pickart CM, Eddins MJ . Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 2004; 1695: 55–72.

    Article  CAS  Google Scholar 

  7. Husnjak K, Elsasser S, Zhang N, Chen X, Randles L, Shi Y et al. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 2008; 453: 481–488.

    Article  CAS  Google Scholar 

  8. Schreiner P, Chen X, Husnjak K, Randles L, Zhang N, Elsasser S et al. Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature 2008; 453: 548–552.

    Article  CAS  Google Scholar 

  9. Elsasser S, Finley D . Delivery of ubiquitinated substrates to protein-unfolding machines. Nat Cell Biol 2005; 7: 742–749.

    Article  CAS  Google Scholar 

  10. Zhu Q, Wani G, Wang QE, El-mahdy M, Snapka RM, Wani AA . Deubiquitination by proteasome is coordinated with substrate translocation for proteolysis in vivo. Exp Cell Res 2005; 307: 436–451.

    Article  CAS  Google Scholar 

  11. Bhattacharyya S, Yu H, Mim C, Matouschek A . Regulated protein turnover: snapshots of the proteasome in action. Nat Rev Mol Cell Biol 2014; 15: 122–133.

    Article  CAS  Google Scholar 

  12. Kane RC, Bross PF, Farrell AT, Pazdur R . Velcade: U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist 2003; 8: 508–513.

    Article  Google Scholar 

  13. Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 2003; 348: 2609–2617.

    Article  CAS  Google Scholar 

  14. Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D et al. Clinical factors predictive of outcome with bortezomib in patients with relapsed, refractory multiple myeloma. Blood 2005; 106: 2977–2981.

    Article  CAS  Google Scholar 

  15. Siegel DS, Martin T, Wang M, Vij R, Jakubowiak AJ, Lonial S et al. A phase 2 study of single-agent carfilzomib (PX-171-003-A1) in patients with relapsed and refractory multiple myeloma. Blood 2012; 120: 2817–2825.

    Article  CAS  Google Scholar 

  16. Vij R, Siegel DS, Jagannath S, Jakubowiak AJ, Stewart AK, McDonagh K et al. An open-label, single-arm, phase 2 study of single-agent carfilzomib in patients with relapsed and/or refractory multiple myeloma who have been previously treated with bortezomib. Br J Haematol 2012; 158: 739–748.

    Article  CAS  Google Scholar 

  17. Richardson PG, Briemberg H, Jagannath S, Wen PY, Barlogie B, Berenson J et al. Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. J Clin Oncol 2006; 24: 3113–3120.

    Article  CAS  Google Scholar 

  18. Lonial S, Waller EK, Richardson PG, Jagannath S, Orlowski RZ, Giver CR et al. Risk factors and kinetics of thrombocytopenia associated with bortezomib for relapsed, refractory multiple myeloma. Blood 2005; 106: 3777–3784.

    Article  CAS  Google Scholar 

  19. Huber EM, Heinemeyer W, Groll M . Bortezomib-resistant mutant proteasomes: structural and biochemical evaluation with carfilzomib and ONX 0914. Structure 2015; 23: 407–417.

    Article  CAS  Google Scholar 

  20. Cai X, Bhattacharyya S, Plitt A, Raibagkar P, LaBuzetta JN, Schleicher SM et al. Management of Posterior reversible encephalopathy syndrome induced by carfilzomib in a patient with multiple myeloma. J Clin Oncol 2016; 34: e1–e5.

    Article  Google Scholar 

  21. Wanchoo R, Khan S, Kolitz JE, Jhaveri KD . Carfilzomib-related acute kidney injury may be prevented by N-acetyl-l-cysteine. J Oncol Pharm Pract 2015; 21: 313–316.

    Article  Google Scholar 

  22. Harvey RD . Incidence and management of adverse events in patients with relapsed and/or refractory multiple myeloma receiving single-agent carfilzomib. Clin Pharmacol 2014; 6: 87–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Atrash S, Tullos A, Panozzo S, Bhutani M, Van Rhee F, Barlogie B et al. Cardiac complications in relapsed and refractory multiple myeloma patients treated with carfilzomib. Blood Cancer J 2015; 5: e272.

