Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic lymphocytic leukemia

Loss of a chromosomal region with synteny to human 13q14 occurs in mouse chronic lymphocytic leukemia that originates from early-generated B-1 B cells

Abstract

A common feature of B-cell chronic lymphocytic leukemia (CLL) is chromosomal loss of 13q14, containing the miR15a/16-1 locus controlling B-cell proliferation. However, CLL etiology remains unclear. CLL is an adult leukemia with an incidence that increases with advancing age. A unique feature of CLL is biased B-cell antigen receptor (BCR) usage, autoreactivity with polyreactivity and CD5 expression, all suggest a role for the BCR in driving CLL pathogenesis. Among human CLLs, BCRs autoreactive with non-muscle myosin IIA (AMyIIA) are recurrent. Here we identify an unmutated AMyIIA BCR in mouse, with distinctive CDR3 segments capable of promoting leukemogenesis. B cells with this AMyIIA BCR are generated by BCR-dependent signaling during B-1 fetal/neonatal development with CD5 induction, but not in adults. These early-generated AMyIIA B-1 B cells self-renew, increase during aging and can progress to become monoclonal B-cell lymphocytosis, followed by aggressive CLL in aged mice, often with the loss of a chromosomal region containing the miR15a/16-1 locus of varying length, as in human CLL. Thus, the ability to generate this defined autoreactive BCR by B-1 B cells is a key predisposing step in mice, promoting progression to chronic leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chiorazzi N, Ferrarini M . B cell chronic lymphocytic leukemia: lessons learned from studies of the B cell antigen receptor. Annu Rev Immunol 2003; 21: 841–894.

    Article  CAS  Google Scholar 

  2. Fais F, Ghiotto F, Hashimoto S, Sellars B, Valetto A, Allen SL et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest 1998; 102: 1515–1525.

    Article  CAS  Google Scholar 

  3. Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999; 94: 1840–1847.

    CAS  PubMed  Google Scholar 

  4. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK . Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999; 94: 1848–1854.

    CAS  PubMed  Google Scholar 

  5. Herve M, Xu K, Ng YS, Wardemann H, Albesiano E, Messmer BT et al. Unmutated and mutated chronic lymphocytic leukemias derive from self-reactive B cell precursors despite expressing different antibody reactivity. J Clin Invest 2005; 115: 1636–1643.

    Article  CAS  Google Scholar 

  6. Kipps TJ, Carson DA . Autoantibodies in chronic lymphocytic leukemia and related systemic autoimmune diseases. Blood 1993; 81: 2475–2487.

    CAS  PubMed  Google Scholar 

  7. Chu CC, Catera R, Hatzi K, Yan XJ, Zhang L, Wang XB et al. Chronic lymphocytic leukemia antibodies with a common stereotypic rearrangement recognize nonmuscle myosin heavy chain IIA. Blood 2008; 112: 5122–5129.

    Article  CAS  Google Scholar 

  8. Widhopf GF 2nd, Rassenti LZ, Toy TL, Gribben JG, Wierda WG, Kipps TJ . Chronic lymphocytic leukemia B cells of more than 1% of patients express virtually identical immunoglobulins. Blood 2004; 104: 2499–2504.

    Article  Google Scholar 

  9. Chu CC, Catera R, Zhang L, Didier S, Agagnina BM, Damle RN et al. Many chronic lymphocytic leukemia antibodies recognize apoptotic cells with exposed nonmuscle myosin heavy chain IIA: implications for patient outcome and cell of origin. Blood 2010; 115: 3907–3915.

    Article  CAS  Google Scholar 

  10. Lanemo Myhrinder A, Hellqvist E, Sidorova E, Soderberg A, Baxendale H, Dahle C et al. A new perspective: molecular motifs on oxidized LDL, apoptotic cells, and bacteria are targets for chronic lymphocytic leukemia antibodies. Blood 2008; 111: 3838–3848.

    Article  Google Scholar 

  11. Chiorazzi N, Ferrarini M . Cellular origin(s) of chronic lymphocytic leukemia: cautionary notes and additional considerations and possibilities. Blood 2011; 117: 1781–1791.

    Article  CAS  Google Scholar 

  12. Martin T, Duffy SF, Carson DA, Kipps TJ . Evidence for somatic selection of natural autoantibodies. J Exp Med 1992; 175: 983–991.

