Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem cell biology

Leukemia cell infiltration causes defective erythropoiesis partially through MIP-1α/CCL3

Abstract

Leukemia often results in severe anemia, which may significantly contribute to patient mortality and morbidity. However, the mechanisms underlying defective erythropoiesis in leukemia have not been fully elucidated. In this study, we demonstrated that insufficient erythropoiesis in an immunocompetent acute myeloid leukemia (AML) murine model was due to reduced proliferation of megakaryocyte erythroid progenitors and increased apoptosis of erythroblasts. Colony-forming cell assays indicated that the leukemic bone marrow (BM) plasma inhibited erythroid colony formation, whereas they had no inhibitory effect on other types of colonies. Cytokine array analysis demonstrated that the chemokine CCL3 was elevated in the plasma of AML mice and patients. CCL3 inhibited erythroid differentiation of hematopoietic stem cells, common myeloid progenitors and especially megakaryocytic-erythroid progenitors. Administration of the CCR1 antagonist partially recovered the yield of erythroid colonies in the presence of CCL3 or leukemic BM plasma. Mechanistically, we observed an increase of p38 phosphorylation and subsequent downregulation of GATA1 after CCL3 treatment. Furthermore, knockdown of CCL3 attenuated leukemic progression and alleviated anemia. Therefore, our results demonstrate that elevated CCL3 in the leukemic environment suppresses erythropoiesis via CCR1-p38 activation, suggesting a novel mechanism for the erythroid defects observed in leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Fialkow PJ, Singer JW, Raskind WH, Adamson JW, Jacobson RJ, Bernstein ID et al. Clonal development, stem-cell differentiation, and clinical remissions in acute nonlymphocytic leukemia. N Engl J Med 1987; 317: 468–473.

    Article  CAS  PubMed  Google Scholar 

  2. Buitenhuis M, Coffer PJ . The role of the PI3K-PKB signaling module in regulation of hematopoiesis. Cell Cycle 2009; 8: 560–566.

    Article  CAS  PubMed  Google Scholar 

  3. Cheng T . Cell cycle inhibitors in normal and tumor stem cells. Oncogene 2004; 23: 7256–7266.

    Article  CAS  PubMed  Google Scholar 

  4. Somervaille TC, Matheny CJ, Spencer GJ, Iwasaki M, Rinn JL, Witten DM et al. Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. Cell Stem Cell 2009; 4: 129–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang B, Ho YW, Huang Q, Maeda T, Lin A, Lee SU et al. Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia. Cancer cell 2012; 21: 577–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Groopman JE, Itri LM . Chemotherapy-induced anemia in adults: incidence and treatment. J Natl Cancer Inst 1999; 91: 1616–1634.

    Article  CAS  PubMed  Google Scholar 

  7. Spivak JL . The anaemia of cancer: death by a thousand cuts. Nat Rev Cancer 2005; 5: 543–555.

    Article  CAS  PubMed  Google Scholar 

  8. Corazza F, Beguin Y, Bergmann P, Andre M, Ferster A, Devalck C . Anemia in children with cancer is associated with decreased erythropoietic. Blood 1998; 92: 5.

    Google Scholar 

  9. Kalmanti M, Kalmantis T . Committed erythroid progenitors and erythropoietin levels in anemic children with lymphomas and tumors. Pediatr Hematol Oncol 1989; 6: 85–93.

    Article  CAS  PubMed  Google Scholar 

  10. Cheng H, Hao S, Liu Y, Pang Y, Ma S, Dong F et al. Leukemic marrow infiltration reveals a novel role for Egr3 as a potent inhibitor of normal hematopoietic stem cell proliferation. Blood 2015; 126: 1302–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Graham GJ, Wright EG, Hewick R, Wolpe SD, Wilkie NM, Donaldson D et al. Identification and characterization of an inhibitor of haemopoietic stem cell proliferation. Nature 1990; 344: 442–444.

    Article  CAS  PubMed  Google Scholar 

  12. Broxmeyer HE, Sherry B, Cooper S, Lu L, Maze R, Beckmann MP et al. Comparative analysis of the human macrophage inflammatory protein family of cytokines (chemokines) on proliferation of human myeloid progenitor cells. Interacting effects involving suppression, synergistic suppression, and blocking of suppression. J Immunol 1993; 150: 3448–3458.

