Antigen receptor stereotypy in chronic lymphocytic leukemia


The discovery of almost identical or ‘stereotyped’ B-cell receptor immunoglobulins (BcR IG) among unrelated patients with chronic lymphocytic leukemia (CLL) cemented the idea of antigen selection in disease ontogeny and evolution. The systematic analysis of the stereotypy phenomenon in CLL revealed that around one-third of CLL patients may be grouped into subsets based on shared sequence motifs within the variable heavy complementarity determining region 3. Stereotyped subsets display a strikingly similar biology of the leukemic clones, referring to many different levels, from the immunogenetic and genetic and extending to the epigenetic and functional levels. Even more importantly, the homogeneity of stereotyped subsets has clinical consequences as patients assigned to the same stereotyped subset generally exhibit an overall similar disease course and outcome. In other words, stereotypy-based patient classification of CLL has already provided a more compartmentalized view of this otherwise heterogeneous disease and can assist in refining prognostication models. While this is relevant only for the one-third of cases expressing stereotyped BcR IG; in principle, however, the findings from further analysis of the stereotyped subsets may also contribute towards improved understanding of the remaining non-stereotyped fraction of CLL patients.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5


  1. 1

    Hallek M . Chronic lymphocytic leukemia: 2015 Update on diagnosis, risk stratification, and treatment. Am J Hematol 2015; 90: 446–460.

  2. 2

    Sutton LA, Rosenquist R . The complex interplay between cell-intrinsic and cell-extrinsic factors driving the evolution of chronic lymphocytic leukemia. Semin Cancer Biol 2015; 34: 22–35.

  3. 3

    Gruber M, Wu CJ . Evolving understanding of the CLL genome. Semin Hematol 2014; 51: 177–187.

  4. 4

    Sutton LA, Rosenquist R . Deciphering the molecular landscape in chronic lymphocytic leukemia: time frame of disease evolution. Haematologica 2015; 100: 7–16.

  5. 5

    Zenz T, Eichhorst B, Busch R, Denzel T, Habe S, Winkler D et al. TP53 mutation and survival in chronic lymphocytic leukemia. J Clin Oncol 2010; 28: 4473–4479.

  6. 6

    Sutton LA, Agathangelidis A, Belessi C, Darzentas N, Davi F, Ghia P et al. Antigen selection in B-cell lymphomas—tracing the evidence. Semin Cancer Biol 2013; 23: 399–409.

  7. 7

    Packham G, Krysov S, Allen A, Savelyeva N, Steele AJ, Forconi F et al. The outcome of B-cell receptor signaling in chronic lymphocytic leukemia: proliferation or anergy. Haematologica 2014; 99: 1138–1148.

  8. 8

    Burger JA, Chiorazzi N . B cell receptor signaling in chronic lymphocytic leukemia. Trends Immunol 2013; 34: 592–601.

  9. 9

    Chiorazzi N, Ferrarini M . B cell chronic lymphocytic leukemia: lessons learned from studies of the B cell antigen receptor. Annu Rev Immunol 2003; 21: 841–894.

  10. 10

    Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 2013; 369: 32–42.

  11. 11

    Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM, Hillmen P et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med 2014; 370: 997–1007.

  12. 12

    Stevenson FK, Forconi F, Packham G . The meaning and relevance of B-cell receptor structure and function in chronic lymphocytic leukemia. Semin Hematol 2014; 51: 158–167.

  13. 13

    Gounari M, Minici C, Ubelhart R, Duehren-von Minden M, Schneider D, Tasdogan A et al. Distinct Homotypic B-cell Receptor Interactions Shape The Outcome Of Chronic Lymphocytic Leukemia. 21st Congress of EHA; 2016. Haematologica: Copenhagen, Denmark, 2016; p. 9.

  14. 14

    Fais F, Ghiotto F, Hashimoto S, Sellars B, Valetto A, Allen SL et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest 1998; 102: 1515–1525.

  15. 15

    Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK . Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999; 94: 1848–1854.

  16. 16

    Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999; 94: 1840–1847.

  17. 17

    Vardi A, Agathangelidis A, Sutton LA, Ghia P, Rosenquist R, Stamatopoulos K . Immunogenetic studies of chronic lymphocytic leukemia: revelations and speculations about ontogeny and clinical evolution. Cancer Res 2014; 74: 4211–4216.