    Article  CAS  Google Scholar 

  13. Hardy RR, Hayakawa K . B cell development pathways. Annu Rev Immunol 2001; 19: 595–621.

    Article  CAS  Google Scholar 

  14. Hayakawa K, Asano M, Shinton SA, Gui M, Allman D, Stewart CL et al. Positive selection of natural autoreactive B cells. Science 1999; 285: 113–116.

    Article  CAS  Google Scholar 

  15. Wen L, Brill-Dashoff J, Shinton SA, Asano M, Hardy RR, Hayakawa K . Evidence of marginal-zone B cell-positive selection in spleen. Immunity 2005; 23: 297–308.

    Article  CAS  Google Scholar 

  16. Hardy RR, Hayakawa K . A developmental switch in B lymphopoiesis. Proc Natl Acad Sci USA 1991; 88: 11550–11554.

    Article  CAS  Google Scholar 

  17. Yuan J, Nguyen CK, Liu X, Kanellopoulou C, Muljo SA . Lin28b reprograms adult bone marrow hematopoietic progenitors to mediate fetal-like lymphopoiesis. Science 2012; 335: 1195–1200.

    Article  CAS  Google Scholar 

  18. Zhou Y, Li YS, Rao Bandi S, Tang L, Shinton SA, Hayakawa K et al. Lin28b promotes fetal B lymphopoiesis through the transcription factor Arid3a. J Exp Med 2015; 212: 569–580.

    Article  CAS  Google Scholar 

  19. Hayakawa K, Hardy RR, Herzenberg LA . Progenitors for Ly-1 B cells are distinct from progenitors for other B cells. J Exp Med 1985; 161: 1554–1568.

    Article  CAS  Google Scholar 

  20. Hayakawa K, Hardy RR, Stall AM, Herzenberg LA . Immunoglobulin-bearing B cells reconstitute and maintain the murine Ly-1 B cell lineage. Eur J Immunol 1986; 16: 1313–1316.

    Article  CAS  Google Scholar 

  21. Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci USA 2002; 99: 6955–6960.

    Article  CAS  Google Scholar 

  22. Morse HC 3rd, Anver MR, Fredrickson TN, Haines DC, Harris AW, Harris NL et al. Bethesda proposals for classification of lymphoid neoplasms in mice. Blood 2002; 100: 246–258.

    Article  CAS  Google Scholar 

  23. Johnston CM, Wood AL, Bolland DJ, Corcoran AE . Complete sequence assembly and characterization of the C57BL/6 mouse Ig heavy chain V region. J Immunol 2006; 176: 4221–4234.

    Article  CAS  Google Scholar 

  24. Winter DB, Diamond ME, Abu-hadid M, Falkenberg S, Bankert RB . Allelic differences in the VHOx-1 gene explain the absence of a B cell clonal dominance in the primary response of C57BL/6 mice to phthalate. J Immunol 1995; 155: 2445–2452.

    CAS  PubMed  Google Scholar 

  25. Thiebe R, Schable KF, Bensch A, Brensing-Kuppers J, Heim V, Kirschbaum T et al. The variable genes and gene families of the mouse immunoglobulin kappa locus. Eur J Immunol 1999; 29: 2072–2081.

    Article  CAS  Google Scholar 

  26. Ichikawa D, Asano M, Shinton SA, Brill-Dashoff J, Formica AM, Velcich A et al. Natural Anti-Intestinal Goblet Cell Autoantibody Production from Marginal Zone B Cells. J Immunol 2015; 194: 606–614.

    Article  CAS  Google Scholar 

  27. Wen L, Shinton SA, Hardy RR, Hayakawa K . Association of B-1 B cells with follicular dendritic cells in spleen. J Immunol 2005; 174: 6918–6926.

    Article  CAS  Google Scholar 

  28. Winkler TH, Rolink A, Melchers F, Karasuyama H . Precursor B cells of mouse bone marrow express two different complexes with the surrogate light chain on the surface. Eur J Immunol 1995; 25: 446–450.

    Article  CAS  Google Scholar 

  29. Yan XJ, Albesiano E, Zanesi N, Yancopoulos S, Sawyer A, Romano E et al. B cell receptors in TCL1 transgenic mice resemble those of aggressive, treatment-resistant human chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2006; 103: 11713–11718.

    Article  CAS  Google Scholar 

  30. Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 2010; 17: 28–40.

    Article  CAS  Google Scholar 

  31. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1910–1916.

