Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic myelogenous leukemia

The role of Fas-associated phosphatase 1 in leukemia stem cell persistence during tyrosine kinase inhibitor treatment of chronic myeloid leukemia

Abstract

Chronic myeloid leukemia (CML) is characterized by expression of Bcr-abl, a tyrosine kinase oncogene. Clinical outcomes in CML were revolutionized by development of Bcr-abl-targeted tyrosine kinase inhibitors (TKIs), but CML is not cured by these agents. CML leukemia stem cells (LSCs) are relatively TKI insensitive and persist even in remission. LSC persistence results in relapse upon TKI discontinuation, or drug resistance or blast crisis (BC) during prolonged treatment. We hypothesize that increased expression of Fas-associated phosphatase 1 (Fap1) in CML contributes to LSC persistence and BC. As Fap1 substrates include Fas and glycogen synthase kinase-3β (Gsk3β), increased Fap1 activity in CML is anticipated to induce Fas resistance and stabilization of β-catenin protein. Resistance to Fas-induced apoptosis may contribute to CML LSC persistence, and β-catenin activity increases during BC. In the current study, we directly tested the role of Fap1 in CML LSC persistence using in an in vivo murine model. In TKI-treated mice, we found that inhibiting Fap1, using a tripeptide or small molecule, prevented TKI resistance, BC and relapse after TKI discontinuation; all events observed with TKI alone. In addition, Fap1 inhibition increased Fas sensitivity and decreased β-catenin activity in CD34+ bone marrow cells from human subjects with CML. Therapeutic Fap1 inhibition may permit TKI discontinuation and delay in progression in CML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Rowley JD . Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973; 243: 290–293.

    Article  CAS  PubMed  Google Scholar 

  2. Cortes J, Hochhaus A, Hughes T, Kantarjian H . Front-line and salvage therapies with tyrosine kinase inhibitors and other treatments in CML. J Clin Oncol 2011; 29: 524–531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yang K, Fu LW . Mechanisms of resistance to BCR-ABL TKIs and the therapeutic strategies: a review. Crit Rev Oncol Hematol 2015; 93: 277–292.

    Article  PubMed  Google Scholar 

  4. Erba HP . Molecular monitoring to improve outcomes in patients with chronic myeloid leukemia in chronic phase: importance of achieving treatment-free remission. Am J Hematol 2015; 90: 242–249.

    Article  CAS  PubMed  Google Scholar 

  5. Lau A, Seiter K . Second-line therapy for patients with chronic myeloid leukemia resistant to first-line imatinib. Clin Lymphoma Myeloma Leuk 2104; 14: 186–196.

    Article  Google Scholar 

  6. Mahon FX, Réa D, Guilhot J, Guilhot F, Huguet F, Nicolini F et al. Discontinuation of IM in patients with CML who have maintained complete molecular remission for at least 2 years. Lancet Oncol 2010; 11: 1029–1035.

    Article  CAS  PubMed  Google Scholar 

  7. Horn M, Glauche I, Müller MC, Hehlmann R, Hochhaus A, Loeffler M et al. Model-based decision rules reduce the risk of molecular relapse after cessation of tyrosine kinase inhibitor therapy in chronic myeloid leukemia. Blood 2013; 121: 378–384.

    Article  CAS  PubMed  Google Scholar 

  8. Ross DM, Branford S, Seymour JF, Schwarer AP, Arthur C, Yeung DT et al. Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood 2013; 122: 515–522.

    Article  CAS  PubMed  Google Scholar 

  9. Drucker BJ, Guilhot F, O’Brien SG, Kantarjian H, Hochhaus A, Gabrilove JL et al. 5 year follow up of patients receiving imatinib for CML. N Engl J Med 2006; 355: 2408–2417.