    Article  CAS  Google Scholar 

  24. Tian Z, D'Arcy P, Wang X, Ray A, Tai YT, Hu Y et al. A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance. Blood 2014; 123: 706–716.

    Article  CAS  Google Scholar 

  25. Anchoori RK, Karanam B, Peng S, Wang JW, Jiang R, Tanno T et al. A bis-benzylidine piperidone targeting proteasome ubiquitin receptor RPN13/ADRM1 as a therapy for cancer. Cancer Cell 2013; 24: 791–805.

    Article  CAS  Google Scholar 

  26. Trader DJ, Simanski S, Kodadek T . A reversible and highly selective inhibitor of the proteasomal ubiquitin receptor rpn13 is toxic to multiple myeloma cells. J Am Chem Soc 2015; 137: 6312–6319.

    Article  CAS  Google Scholar 

  27. Qiu XB, Ouyang SY, Li CJ, Miao S, Wang L, Goldberg AL . hRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37. EMBO J 2006; 25: 5742–5753.

    Article  CAS  Google Scholar 

  28. Yao T, Song L, Xu W, DeMartino GN, Florens L, Swanson SK et al. Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat Cell Biol 2006; 8: 994–1002.

    Article  CAS  Google Scholar 

  29. Chauhan D, Singh AV, Brahmandam M, Carrasco R, Bandi M, Hideshima T et al. Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target. Cancer Cell 2009; 16: 309–323.

    Article  CAS  Google Scholar 

  30. D'Arcy P, Brnjic S, Olofsson MH, Fryknas M, Lindsten K, De Cesare M et al. Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat Med 2011; 17: 1636–1640.

    Article  CAS  Google Scholar 

  31. Chauhan D, Catley L, Li G, Podar K, Hideshima T, Velankar M et al. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from bortezomib. Cancer Cell 2005; 8: 407–419.

    Article  CAS  Google Scholar 

  32. Chauhan D, Tian Z, Nicholson B, Kumar KG, Zhou B, Carrasco R et al. A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell 2012; 22: 345–358.

    Article  CAS  Google Scholar 

  33. Chauhan D, Singh A, Brahmandam M, Podar K, Hideshima T, Richardson P et al. Combination of proteasome inhibitors bortezomib and NPI-0052 trigger in vivo synergistic cytotoxicity in multiple myeloma. Blood 2008; 111: 1654–1664.

    Article  CAS  Google Scholar 

  34. Chauhan D, Ray A, Viktorsson K, Spira J, Paba-Prada C, Munshi N et al. In vitro and in vivo antitumor activity of a novel alkylating agent, melphalan-flufenamide, against multiple myeloma cells. Clin Cancer Res 2013; 19: 3019–3031.

    Article  CAS  Google Scholar 

  35. Menendez-Benito V, Verhoef LG, Masucci MG, Dantuma NP . Endoplasmic reticulum stress compromises the ubiquitin-proteasome system. Hum Mol Genet 2005; 14: 2787–2799.

    Article  CAS  Google Scholar 

  36. Lee BH, Lee MJ, Park S, Oh DC, Elsasser S, Chen PC et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 2010; 467: 179–184.

    Article  CAS  Google Scholar 

  37. Borodovsky A, Kessler BM, Casagrande R, Overkleeft HS, Wilkinson KD, Ploegh HL . A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14. EMBO J 2001; 20: 5187–5196.

    Article  CAS  Google Scholar 

  38. Verma R, Aravind L, Oania R, McDonald WH, Yates JR 3rd, Koonin EV et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26 S proteasome. Science 2002; 298: 611–615.

    Article  CAS  Google Scholar 

  39. Borodovsky A, Ovaa H, Kolli N, Gan-Erdene T, Wilkinson KD, Ploegh HL et al. Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem Biol 2002; 9: 1149–1159.

    Article  CAS  Google Scholar 

  40. Chauhan D, Uchiyama H, Akbarali Y, Urashima M, Yamamoto K, Libermann TA et al. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood 1996; 87: 1104–1112.

    CAS  Google Scholar 

  41. Ray A, Das DS, Song Y, Richardson P, Munshi NC, Chauhan D et al. Targeting PD1-PDL1 immune checkpoint in plasmacytoid dendritic cell interactions with T cells, natural killer cells and multiple myeloma cells. Leukemia 2015; 29: 1441–1444.