    Article  CAS  Google Scholar 

  32. Takeda K, Yu ZX, Qian S, Chin TK, Adelstein RS, Ferrans VJ . Nonmuscle myosin II localizes to the Z-lines and intercalated discs of cardiac muscle and to the Z-lines of skeletal muscle. Cell Motil Cytoskeleton 2000; 46: 59–68.

    Article  CAS  Google Scholar 

  33. Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR . Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 2009; 10: 778–790.

    Article  CAS  Google Scholar 

  34. Li YS, Hayakawa K, Hardy RR . The regulated expression of B lineage associated genes during B cell differentiation in bone marrow and fetal liver. J Exp Med 1993; 178: 951–960.

    Article  CAS  Google Scholar 

  35. Wasserman R, Li YS, Shinton SA, Carmack CE, Manser T, Wiest DL et al. A novel mechanism for B cell repertoire maturation based on response by B cell precursors to pre-B receptor assembly. J Exp Med 1998; 187: 259–264.

    Article  CAS  Google Scholar 

  36. Hardy RR, Hayakawa K, Shimizu M, Yamasaki K, Kishimoto T . Rheumatoid factor secretion from human Leu-1+ B cells. Science 1987; 236: 81–83.

    Article  CAS  Google Scholar 

  37. Mageed RA, MacKenzie LE, Stevenson FK, Yuksel B, Shokri F, Maziak BR et al. Selective expression of a VHIV subfamily of immunoglobulin genes in human CD5+ B lymphocytes from cord blood. J Exp Med 1991; 174: 109–113.

    Article  CAS  Google Scholar 

  38. Martin F, Kearney JF . Marginal-zone B cells. Nat Rev Immunol 2002; 2: 323–335.

    Article  CAS  Google Scholar 

  39. Ouillette P, Collins R, Shakhan S, Li J, Li C, Shedden K et al. The prognostic significance of various 13q14 deletions in chronic lymphocytic leukemia. Clin Cancer Res 2011; 17: 6778–6790.

    Article  CAS  Google Scholar 

  40. Rodig SJ, Shahsafaei A, Li B, Dorfman DM . The CD45 isoform B220 identifies select subsets of human B cells and B-cell lymphoproliferative disorders. Hum Pathol 2005; 36: 51–57.

    Article  Google Scholar 

  41. Seifert M, Sellmann L, Bloehdorn J, Wein F, Stilgenbauer S, Durig J et al. Cellular origin and pathophysiology of chronic lymphocytic leukemia. J Exp Med 2012; 209: 2183–2198.

    Article  CAS  Google Scholar 

  42. Krishnan MR, Jou NT, Marion TN . Correlation between the amino acid position of arginine in VH-CDR3 and specificity for native DNA among autoimmune antibodies. J Immunol 1996; 157: 2430–2439.

    CAS  PubMed  Google Scholar 

  43. Duhren-von Minden M, Ubelhart R, Schneider D, Wossning T, Bach MP, Buchner M et al. Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signalling. Nature 2012; 489: 309–312.

    Article  Google Scholar 

  44. Ansel KM, Harris RB, Cyster JG . CXCL13 is required for B1 cell homing, natural antibody production, and body cavity immunity. Immunity 2002; 16: 67–76.

    Article  CAS  Google Scholar 

  45. Ha SA, Tsuji M, Suzuki K, Meek B, Yasuda N, Kaisho T et al. Regulation of B1 cell migration by signals through Toll-like receptors. J Exp Med 2006; 203: 2541–2550.

    Article  CAS  Google Scholar 

  46. Kim H, Koh GY . Platelets take the lead in lymphatic separation. Circ Res 2010; 106: 1184–1186.

    Article  CAS  Google Scholar 

  47. Lia M, Carette A, Tang H, Shen Q, Mo T, Bhagat G et al. Functional dissection of the chromosome 13q14 tumor-suppressor locus using transgenic mouse lines. Blood 2012; 119: 2981–2990.

    Article  CAS  Google Scholar 

  48. Klein U, Kuppers R, Rajewsky K . Variable region gene analysis of B cell subsets derived from a 4-year-old child: somatically mutated memory B cells accumulate in the peripheral blood already at young age. J Exp Med 1994; 180: 1383–1393.

    Article  CAS  Google Scholar 

  49. Wang X, Stollar BD . Immunoglobulin VH gene expression in human aging. Clin Immunol 1999; 93: 132–142.

    Article  CAS  Google Scholar 

  50. Kipps TJ, Tomhave E, Pratt LF, Duffy S, Chen PP, Carson DA . Developmentally restricted immunoglobulin heavy chain variable region gene expressed at high frequency in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 1989; 86: 5913–5917.