    Article  Google Scholar 

  10. Michor F, Hughes TP, Iwasa Y, Branford S, Shah NP, Sawyers CL et al. Dynamics of CML. Nature 2005; 435: 1267–1270.

    Article  CAS  PubMed  Google Scholar 

  11. Roeder I, Horn M, Glauche I, Hochhaus A, Mueller MC, Loffler M . Dynamic modeling of imatinib-treated CML: functional insights & clinical implications. Nat Med 2005; 12: 1181–1184.

    Article  Google Scholar 

  12. Michor F . Quantitative approaches to analyzing imatinib-treated CML. Trends Pharmacol Sci 2007; 28: 197–199.

    Article  CAS  PubMed  Google Scholar 

  13. Oncomine, Research Addition, University of Michigan, Ann Arbor www.oncomine.org).

  14. Huang W, Bei L, Eklund EA . Fas associated phosphatase 1 (Fap1) influences βcatenin activity in myeloid progenitor cells expressing the Bcr-abl oncogene. J Biol Chem 2013; 288: 12766–12776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang W, Zhu C, Wang H, Horvath E, Eklund EA . The interferon consensus sequence binding protein (ICSBP/IRF8) represses PTPN13 gene transcription in differentiating myeloid cells. J. Biol. Chem. 2008; 283: 7921–7935.

    Article  CAS  PubMed  Google Scholar 

  16. Huang W, Bei L, Eklund EA . Fas-associated phosphatase 1 (Fap1) mediates Fas-resistance in myeloid progenitor cells expressing the Bcr-abl oncogene. Leuk Lymphoma 2012; 54: 619–630.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ysebaert L, Chicanne G, Demur C, De Toni F, Prade-Houdellier N, Ruidavets JB et al. Expression of Bcatenin by myeloid leukemia cells predicts clonogenic capacities and poor prognosis. Leukemia 2006; 20: 1211–1216.

    Article  CAS  PubMed  Google Scholar 

  18. Simon M, Grandage VL, Linch DC, Khwaja A . Constitutive activation of the Wnt/B catenin signaling pathway in myeloid leukemia. Oncogene 1995; 24: 2410–2420.

    Article  Google Scholar 

  19. Schmidt M, Nagel S, Proba J, Thiede C, Ritter M, Waring JF et al. Lack of interferon consensus sequence binding protein transcripts in human myeloid leukemias. Blood 1998; 91: 22–29.

    CAS  PubMed  Google Scholar 

  20. Hao SX, Ren R . Expression of ICSBP is down-regulated in bcr-abl-induced murine CML and forced co-expression of ICSBP inhibits bcr-abl-induced MPD. Mol Cell Biol 2000; 20: 1149–1161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Holtschke T, Lohler J, Kanno J, Kanno Y, Fehr T, Giese N et al. Immuno-deficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 1996; 87: 307–317.

    Article  CAS  PubMed  Google Scholar 

  22. Konieczna I, Horvath E, Wang H, Lindsey S, Saberwal G, Bei L et al. Constitutive activation of SHP2 cooperates with ICSBP-deficiency to accelerate progression to acute myeloid leukemia. J Clin Invest 2008; 118: 853–867.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Saras J, Claesson-Welsh L, Heldin CH, Gonex LJ . Cloning and characterization of PTPL1, a PTP with similarities to cytoskeletal-associated proteins. J Biol Chem 1994; 269: 24082–24089.

    CAS  PubMed  Google Scholar 

  24. Yanagisawa J, Takahashi M, Kanki H, Yano-Yanagisawa H, Tazunoki T, Sawa E et al. The molecular interaction of Fas and Fap1. J Biol Chem 1997; 272: 8539–8545.

    Article  CAS  PubMed  Google Scholar 

  25. Kozlov G, Banville D, Ghering K, Ekiel I . Solution structure of the PDZ2 domain from cytosolic human phosphatase hPTP1E complexed with a peptide reveals contribution of the B2-B3 loop to PDZ domain-ligand interactions. J Mol Biol 2002; 320: 813–820.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang J, Sapienza PJ, Ke H, Chang A, Hengel SR, Wang H et al. Crystallographic and nuclear magnetic resonance evaluation of the impact of peptide binding to the second PDZ domain of protein tyrosine phosphatase 1E. Biochemistry 2010; 49: 9280–9291.

