Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcriptional control and signal transduction, cell cycle

MAPK/ERK2 phosphorylates ERG at serine 283 in leukemic cells and promotes stem cell signatures and cell proliferation

Abstract

Aberrant ERG (v-ets avian erythroblastosis virus E26 oncogene homolog) expression drives leukemic transformation in mice and high expression is associated with poor patient outcomes in acute myeloid leukemia (AML) and T-acute lymphoblastic leukemia (T-ALL). Protein phosphorylation regulates the activity of many ETS factors but little is known about ERG in leukemic cells. To characterize ERG phosphorylation in leukemic cells, we applied liquid chromatography coupled tandem mass spectrometry and identified five phosphorylated serines on endogenous ERG in T-ALL and AML cells. S283 was distinct as it was abundantly phosphorylated in leukemic cells but not in healthy hematopoietic stem and progenitor cells (HSPCs). Overexpression of a phosphoactive mutant (S283D) increased expansion and clonogenicity of primary HSPCs over and above wild-type ERG. Using a custom antibody, we screened a panel of primary leukemic xenografts and showed that ERG S283 phosphorylation was mediated by mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling and in turn regulated expression of components of this pathway. S283 phosphorylation facilitates ERG enrichment and transactivation at the ERG +85 HSPC enhancer that is active in AML and T-ALL with poor prognosis. Taken together, we have identified a specific post-translational modification in leukemic cells that promotes progenitor proliferation and is a potential target to modulate ERG-driven transcriptional programs in leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Birdsey GM, Dryden NH, Amsellem V, Gebhardt F, Sahnan K, Haskard DO et al. Transcription factor Erg regulates angiogenesis and endothelial apoptosis through VE-cadherin. Blood 2008; 111: 3498–3506.

    Article  CAS  Google Scholar 

  2. McLaughlin F, Ludbrook VJ, Cox J, von Carlowitz I, Brown S, Randi AM . Combined genomic and antisense analysis reveals that the transcription factor Erg is implicated in endothelial cell differentiation. Blood 2001; 98: 3332–3339.

    Article  CAS  Google Scholar 

  3. Vijayaraj P, Le Bras A, Mitchell N, Kondo M, Juliao S, Wasserman M et al. Erg is a crucial regulator of endocardial-mesenchymal transformation during cardiac valve morphogenesis. Development 2012; 139: 3973–3985.

    Article  CAS  Google Scholar 

  4. Ng AP, Loughran SJ, Metcalf D, Hyland CD, de Graaf CA, Hu Y et al. Erg is required for self-renewal of hematopoietic stem cells during stress hematopoiesis in mice. Blood 2011; 118: 2454–2461.

    Article  CAS  Google Scholar 

  5. Loughran SJ, Kruse EA, Hacking DF, de Graaf CA, Hyland CD, Willson TA et al. The transcription factor Erg is essential for definitive hematopoiesis and the function of adult hematopoietic stem cells. Nat Immunol 2008; 9: 810–819.

    Article  CAS  Google Scholar 

  6. Thoms JA, Birger Y, Foster S, Knezevic K, Kirschenbaum Y, Chandrakanthan V et al. ERG promotes T-acute lymphoblastic leukemia and is transcriptionally regulated in leukemic cells by a stem cell enhancer. Blood 2011; 117: 7079–7089.

    Article  CAS  Google Scholar 

  7. Knudsen KJ, Rehn M, Hasemann MS, Rapin N, Bagger FO, Ohlsson E et al. ERG promotes the maintenance of hematopoietic stem cells by restricting their differentiation. Genes Dev 2015; 29: 1915–1929.

    Article  CAS  Google Scholar 

  8. Baldus CD, Burmeister T, Martus P, Schwartz S, Gokbuget N, Bloomfield CD et al. High expression of the ETS transcription factor ERG predicts adverse outcome in acute T-lymphoblastic leukemia in adults. J Clin Oncol 2006; 24: 4714–4720.

    Article  CAS  Google Scholar 

  9. Metzeler KH, Dufour A, Benthaus T, Hummel M, Sauerland MC, Heinecke A et al. ERG expression is an independent prognostic factor and allows refined risk stratification in cytogenetically normal acute myeloid leukemia: a comprehensive analysis of ERG, MN1, and BAALC transcript levels using oligonucleotide microarrays. J Clin Oncol 2009; 27: 5031–5038.