    Article  CAS  Google Scholar 

  51. Steininger C, Widhopf GF 2nd, Ghia EM, Morello CS, Vanura K, Sanders R et al. Recombinant antibodies encoded by IGHV1-69 react with pUL32, a phosphoprotein of cytomegalovirus and B-cell superantigen. Blood 2012; 119: 2293–2301.

    Article  CAS  Google Scholar 

  52. Johnson TA, Rassenti LZ, Kipps TJ . Ig VH1 genes expressed in B cell chronic lymphocytic leukemia exhibit distinctive molecular features. J Immunol 1997; 158: 235–246.

    CAS  PubMed  Google Scholar 

  53. Schroeder HW Jr, Hillson JL, Perlmutter RM . Early restriction of the human antibody repertoire. Science 1987; 238: 791–793.

    Article  CAS  Google Scholar 

  54. Murray F, Darzentas N, Hadzidimitriou A, Tobin G, Boudjogra M, Scielzo C et al. Stereotyped patterns of somatic hypermutation in subsets of patients with chronic lymphocytic leukemia: implications for the role of antigen selection in leukemogenesis. Blood 2008; 111: 1524–1533.

    Article  CAS  Google Scholar 

  55. Hwang KK, Trama AM, Kozink DM, Chen X, Wiehe K, Cooper AJ et al. IGHV1-69 B cell chronic lymphocytic leukemia antibodies cross-react with HIV-1 and hepatitis C virus antigens as well as intestinal commensal bacteria. PloS ONE 2014; 9: e90725.

    Article  Google Scholar 

  56. Forconi F, Potter KN, Wheatley I, Darzentas N, Sozzi E, Stamatopoulos K et al. The normal IGHV1-69-derived B-cell repertoire contains stereotypic patterns characteristic of unmutated CLL. Blood 2010; 115: 71–77.

    Article  CAS  Google Scholar 

  57. Potter KN, Orchard J, Critchley E, Mockridge CI, Jose A, Stevenson FK . Features of the overexpressed V1-69 genes in the unmutated subset of chronic lymphocytic leukemia are distinct from those in the healthy elderly repertoire. Blood 2003; 101: 3082–3084.

    Article  CAS  Google Scholar 

  58. Herling M, Patel KA, Khalili J, Schlette E, Kobayashi R, Medeiros LJ et al. TCL1 shows a regulated expression pattern in chronic lymphocytic leukemia that correlates with molecular subtypes and proliferative state. Leukemia 2006; 20: 280–285.

    Article  CAS  Google Scholar 

  59. Antin JH, Emerson SG, Martin P, Gadol N, Ault KA . Leu-1+ (CD5+ B cells. A major lymphoid subpopulation in human fetal spleen: phenotypic and functional studies. J Immunol 1986; 136: 505–510.

    CAS  PubMed  Google Scholar 

  60. McWilliams L, Su KY, Liang X, Liao D, Floyd S, Amos J et al. The human fetal lymphocyte lineage: identification by CD27 and LIN28B expression in B cell progenitors. J Leuko Biol 2013; 94: 991–1001.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Carlo M. Croce for providing hTCL1 transgenic mice and Y. Nakao for analysis of tumor-bearing mice. Also, we acknowledge several Fox Chase Cancer Center shared facilities for technical support, flow cytometry, DNA sequencing, cell culture, transgenic mouse, laboratory animals and genomics, including J. Pei for CGH. We thank T. Manser and K. Campbell for discussion and comments. This work was supported by the National Institutes of Health (NIH) RO1 CA129330 (KH), R01 AI049335 (KH), RO1 AI026782 (RRH), RC1 CA145445 (RRH and KH), NIH T32 training grant (MJC), and the Fox Chase Cancer Center Blood Cell Development and Cancer Keystone program, and in part by the Intramural Research Program of the NIH, NIAID.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Hayakawa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayakawa, K., Formica, A., Colombo, M. et al. Loss of a chromosomal region with synteny to human 13q14 occurs in mouse chronic lymphocytic leukemia that originates from early-generated B-1 B cells. Leukemia 30, 1510–1519 (2016). https://doi.org/10.1038/leu.2016.61

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.61

This article is cited by

Search

Quick links