    CAS  PubMed  Google Scholar 

  13. Su S, Mukaida N, Wang J, Zhang Y, Takami A, Nakao S et al. Inhibition of immature erythroid progenitor cell proliferation by macrophage inflammatory protein-1alpha by interacting mainly with a C–C chemokine receptor, CCR1. Blood 1997; 90: 605–611.

    CAS  PubMed  Google Scholar 

  14. Baba T, Naka K, Morishita S, Komatsu N, Hirao A, Mukaida N . MIP-1alpha/CCL3-mediated maintenance of leukemia-initiating cells in the initiation process of chronic myeloid leukemia. J Exp Med 2013; 210: 2661–2673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Han J-H, Choi SJ, Kurihara N, Koide M, Oba Y, Roodman GD . Macrophage inflammatory protein-1ais an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factorkB ligand. Blood 2001; 97: 4.

    Article  Google Scholar 

  16. Frisch BJ, Ashton JM, Xing L, Becker MW, Jordan CT, Calvi LM . Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia. Blood 2012; 119: 540–550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vallet S, Pozzi S, Patel K, Vaghela N, Fulciniti MT, Veiby P et al. A novel role for CCL3 (MIP-1alpha) in myeloma-induced bone disease via osteocalcin downregulation and inhibition of osteoblast function. Leukemia 2011; 25: 1174–1181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sivina M, Hartmann E, Kipps TJ, Rassenti L, Krupnik D, Lerner S et al. CCL3 (MIP-1alpha) plasma levels and the risk for disease progression in chronic lymphocytic leukemia. Blood 2011; 117: 1662–1669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morley A, Stohlman F Jr . Periodicity during recovery of erythropoiesis following irradiation. Blood 1969; 34: 96–99.

    CAS  PubMed  Google Scholar 

  20. Brady LW, Markoe AM, Ruggieri S, Brodsky I . The effect of sublethal x-irradiation on erythropoiesis in the mouse. Int J Radiat Oncol Biol Phys 1976; 1: 471–479.

    Article  CAS  PubMed  Google Scholar 

  21. Shen H, Yu H, Liang PH, Cheng H, XuFeng R, Yuan Y et al. An acute negative bystander effect of gamma-irradiated recipients on transplanted hematopoietic stem cells. Blood 2012; 119: 3629–3637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Palis J . Primitive and definitive erythropoiesis in mammals. Front Physiol 2014; 5: 3.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Doulatov S, Notta F, Laurenti E, Dick JE . Hematopoiesis: a human perspective. Cell Stem Cell 2012; 10: 120–136.

    Article  CAS  PubMed  Google Scholar 

  24. Sanjuan-Pla A, Macaulay IC, Jensen CT, Woll PS, Luis TC, Mead A et al. Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature 2013; 502: 232–236.

    Article  CAS  PubMed  Google Scholar 

  25. Novershtern N, Subramanian A, Lawton LN, Mak RH, Haining WN, McConkey ME et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 2011; 144: 296–309.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hoffmann-Fezer G, Mysliwietz J, Mortlbauer W, Zeitler HJ, Eberle E, Honle U et al. Biotin labeling as an alternative nonradioactive approach to determination of red cell survival. Ann Hematol 1993; 67: 81–87.

    Article  CAS  PubMed  Google Scholar 

  27. Hardison RC . Evolution of hemoglobin and its genes. Cold Spring Harb Perspect Med 2012; 2: a011627.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ginder GD . Epigenetic regulation of fetal globin gene expression in adult erythroid cells. Transl Res 2015; 165: 115–125.

    Article  CAS  PubMed  Google Scholar 

  29. Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z et al. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 2010; 327: 1650–1653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 2004; 6: 1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hebestreit K, Grottrup S, Emden D, Veerkamp J, Ruckert C, Klein HU et al. Leukemia gene atlas—a public platform for integrative exploration of genome-wide molecular data. PloS one 2012; 7: e39148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Metzeler KH, Hummel M, Bloomfield CD, Spiekermann K, Braess J, Sauerland MC et al. An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia. Blood 2008; 112: 4193–4201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lentzsch S, Gries M, Janz M, Bargou R, Dorken B, Mapara MY . Macrophage inflammatory protein 1-alpha (MIP-1 alpha) triggers migration and signaling cascades mediating survival and proliferation in multiple myeloma (MM) cells. Blood 2003; 101: 3568–3573.