    Article  CAS  Google Scholar 

  10. Marcucci G, Maharry K, Whitman SP, Vukosavljevic T, Paschka P, Langer C et al. High expression levels of the ETS-related gene, ERG, predict adverse outcome and improve molecular risk-based classification of cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B Study. J Clin Oncol 2007; 25: 3337–3343.

    Article  CAS  Google Scholar 

  11. Salek-Ardakani S, Smooha G, de Boer J, Sebire NJ, Morrow M, Rainis L et al. ERG is a megakaryocytic oncogene. Cancer Res 2009; 69: 4665–4673.

    Article  CAS  Google Scholar 

  12. Goldberg L, Tijssen MR, Birger Y, Hannah RL, Kinston SJ, Schutte J et al. Genome-scale expression and transcription factor binding profiles reveal therapeutic targets in transgenic ERG myeloid leukemia. Blood 2013; 122: 2694–2703.

    Article  CAS  Google Scholar 

  13. Tursky ML, Beck D, Thoms JA, Huang Y, Kumari A, Unnikrishnan A et al. Overexpression of ERG in cord blood progenitors promotes expansion and recapitulates molecular signatures of high ERG leukemias. Leukemia 2015; 29: 819–827.

    Article  CAS  Google Scholar 

  14. Ma H, Qazi S, Ozer Z, Zhang J, Ishkhanian R, Uckun FM . Regulatory phosphorylation of Ikaros by Bruton's tyrosine kinase. PLoS One 2013; 8: e71302.

    Article  CAS  Google Scholar 

  15. Cowley DO, Graves BJ . Phosphorylation represses Ets-1 DNA binding by reinforcing autoinhibition. Genes Dev 2000; 14: 366–376.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang H, Yu M, Akie TE, Moran TB, Woo AJ, Tu N et al. Differentiation-dependent interactions between RUNX-1 and FLI-1 during megakaryocyte development. Mol Cell Biol 2009; 29: 4103–4115.

    Article  CAS  Google Scholar 

  17. Murakami K, Mavrothalassitis G, Bhat NK, Fisher RJ, Papas TS . Human ERG-2 protein is a phosphorylated DNA-binding protein—a distinct member of the ets family. Oncogene 1993; 8: 1559–1566.

    CAS  PubMed  Google Scholar 

  18. Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 2010; 143: 1174–1189.

    Article  CAS  Google Scholar 

  19. Singareddy R, Semaan L, Conley-Lacomb MK, St John J, Powell K, Iyer M et al. Transcriptional regulation of CXCR4 in prostate cancer: significance of TMPRSS2-ERG fusions. Mol Cancer Res 2013; 11: 1349–1361.

    Article  CAS  Google Scholar 

  20. Guo H, Isserlin R, Chen X, Wang W, Phanse S, Zandstra PW et al. Integrative network analysis of signaling in human CD34(+) hematopoietic progenitor cells by global phosphoproteomic profiling using TiO2 enrichment combined with 2D LC-MS/MS and pathway mapping. Proteomics 2013; 13: 1325–1333.

    Article  CAS  Google Scholar 

  21. Selvaraj N, Kedage V, Hollenhorst PC . Comparison of MAPK specificity across the ETS transcription factor family identifies a high-affinity ERK interaction required for ERG function in prostate cells. Cell Commun Signal 2015; 13: 12.

    Article  Google Scholar 

  22. Cheng L, Fu J, Tsukamoto A, Hawley RG . Use of green fluorescent protein variants to monitor gene transfer and expression in mammalian cells. Nat Biotechnol 1996; 14: 606–609.

    Article  CAS  Google Scholar 

  23. Schuller CE, Jankowski K, Mackenzie KL . Telomere length of cord blood-derived CD34(+) progenitors predicts erythroid proliferative potential. Leukemia 2007; 21: 983–991.

    Article  CAS  Google Scholar 

  24. Trapnell C, Pachter L, Salzberg SL . TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009; 25: 1105–1111.

    Article  CAS  Google Scholar 

  25. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 2010; 38: 576–589.

