Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute myeloid leukemia

Activity of 8F4, a T-cell receptor-like anti-PR1/HLA-A2 antibody, against primary human AML in vivo

Abstract

The PR1 peptide, derived from the leukemia-associated antigens proteinase 3 and neutrophil elastase, is overexpressed on HLA-A2 in acute myeloid leukemia (AML). We developed a high-affinity T-cell receptor-like murine monoclonal antibody, 8F4, that binds to the PR1/HLA-A2 complex, mediates lysis of AML and inhibits leukemia colony formation. Here, we explored whether 8F4 was active in vivo against chemotherapy-resistant AML, including secondary AML. In a screening model, coincubation of AML with 8F4 ex vivo prevented engraftment of all tested AML subtypes in immunodeficient NSG (NOD scid IL-2 receptor γ-chain knockout) mice. In a treatment model of established human AML, administration of 8F4 significantly reduced or eliminated AML xenografts and extended survival compared with isotype antibody-treated mice. Moreover, in secondary transfer experiments, mice inoculated with bone marrow from 8F4-treated mice showed no evidence of AML engraftment, supporting the possible activity of 8F4 against the subset of AML with self-renewing potential. Our data provide evidence that 8F4 antibody is highly active in AML, including chemotherapy-resistant disease, supporting its potential use as a therapeutic agent in patients with AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Champlin R, Khouri I, Kornblau S, Marini F, Anderlini P, Ueno NT et al. Allogeneic hematopoietic transplantation as adoptive immunotherapy. Induction of graft-versus-malignancy as primary therapy. Hematol Oncol Clin N Am 1999; 13: 1041–1057; vii–viii.

    Article  CAS  Google Scholar 

  2. Molldrem J, Dermime S, Parker K, Jiang YZ, Mavroudis D, Hensel N et al. Targeted T-cell therapy for human leukemia: cytotoxic T lymphocytes specific for a peptide derived from proteinase 3 preferentially lyse human myeloid leukemia cells. Blood 1996; 88: 2450–2457.

    CAS  PubMed  Google Scholar 

  3. Rusakiewicz S, Molldrem JJ . Immunotherapeutic peptide vaccination with leukemia-associated antigens. Curr Opin Immunol 2006; 18: 599–604.

    Article  CAS  PubMed  Google Scholar 

  4. Denkberg G, Cohen CJ, Lev A, Chames P, Hoogenboom HR, Reiter Y . Direct visualization of distinct T cell epitopes derived from a melanoma tumor-associated antigen by using human recombinant antibodies with MHC- restricted T cell receptor-like specificity. Proc Natl Acad Sci USA 2002; 99: 9421–9426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weidanz JA, Hawkins O, Verma B, Hildebrand WH . TCR-like biomolecules target peptide/MHC class I complexes on the surface of infected and cancerous cells. Int Rev Immunol 2011; 30: 328–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Verma B, Jain R, Caseltine S, Rennels A, Bhattacharya R, Markiewski MM et al. TCR mimic monoclonal antibodies induce apoptosis of tumor cells via immune effector-independent mechanisms. J Immunol 2011; 186: 3265–3276.

    Article  CAS  PubMed  Google Scholar 

  7. Jain R, Rawat A, Verma B, Markiewski MM, Weidanz JA . Antitumor activity of a monoclonal antibody targeting major histocompatibility complex class I-Her2 peptide complexes. J Natl Cancer Inst 2013; 105: 202–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Davis MM, Boniface JJ, Reich Z, Lyons D, Hampl J, Arden B et al. Ligand recognition by alpha beta T cell receptors. Annu Rev Immunol 1998; 16: 523–544.

    Article  CAS  PubMed  Google Scholar 

  9. Krogsgaard M, Davis MM . How T cells 'see' antigen. Nat Immunol 2005; 6: 239–245.

    Article  CAS  PubMed  Google Scholar 

  10. Reiter Y, Di Carlo A, Fugger L, Engberg J, Pastan I . Peptide-specific killing of antigen-presenting cells by a recombinant antibody-toxin fusion protein targeted to major histocompatibility complex/peptide class I complexes with T cell receptor-like specificity. Proc Natl Acad Sci USA 1997; 94: 4631–4636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kumar P, Vahedi-Faridi A, Saenger W, Ziegler A, Uchanska-Ziegler B . Conformational changes within the HLA-A1:MAGE-A1 complex induced by binding of a recombinant antibody fragment with TCR-like specificity. Protein Sci 2009; 18: 37–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dao T, Liu C, Scheinberg DA . Approaching untargetable tumor-associated antigens with antibodies. Oncoimmunology 2013; 2: e24678.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Klechevsky E, Gallegos M, Denkberg G, Palucka K, Banchereau J, Cohen C et al. Antitumor activity of immunotoxins with T-cell receptor-like specificity against human melanoma xenografts. Cancer Res 2008; 68: 6360–6367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dao T, Yan S, Veomett N, Pankov D, Zhou L, Korontsvit T et al. Targeting the intracellular WT1 oncogene product with a therapeutic human antibody. Sci Transl Med 2013; 5: 176ra133.