    Article  CAS  PubMed  Google Scholar 

  34. Chen L, Wu J, Pier E, Zhao Y, Shen Z . mTORC2-PKBalpha/Akt1 Serine 473 phosphorylation axis is essential for regulation of FOXP3 Stability by chemokine CCL3 in psoriasis. J Invest Dermatol 2013; 133: 418–428.

    Article  CAS  PubMed  Google Scholar 

  35. Buck I, Morceau F, Cristofanon S, Heintz C, Chateauvieux S, Reuter S et al. Tumor necrosis factor alpha inhibits erythroid differentiation in human erythropoietin-dependent cells involving p38 MAPK pathway, GATA-1 and FOG-1 downregulation and GATA-2 upregulation. Biochem Pharmacol 2008; 76: 1229–1239.

    Article  CAS  PubMed  Google Scholar 

  36. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014; 343: 84–87.

    Article  CAS  PubMed  Google Scholar 

  37. Sanjana NE, Shalem O, Zhang F . Improved vectors and genome-wide libraries for CRISPR screening. Nature methods 2014; 11: 783–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Muntean AG, Hess JL . The pathogenesis of mixed-lineage leukemia. Annu Rev Pathol 2012; 7: 283–301.

    Article  CAS  PubMed  Google Scholar 

  39. Blagosklonny MV . Cell senescence and hypermitogenic arrest. EMBO Rep 2003; 4: 358–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lim M, Pang Y, Ma S, Hao S, Shi H, Zheng Y et al. Altered mesenchymal niche cells impede generation of normal hematopoietic progenitor cells in leukemic bone marrow. Leukemia 2016; 30: 154–162.

    Article  CAS  PubMed  Google Scholar 

  41. Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA . Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 2008; 322: 1861–1865.

    CAS  PubMed  Google Scholar 

  42. Seita J, Weissman IL . Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med 2010; 2: 640–653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nitsche A, Junghahn I, Thulke S, Aumann J, Radonic A, Fichtner I et al. Interleukin-3 promotes proliferation and differentiation of human hematopoietic stem cells but reduces their repopulation potential in NOD/SCID mice. Stem Cells 2003; 21: 236–244.

    Article  CAS  PubMed  Google Scholar 

  44. Higuchi C, Myoui A, Hashimoto N, Kuriyama K, Yoshioka K, Yoshikawa H et al. Continuous inhibition of MAPK signaling promotes the early osteoblastic differentiation and mineralization of the extracellular matrix. J Bone Miner Res 2002; 17: 1785–1794.

    Article  CAS  PubMed  Google Scholar 

  45. Hernandez-Hernandez A, Ray P, Litos G, Ciro M, Ottolenghi S, Beug H et al. Acetylation and MAPK phosphorylation cooperate to regulate the degradation of active GATA-1. EMBO J 2006; 25: 3264–3274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wood CD, Thornton TM, Sabio G, Davis RA, Rincon M . Nuclear localization of p38 MAPK in response to DNA damage. Int J Biol Sci 2009; 5: 428–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs Xiuli An, Hideo Ema and Lihong Shi for their critical reading of our manuscript. We are also grateful to our lab members and collaborators for their assistance with the experiments and in the preparation of the manuscript. This work was supported by grants from the Ministry of Science and Technology of China (SQ2016ZY05002341, 2011CB964801, 2013CB966902 and 2015CB964902), the National Natural Science Foundation of China (81421002, 81090411, 81430004, 81300374, 81130074, 81400077, 81330015, and 81300375), and the General Financial Grant from the China Postdoctoral Science Foundation (2011M500263).

Author contributions

YW designed and performed all experiments, analyzed the data and wrote the manuscript. AG, HZ, LP and CH helped with all experiments and assisted with the manuscript. FD and SM helped with the mouse experiments and flow cytometry. YWZ, HZ and JX helped with the mouse experiments and western blottings. YCZ and XFZ provided the AML patient samples and helped with the experiments. WY analyzed the data and assisted with the manuscript. XBZ helped with the CRISPR/CAS9 experiments. SH designed all experiments, analyzed the data and wrote the manuscript. TC conceived the study, designed the experiments, interpreted the results, wrote the paper and oversaw the research project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S Hao or T Cheng.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Gao, A., Zhao, H. et al. Leukemia cell infiltration causes defective erythropoiesis partially through MIP-1α/CCL3. Leukemia 30, 1897–1908 (2016). https://doi.org/10.1038/leu.2016.81

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.81

This article is cited by

Search

Quick links