    Article  CAS  Google Scholar 

  26. Anders S, Huber W . Differential expression analysis for sequence count data. Genome Biol 2010; 11: R106.

    Article  CAS  Google Scholar 

  27. Diffner E, Beck D, Gudgin E, Thoms JA, Knezevic K, Pridans C et al. Activity of a heptad of transcription factors is associated with stem cell programs and clinical outcome in acute myeloid leukemia. Blood 2013; 121: 2289–2300.

    Article  CAS  Google Scholar 

  28. Beck D, Thoms JA, Perera D, Schutte J, Unnikrishnan A, Knezevic K et al. Genome-wide analysis of transcriptional regulators in human HSPCs reveals a densely interconnected network of coding and noncoding genes. Blood 2013; 122: e12–e22.

    Article  CAS  Google Scholar 

  29. Pimanda JE, Donaldson IJ, de Bruijn MF, Kinston S, Knezevic K, Huckle L et al. The SCL transcriptional network and BMP signaling pathway interact to regulate RUNX1 activity. Proc Natl Acad Sci USA 2007; 104: 840–845.

    Article  CAS  Google Scholar 

  30. Pimanda JE, Ottersbach K, Knezevic K, Kinston S, Chan WY, Wilson NK et al. Gata2, Fli1, and Scl form a recursively wired gene-regulatory circuit during early hematopoietic development. Proc Natl Acad Sci USA 2007; 104: 17692–17697.

    Article  CAS  Google Scholar 

  31. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteom 2002; 1: 376–386.

    Article  CAS  Google Scholar 

  32. Maude SL, Dolai S, Delgado-Martin C, Vincent T, Robbins A, Selvanathan A et al. Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia. Blood 2015; 125: 1759–1767.

    Article  CAS  Google Scholar 

  33. Moradi Manesh D, El-Hoss J, Evans K, Richmond J, Toscan CE, Bracken LS et al. AKR1C3 is a biomarker of sensitivity to PR-104 in preclinical models of T-cell acute lymphoblastic leukemia. Blood 2015; 126: 1193–1202.

    Article  Google Scholar 

  34. Suryani S, Carol H, Chonghaile TN, Frismantas V, Sarmah C, High L et al. Cell and molecular determinants of in vivo efficacy of the BH3 mimetic ABT-263 against pediatric acute lymphoblastic leukemia xenografts. Clin Cancer Res 2014; 20: 4520–4531.

    Article  CAS  Google Scholar 

  35. Lee EM, Yee D, Busfield SJ, McManus JF, Cummings N, Vairo G et al. Efficacy of an Fc-modified anti-CD123 antibody (CSL362) combined with chemotherapy in xenograft models of acute myelogenous leukemia in immunodeficient mice. Haematologica 2015; 100: 914–926.

    Article  CAS  Google Scholar 

  36. Fantz DA, Jacobs D, Glossip D, Kornfeld K . Docking sites on substrate proteins direct extracellular signal-regulated kinase to phosphorylate specific residues. J Biol Chem 2001; 276: 27256–27265.

    Article  CAS  Google Scholar 

  37. Jacobs D, Glossip D, Xing H, Muslin AJ, Kornfeld K . Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. Genes Dev 1999; 13: 163–175.

    Article  CAS  Google Scholar 

  38. Verin AD, Liu F, Bogatcheva N, Borbiev T, Hershenson MB, Wang P et al. Role of ras-dependent ERK activation in phorbol ester-induced endothelial cell barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2000; 279: L360–L370.

    Article  CAS  Google Scholar 

  39. Oram SH, Thoms JA, Pridans C, Janes ME, Kinston SJ, Anand S et al. A previously unrecognized promoter of LMO2 forms part of a transcriptional regulatory circuit mediating LMO2 expression in a subset of T-acute lymphoblastic leukaemia patients. Oncogene 2010; 29: 5796–5808.

    Article  CAS  Google Scholar 

  40. Chang L, Karin M . Mammalian MAP kinase signalling cascades. Nature 2001; 410: 37–40.

    Article  CAS  Google Scholar 

  41. Bohne A, Schlee C, Mossner M, Thibaut J, Heesch S, Thiel E et al. Epigenetic control of differential expression of specific ERG isoforms in acute T-lymphoblastic leukemia. Leukemia Res 2009; 33: 817–822.