  18. 18

    Mertens D, Stilgenbauer S . Prognostic and predictive factors in patients with chronic lymphocytic leukemia: relevant in the era of novel treatment approaches? J Clin Oncol 2014; 32: 869–872.

  19. 19

    Baliakas P, Hadzidimitriou A, Sutton LA, Rossi D, Minga E, Villamor N et al. Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia 2015; 29: 329–336.

  20. 20

    Messmer BT, Albesiano E, Efremov DG, Ghiotto F, Allen SL, Kolitz J et al. Multiple distinct sets of stereotyped antigen receptors indicate a role for antigen in promoting chronic lymphocytic leukemia. J Exp Med 2004; 200: 519–525.

  21. 21

    Hashimoto S, Dono M, Wakai M, Allen SL, Lichtman SM, Schulman P et al. Somatic diversification and selection of immunoglobulin heavy and light chain variable region genes in IgG+ CD5+ chronic lymphocytic leukemia B cells. J Exp Med 1995; 181: 1507–1517.

  22. 22

    Johnson TA, Rassenti LZ, Kipps TJ . Ig VH1 genes expressed in B cell chronic lymphocytic leukemia exhibit distinctive molecular features. J Immunol 1997; 158: 235–246.

  23. 23

    Schroeder Jr HW, Dighiero G . The pathogenesis of chronic lymphocytic leukemia: analysis of the antibody repertoire. Immunol Today 1994; 15: 288–294.

  24. 24

    Tobin G, Thunberg U, Johnson A, Eriksson I, Soderberg O, Karlsson K et al. Chronic lymphocytic leukemias utilizing the VH3-21 gene display highly restricted Vlambda2-14 gene use and homologous CDR3s: implicating recognition of a common antigen epitope. Blood 2003; 101: 4952–4957.

  25. 25

    Ghiotto F, Fais F, Valetto A, Albesiano E, Hashimoto S, Dono M et al. Remarkably similar antigen receptors among a subset of patients with chronic lymphocytic leukemia. J Clin Invest 2004; 113: 1008–1016.

  26. 26

    Ghia P, Stamatopoulos K, Belessi C, Moreno C, Stella S, Guida G et al. Geographic patterns and pathogenetic implications of IGHV gene usage in chronic lymphocytic leukemia: the lesson of the IGHV3-21 gene. Blood 2005; 105: 1678–1685.

  27. 27

    Tobin G, Thunberg U, Karlsson K, Murray F, Laurell A, Willander K et al. Subsets with restricted immunoglobulin gene rearrangement features indicate a role for antigen selection in the development of chronic lymphocytic leukemia. Blood 2004; 104: 2879–2885.

  28. 28

    Widhopf GF 2nd, Rassenti LZ, Toy TL, Gribben JG, Wierda WG, Kipps TJ . Chronic lymphocytic leukemia B cells of more than 1% of patients express virtually identical immunoglobulins. Blood 2004; 104: 2499–2504.

  29. 29

    Stamatopoulos K, Belessi C, Moreno C, Boudjograh M, Guida G, Smilevska T et al. Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: pathogenetic implications and clinical correlations. Blood 2007; 109: 259–270.

  30. 30

    Murray F, Darzentas N, Hadzidimitriou A, Tobin G, Boudjogra M, Scielzo C et al. Stereotyped patterns of somatic hypermutation in subsets of patients with chronic lymphocytic leukemia: implications for the role of antigen selection in leukemogenesis. Blood 2008; 111: 1524–1533.

  31. 31

    Kirkham PM, Mortari F, Newton JA, Schroeder HW Jr . Immunoglobulin VH clan and family identity predicts variable domain structure and may influence antigen binding. EMBO J 1992; 11: 603–609.

  32. 32

    Darzentas N, Hadzidimitriou A, Murray F, Hatzi K, Josefsson P, Laoutaris N et al. A different ontogenesis for chronic lymphocytic leukemia cases carrying stereotyped antigen receptors: molecular and computational evidence. Leukemia 2010; 24: 125–132.

  33. 33

    Agathangelidis A, Darzentas N, Hadzidimitriou A, Brochet X, Murray F, Yan XJ et al. Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies. Blood 2012; 119: 4467–4475.