    Article  CAS  Google Scholar 

  42. Das DS, Ray A, Song Y, Richardson P, Trikha M, Chauhan D et al. Synergistic anti-myeloma activity of the proteasome inhibitor marizomib and the IMiD((R)) immunomodulatory drug pomalidomide. Br J Haematol 2015; 171: 798–812.

    Article  CAS  Google Scholar 

  43. Vogl DT, Stadtmauer EA, Tan KS, Heitjan DF, Davis LE, Pontiggia L et al. Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma. Autophagy 2014; 10: 1380–1390.

    Article  CAS  Google Scholar 

  44. Pilarsky C, Wenzig M, Specht T, Saeger HD, Grutzmann R . Identification and validation of commonly overexpressed genes in solid tumors by comparison of microarray data. Neoplasia 2004; 6: 744–750.

    Article  CAS  Google Scholar 

  45. Fejzo MS, Dering J, Ginther C, Anderson L, Ramos L, Walsh C et al. Comprehensive analysis of 20q13 genes in ovarian cancer identifies ADRM1 as amplification target. Genes Chromosomes Cancer 2008; 47: 873–883.

    Article  CAS  Google Scholar 

  46. Chen W, Hu XT, Shi QL, Zhang FB, He C . Knockdown of the novel proteasome subunit Adrm1 located on the 20q13 amplicon inhibits colorectal cancer cell migration, survival and tumorigenicity. Oncol Rep 2009; 21: 531–537.

    Article  CAS  Google Scholar 

  47. Carvalho B, Postma C, Mongera S, Hopmans E, Diskin S, van de Wiel MA et al. Multiple putative oncogenes at the chromosome 20q amplicon contribute to colorectal adenoma to carcinoma progression. Gut 2009; 58: 79–89.

    Article  CAS  Google Scholar 

  48. Yang X, Miao X, Wen Y, Hu J, Dai W, Yin B . A possible connection between adhesion regulating molecule 1 overexpression and nuclear factor kappa B activity in hepatocarcinogenesis. Oncol Rep 2012; 28: 283–290.

    CAS  PubMed  Google Scholar 

  49. Bergsagel PL, Kuehl WM . Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol 2005; 23: 6333–6338.

    Article  CAS  Google Scholar 

  50. Bergsagel PL, Chesi M, Nardini E, Brents LA, Kirby SL, Kuehl WM . Promiscuous translocations into immunoglobulin heavy chain switch regions in multiple myeloma. Proc Natl Acad Sci USA 1996; 93: 13931–13936.

    Article  CAS  Google Scholar 

  51. Greenstein S, Krett NL, Kurosawa Y, Ma C, Chauhan D, Hideshima T et al. Characterization of the MM.1 human multiple myeloma (MM) cell lines: a model system to elucidate the characteristics, behavior, and signaling of steroid-sensitive and -resistant MM cells. Exp Hematol 2003; 31: 271–282.

    Article  CAS  Google Scholar 

  52. Avet-Loiseau H, Attal M, Moreau P, Charbonnel C, Garban F, Hulin C et al. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome. Blood 2007; 109: 3489–3495.

    Article  CAS  Google Scholar 

  53. Burger R, Guenther A, Bakker F, Schmalzing M, Bernand S, Baum W et al. Gp130 and ras mediated signaling in human plasma cell line INA-6: a cytokine-regulated tumor model for plasmacytoma. Hematol J 2001; 2: 42–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This investigation was supported by National Institutes of Health Specialized Programs of Research Excellence (SPORE) Grant P50100707, PO1-CA078378 and RO1 CA050947. KCA is an American Cancer Society Clinical Research Professor.

Author contributions

YS performed the experiments, interpreted data and wrote the manuscript; RDC helped in immunohistochemistry experiments; SL helped in reverse transcription-PCR studies; AR and DS helped in animal studies; YT provided clinical samples; DC designed research, analyzed data and wrote the manuscript; KCA analyzed the data and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D Chauhan or K C Anderson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Ray, A., Li, S. et al. Targeting proteasome ubiquitin receptor Rpn13 in multiple myeloma. Leukemia 30, 1877–1886 (2016). https://doi.org/10.1038/leu.2016.97

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.97

This article is cited by

Search

Quick links