    Article  CAS  Google Scholar 

  42. Carrere S, Verger A, Flourens A, Stehelin D, Duterque-Coquillaud M . Erg proteins, transcription factors of the Ets family, form homo, heterodimers and ternary complexes via two distinct domains. Oncogene 1998; 16: 3261–3268.

    Article  CAS  Google Scholar 

  43. Basuyaux JP, Ferreira E, Stehelin D, Buttice G . The Ets transcription factors interact with each other and with the c-Fos/c-Jun complex via distinct protein domains in a DNA-dependent and -independent manner. J Biol Chem 1997; 272: 26188–26195.

    Article  CAS  Google Scholar 

  44. Ravasi T, Suzuki H, Cannistraci CV, Katayama S, Bajic VB, Tan K et al. An atlas of combinatorial transcriptional regulation in mouse and man. Cell 2010; 140: 744–752.

    Article  CAS  Google Scholar 

  45. Wilson NK, Foster SD, Wang X, Knezevic K, Schutte J, Kaimakis P et al. Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 2010; 7: 532–544.

    Article  CAS  Google Scholar 

  46. Brumbaugh J, Hou Z, Russell JD, Howden SE, Yu P, Ledvina AR et al. Phosphorylation regulates human OCT4. Proc Natl Acad Sci USA 2012; 109: 7162–7168.

    Article  CAS  Google Scholar 

  47. Oettgen P . Functional redundancy of Ets1 and Ets2. Blood 2009; 114: 934–935.

    Article  CAS  Google Scholar 

  48. Hollenhorst PC, Shah AA, Hopkins C, Graves BJ . Genome-wide analyses reveal properties of redundant and specific promoter occupancy within the ETS gene family. Genes Dev 2007; 21: 1882–1894.

    Article  CAS  Google Scholar 

  49. Roe JS, Mercan F, Rivera K, Pappin DJ, Vakoc CR . BET bromodomain inhibition suppresses the function of hematopoietic transcription factors in acute myeloid leukemia. Mol Cell 2015; 58: 1028–1039.

    Article  CAS  Google Scholar 

  50. Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 2011; 478: 529–533.

    Article  CAS  Google Scholar 

  51. Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S, Mele DA et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci USA 2011; 108: 16669–16674.

    Article  CAS  Google Scholar 

  52. Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 2011; 478: 524–528.

    Article  CAS  Google Scholar 

  53. Tootle TL, Rebay I . Post-translational modifications influence transcription factor activity: a view from the ETS superfamily. Bioessays 2005; 27: 285–298.

    Article  CAS  Google Scholar 

  54. Walsh CT, Garneau-Tsodikova S, Gatto GJ Jr . Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem 2005; 44: 7342–7372.

    Article  CAS  Google Scholar 

  55. Spengler ML, Guo LW, Brattain MG . Phosphorylation mediates Sp1 coupled activities of proteolytic processing, desumoylation and degradation. Cell Cycle 2008; 7: 623–630.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff at the Mark Wainwright analytical centre for mass spectrometry and for cell sorting analyses and the donors and staff of the cord blood bank at the Prince of Wales hospital for CBs. This work was funded by the National Health and Medical Research Council (Australia), Anthony Rothe Memorial Trust (to JAIT and DB) and the Cancer Institute of NSW. YH received scholarships from UNSW Australia and the Translational Cancer Research Network (UNSW, Australia). JWHW is a Future Fellow of the Australian Research Council.

Author contributions

YH, JAIT, MLT, KK, DB, VC, ENG and AB performed experiments and analyzed data. JO, SRT, KLM, JWHW and JEP analyzed data. SS, RBL, KLM and JHB provided essential reagents. YH, JAIT, JWHW and JEP wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J W H Wong or J E Pimanda.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Thoms, J., Tursky, M. et al. MAPK/ERK2 phosphorylates ERG at serine 283 in leukemic cells and promotes stem cell signatures and cell proliferation. Leukemia 30, 1552–1561 (2016). https://doi.org/10.1038/leu.2016.55

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.55

This article is cited by

Search

Quick links