    Article  Google Scholar 

  15. Dubrovsky L, Pankov D, Brea EJ, Dao T, Scott A, Yan S et al. A TCR-mimic antibody to WT1 bypasses tyrosine kinase inhibitor resistance in human BCR-ABL+ leukemias. Blood 2014; 123: 3296–3304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Molldrem JJ, Clave E, Jiang YZ, Mavroudis D, Raptis A, Hensel N et al. Cytotoxic T lymphocytes specific for a nonpolymorphic proteinase 3 peptide preferentially inhibit chronic myeloid leukemia colony-forming units. Blood 1997; 90: 2529–2534.

    CAS  PubMed  Google Scholar 

  17. Molldrem JJ, Lee PP, Wang C, Felio K, Kantarjian HM, Champlin RE et al. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med 2000; 6: 1018–1023.

    Article  CAS  PubMed  Google Scholar 

  18. Qazilbash MH, Wieder ED, Thall PF, Wang X, Rios RL, Lu S et al. PR1 peptide vaccine-induced immune response is associated with better event-free survival in patients with myeloid leukemia. ASH Annu Meet Abstr 2007; 110: 283.

    Google Scholar 

  19. Qazilbash MH, Wieder ED, Thall PF, Wang X, Rios RL, Lu S et al. PR1 vaccine elicited immunological response after hematopoietic stem cell transplantation is associated with better clinical response and event-free survival. ASH Annu Meet Abstr 2007; 110: 577.

    Google Scholar 

  20. QuintasCardama A, Kantarjian HM, Rios R, Wieder ED, Molldrem JJ, Cortes J . Randomized phase II study of proteinase 3-derived PR1 peptide vaccine and GM-CSF with or without PEG-interferon ALFA-2B to eradicate minimal residual disease in chronic myeloid leukemia. ASH Annu Meet Abstr 2008; 112: 3219.

    Google Scholar 

  21. Sergeeva A, Alatrash G, He H, Ruisaard K, Lu S, Wygant J et al. An anti-PR1/HLA-A2 T-cell receptor-like antibody mediates complement-dependent cytotoxicity against acute myeloid leukemia progenitor cells. Blood 2011; 117: 4262–4272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sanchez PV, Perry RL, Sarry JE, Perl AE, Murphy K, Swider CR et al. A robust xenotransplantation model for acute myeloid leukemia. Leukemia 2009; 23: 2109–2117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ma Q, Wang C, Jones D, Quintanilla KE, Li D, Wang Y et al. Adoptive transfer of PR1 cytotoxic T lymphocytes associated with reduced leukemia burden in a mouse acute myeloid leukemia xenograft model. Cytotherapy 2010; 12: 1056–1062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jin L, Lee EM, Ramshaw HS, Busfield SJ, Peoppl AG, Wilkinson L et al. Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell 2009; 5: 31–42.

    Article  CAS  PubMed  Google Scholar 

  25. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367: 645–648.

    Article  CAS  PubMed  Google Scholar 

  26. Agliano A, Martin-Padura I, Mancuso P, Marighetti P, Rabascio C, Pruneri G et al. Human acute leukemia cells injected in NOD/LtSz-scid/IL-2Rgamma null mice generate a faster and more efficient disease compared to other NOD/scid-related strains. Int J Cancer 2008; 123: 2222–2227.

    Article  CAS  PubMed  Google Scholar 

  27. Jones AR, Shusta EV . Antibodies and the blood–brain barrier. In: An Z (ed). Therapeutic Monoclonal Antibodies: From Bench to Clinic. Wiley: Hoboken, NJ, USA, 2009.

    Google Scholar 

  28. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    Article  CAS  PubMed  Google Scholar 

  29. Lacey SF, La Rosa C, Kaltcheva T, Srivastava T, Seidel A, Zhou W et al. Characterization of immunologic properties of a second HLA-A2 epitope from a granule protease in CML patients and HLA-A2 transgenic mice. Blood 2011; 118: 2159–2169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alatrash G, Mittendorf EA, Sergeeva A, Sukhumalchandra P, Qiao N, Zhang M et al. Broad cross-presentation of the hematopoietically derived PR1 antigen on solid tumors leads to susceptibility to PR1-targeted immunotherapy. J Immunol 2012; 189: 5476–5484.

    Article  CAS  PubMed  Google Scholar 

  31. Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 1995; 154: 180–191.

    CAS  PubMed  Google Scholar 

  32. Hernandez-Ilizaliturri FJ, Jupudy V, Ostberg J, Oflazoglu E, Huberman A, Repasky E et al. Neutrophils contribute to the biological antitumor activity of rituximab in a non-Hodgkin's lymphoma severe combined immunodeficiency mouse model. Clin Cancer Res 2003; 9 (Part 1): 5866–5873.