  34. 34

    Bomben R, Dal Bo M, Capello D, Forconi F, Maffei R, Laurenti L et al. Molecular and clinical features of chronic lymphocytic leukaemia with stereotyped B cell receptors: results from an Italian multicentre study. Br J Haematol 2009; 144: 492–506.

  35. 35

    Bystry V, Agathangelidis A, Bikos V, Sutton LA, Baliakas P, Hadzidimitriou A et al. ARResT/AssignSubsets: a novel application for robust subclassification of chronic lymphocytic leukemia based on B cell receptor IG stereotypy. Bioinformatics 2015; 31: 3844–3846.

  36. 36

    Chiorazzi N, Ferrarini M . Cellular origin(s) of chronic lymphocytic leukemia: cautionary notes and additional considerations and possibilities. Blood 2011; 117: 1781–1791.

  37. 37

    Seifert M, Sellmann L, Bloehdorn J, Wein F, Stilgenbauer S, Durig J et al. Cellular origin and pathophysiology of chronic lymphocytic leukemia. J Exp Med 2012; 209: 2183–2198.

  38. 38

    Paus D, Phan TG, Chan TD, Gardam S, Basten A, Brink R . Antigen recognition strength regulates the choice between extrafollicular plasma cell and germinal center B cell differentiation. J Exp Med 2006; 203: 1081–1091.

  39. 39

    Chiorazzi N, Rai KR, Ferrarini M . Chronic lymphocytic leukemia. N Engl J Med 2005; 352: 804–815.

  40. 40

    Weill JC, Weller S, Reynaud CA . Human marginal zone B cells. Annu Rev Immunol 2009; 27: 267–285.

  41. 41

    Chappell CP, Draves KE, Giltiay NV, Clark EA . Extrafollicular B cell activation by marginal zone dendritic cells drives T cell-dependent antibody responses. J Exp Med 2012; 209: 1825–1840.

  42. 42

    Kaji T, Ishige A, Hikida M, Taka J, Hijikata A, Kubo M et al. Distinct cellular pathways select germline-encoded and somatically mutated antibodies into immunological memory. J Exp Med 2012; 209: 2079–2097.

  43. 43

    Herve M, Xu K, Ng YS, Wardemann H, Albesiano E, Messmer BT et al. Unmutated and mutated chronic lymphocytic leukemias derive from self-reactive B cell precursors despite expressing different antibody reactivity. J Clin Invest 2005; 115: 1636–1643.

  44. 44

    Catera R, Silverman GJ, Hatzi K, Seiler T, Didier S, Zhang L et al. Chronic lymphocytic leukemia cells recognize conserved epitopes associated with apoptosis and oxidation. Mol Med 2008; 14: 665–674.

  45. 45

    Borche L, Lim A, Binet JL, Dighiero G . Evidence that chronic lymphocytic leukemia B lymphocytes are frequently committed to production of natural autoantibodies. Blood 1990; 76: 562–569.

  46. 46

    Chu CC, Catera R, Hatzi K, Yan XJ, Zhang L, Wang XB et al. Chronic lymphocytic leukemia antibodies with a common stereotypic rearrangement recognize nonmuscle myosin heavy chain IIA. Blood 2008; 112: 5122–5129.

  47. 47

    Lanemo Myhrinder A, Hellqvist E, Sidorova E, Soderberg A, Baxendale H, Dahle C et al. A new perspective: molecular motifs on oxidized LDL, apoptotic cells, and bacteria are targets for chronic lymphocytic leukemia antibodies. Blood 2008; 111: 3838–3848.

  48. 48

    Hoogeboom R, van Kessel KP, Hochstenbach F, Wormhoudt TA, Reinten RJ, Wagner K et al. A mutated B cell chronic lymphocytic leukemia subset that recognizes and responds to fungi. J Exp Med 2013; 210: 59–70.

  49. 49

    Baumgarth N, Tung JW, Herzenberg LA . Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion. Springer Semin Immunopathol 2005; 26: 347–362.

  50. 50

    Baumgarth N . The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol 2011; 11: 34–46.

  51. 51

    Chou MY, Fogelstrand L, Hartvigsen K, Hansen LF, Woelkers D, Shaw PX et al. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. J Clin Invest 2009; 119: 1335–1349.

  52. 52

    Hardy RR . B-1 B cell development. J Immunol 2006; 177: 2749–2754.