    Article  CAS  PubMed  Google Scholar 

  27. Minami Y, Stuart SA, Ikawa T, Jiang Y, Banno A, Hunton IC et al. BCR-ABL-transformed GMP as myeloid leukemic stem cells. Proc Natl Acad Sci USA 2008; 105: 17967–17972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peng C, Li S . CML mouse model in translational research. Methods Mol Biol 2010; 602: 253–266.

    Article  CAS  PubMed  Google Scholar 

  29. Huang W, Zhou W, Saberwal G, Konieczna I, Horvath E, Katsoulidis E et al. The interferon consensus sequence binding protein (ICSBP) decreases Bcatenin-activity in myeloid cells by repressing GAS2 transcription. Mol Cell Biol 2010; 30: 4575–4594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang W, Hu L, Bei L, Hjort E, Eklund EA . The leukemia-associated fusion-protein Tel-platelet derived growth factor receptor B (Tel-PdgfRB) inhibits transcriptional repression of the PTPN13 gene by the interferon consensus sequence binding protein (Icsbp). J Biol Chem 2012; 287: 8110–8125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eklund EA, Kakar R . Identification of TF1phox, a DNA binding protein that increases expression of gp91phox in myeloid leukemia cells. J Biol Chem 1997; 272: 9344–9355.

    Article  CAS  PubMed  Google Scholar 

  32. Lichty BD, Keating A, Callum J, Yee K, Croxford R, Corpus G et al. Expression of p210 and p190 BCR-ABL due to alternative splicing in chronic myelogenous leukaemia. Br J Haematol 1998; 103: 711–715.

    Article  CAS  PubMed  Google Scholar 

  33. Eash KJ, Greenbaum AM, Gopalan PK, Link DC . CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J Clin Invest 2010; 120: 2423–2431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rossi AM, Taylor CW . Analysis of protein-ligand interactions by fluorescence polarization. Nat Protoc 2011; 6: 365–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Layton CJ, Hellinga HW . Quantitation of protein-protein interactions by thermal stability shift analysis. Protein Sci 2011; 20: 1439–1450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pantoliano MW, Petrella EC, Kwasnoski JD, Lobanov VS, Myslik J, Graf E et al. High-density miniaturized thermal shift assays as a general strategy for drug discovery. J Biomol Screen 2001; 6: 429–440.

    Article  CAS  PubMed  Google Scholar 

  37. Gruszecka-Kowalik E, Haugwitz RD, Zalkow LH . Quinobene, a new potent anti-HIV agent. Biochem Biophys Res Commun 1992; 187: 1409–1417.

    Article  CAS  PubMed  Google Scholar 

  38. Bigelow J, Mathews L, McCormack J . Analytical studies and murine pharmacokinetics of quinobene. Proc Am Assoc Cancer Res Annu Meet 1993; 34: 397.

    Google Scholar 

  39. Turkina AG, Logacheva NP, Stromskaya TP, Zabotina TN, Kuznetzov SV, Sachibzadaeva KK et al. Studies of some mechanisms of drug resistance in CML. Adv Exp Med Biol 1999; 457: 477–488.

    Article  CAS  PubMed  Google Scholar 

  40. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351: 657–667.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH-CA174205 and VA-BX002067 (to EAE), NIH-CA77816 and VA-I01CX000916 (to LCP) and NIH-HL75826 (to KMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E A Eklund.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Luan, CH., Hjort, E. et al. The role of Fas-associated phosphatase 1 in leukemia stem cell persistence during tyrosine kinase inhibitor treatment of chronic myeloid leukemia. Leukemia 30, 1502–1509 (2016). https://doi.org/10.1038/leu.2016.66

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.66

This article is cited by

Search

Quick links