    CAS  PubMed  Google Scholar 

  33. de la Fuente M, Alonso MC, Solana R, Pena J . Macrophage and lymphocyte antibody-dependent cellular cytotoxicity in spontaneous leukemogenesis of AKR/J mice. Tumour Biol 1989; 10: 310–315.

    Article  CAS  PubMed  Google Scholar 

  34. Mufson RA, Aghajanian J, Wong G, Woodhouse C, Morgan AC . Macrophage colony-stimulating factor enhances monocyte and macrophage antibody-dependent cell-mediated cytotoxicity. Cell Immunol 1989; 119: 182–192.

    Article  CAS  PubMed  Google Scholar 

  35. Boero S, Morabito A, Banelli B, Cardinali B, Dozin B, Lunardi G et al. Analysis of in vitro ADCC and clinical response to trastuzumab: possible relevance of FcgammaRIIIA/FcgammaRIIA gene polymorphisms and HER-2 expression levels on breast cancer cell lines. J Transl Med 2015; 13: 324.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bowles JA, Wang SY, Link BK, Allan B, Beuerlein G, Campbell MA et al. Anti-CD20 monoclonal antibody with enhanced affinity for CD16 activates NK cells at lower concentrations and more effectively than rituximab. Blood 2006; 108: 2648–2654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Weiner GJ . Rituximab: mechanism of action. Semin Hematol 2010; 47: 115–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hahn T, McCarthy Jr PL, Zhang MJ, Wang D, Arora M, Frangoul H et al. Risk factors for acute graft-versus-host disease after human leukocyte antigen-identical sibling transplants for adults with leukemia. J Clin Oncol 2008; 26: 5728–5734.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Krogsgaard M, Wucherpfennig KW, Cannella B, Hansen BE, Svejgaard A, Pyrdol J et al. Visualization of myelin basic protein (MBP) T cell epitopes in multiple sclerosis lesions using a monoclonal antibody specific for the human histocompatibility leukocyte antigen (HLA)-DR2-MBP 85-99 complex. J Exp Med 2000; 191: 1395–1412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD Jr et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 2009; 138: 286–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vago L, Perna SK, Zanussi M, Mazzi B, Barlassina C, Stanghellini MT et al. Loss of mismatched HLA in leukemia after stem-cell transplantation. N Engl J Med 2009; 361: 478–488.

    Article  CAS  PubMed  Google Scholar 

  42. Villalobos IB, Takahashi Y, Akatsuka Y, Muramatsu H, Nishio N, Hama A et al. Relapse of leukemia with loss of mismatched HLA resulting from uniparental disomy after haploidentical hematopoietic stem cell transplantation. Blood 2010; 115: 3158–3161.

    Article  CAS  PubMed  Google Scholar 

  43. Stewart DJ, Keating MJ, McCredie KB, Smith TL, Youness E, Murphy SG et al. Natural history of central nervous system acute leukemia in adults. Cancer 1981; 47: 184–196.

    Article  CAS  PubMed  Google Scholar 

  44. Atwal JK, Chen Y, Chiu C, Mortensen DL, Meilandt WJ, Liu Y et al. A therapeutic antibody targeting BACE1 inhibits amyloid-beta production in vivo. Sci Transl Med 2011; 3: 84ra43.

    Article  PubMed  Google Scholar 

  45. Olson BM, McNeel DG . Antigen loss and tumor-mediated immunosuppression facilitate tumor recurrence. Expert Rev Vaccines 2012; 11: 1315–1317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Majeti R . Monoclonal antibody therapy directed against human acute myeloid leukemia stem cells. Oncogene 2011; 30: 1009–1019.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by research funding from NCI CA100632 (to JJM); NCI P01 CA148600-05 (to JJM); Leukemia and Lymphoma Society 6030-12 (to JJM); Leukemia and Lymphoma Society 7262-08 (to JJM); Gillson Longenbaugh Foundation (to JJM), NCI CA16672 Core Grant (Monoclonal Antibody Core Facility; Flow Cytometry and Cellular Imaging Facility; Research Animal Support Facility; Histopathology Facility); NCI CA164346 (to MJY), Developmental Research Awards in Leukemia SPORE CA100632 (to MJY); and Ladies Leukemia League (to MJY), Center for Inflammation and Cancer, Center for Genetics and Genomics, IRG, Sister Institution Network fund of UT MD Anderson Cancer Center (to MJY). In particular, we wish to acknowledge Dr Long Vien in the Monoclonal Antibody Core Facility for providing purified 8F4. We acknowledge Dr Gregory Lizee for critical reading of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J J Molldrem.

Ethics declarations

Competing interests

Dr Molldrem and Dr Sergeeva are inventors on a related patent and they receive royalty payments. The other authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergeeva, A., He, H., Ruisaard, K. et al. Activity of 8F4, a T-cell receptor-like anti-PR1/HLA-A2 antibody, against primary human AML in vivo. Leukemia 30, 1475–1484 (2016). https://doi.org/10.1038/leu.2016.57

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.57

This article is cited by

Search

Quick links