  53. 53

    Baumgarth N . Innate-like B cells and their rules of engagement. Adv Exp Med Biol 2013; 785: 57–66.

  54. 54

    Griffin DO, Holodick NE, Rothstein TL . Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70. J Exp Med 2011; 208: 67–80.

  55. 55

    Martin F, Kearney JF . Marginal-zone B cells. Nat Rev Immunol 2002; 2: 323–335.

  56. 56

    Milner EC, Anolik J, Cappione A, Sanz I . Human innate B cells: a link between host defense and autoimmunity? Springer Semin Immunopathol 2005; 26: 433–452.

  57. 57

    Forconi F, Potter KN, Wheatley I, Darzentas N, Sozzi E, Stamatopoulos K et al. The normal IGHV1-69-derived B-cell repertoire contains stereotypic patterns characteristic of unmutated CLL. Blood 2010; 115: 71–77.

  58. 58

    Hadzidimitriou A, Agathangelidis A, Darzentas N, Murray F, Delfau-Larue MH, Pedersen LB et al. Is there a role for antigen selection in mantle cell lymphoma? Immunogenetic support from a series of 807 cases. Blood 2011; 118: 3088–3095.

  59. 59

    Zibellini S, Capello D, Forconi F, Marcatili P, Rossi D, Rattotti S et al. Stereotyped patterns of B-cell receptor in splenic marginal zone lymphoma. Haematologica 2010; 95: 1792–1796.

  60. 60

    Bikos V, Darzentas N, Hadzidimitriou A, Davis Z, Hockley S, Traverse-Glehen A et al. Over 30% of patients with splenic marginal zone lymphoma express the same immunoglobulin heavy variable gene: ontogenetic implications. Leukemia 2012; 26: 1638–1646.

  61. 61

    Kostareli E, Gounari M, Janus A, Murray F, Brochet X, Giudicelli V et al. Antigen receptor stereotypy across B-cell lymphoproliferations: the case of IGHV4-59/IGKV3-20 receptors with rheumatoid factor activity. Leukemia 2012; 26: 1127–1131.

  62. 62

    Athanasiadou A, Stamatopoulos K, Gaitatzi M, Stavroyianni N, Fassas A, Anagnostopoulos A . Recurrent cytogenetic findings in subsets of patients with chronic lymphocytic leukemia expressing IgG-switched stereotyped immunoglobulins. Haematologica 2008; 93: 473–474.

  63. 63

    Marincevic M, Cahill N, Gunnarsson R, Isaksson A, Mansouri M, Goransson H et al. High-density screening reveals a different spectrum of genomic aberrations in chronic lymphocytic leukemia patients with ‘stereotyped’ IGHV3-21 and IGHV4-34 B-cell receptors. Haematologica 2010; 95: 1519–1525.

  64. 64

    Kanduri M, Marincevic M, Halldorsdottir AM, Mansouri L, Junevik K, Ntoufa S et al. Distinct transcriptional control in major immunogenetic subsets of chronic lymphocytic leukemia exhibiting subset-biased global DNA methylation profiles. Epigenetics 2012; 7: 1435–1442.

  65. 65

    Marincevic M, Mansouri M, Kanduri M, Isaksson A, Goransson H, Smedby KE et al. Distinct gene expression profiles in subsets of chronic lymphocytic leukemia expressing stereotyped IGHV4-34 B-cell receptors. Haematologica 2010; 95: 2072–2079.

  66. 66

    Papakonstantinou N, Ntoufa S, Chartomatsidou E, Papadopoulos G, Hatzigeorgiou A, Anagnostopoulos A et al. Differential microRNA profiles and their functional implications in different immunogenetic subsets of chronic lymphocytic leukemia. Mol Med 2013; 19: 115–123.

  67. 67

    Ntoufa S, Vardi A, Papakonstantinou N, Anagnostopoulos A, Aleporou-Marinou V, Belessi C et al. Distinct innate immunity pathways to activation and tolerance in subgroups of chronic lymphocytic leukemia with distinct immunoglobulin receptors. Mol Med 2012; 18: 1281–1291.

  68. 68

    Gounari M, Ntoufa S, Apollonio B, Papakonstantinou N, Ponzoni M, Chu CC et al. Excessive antigen reactivity may underlie the clinical aggressiveness of chronic lymphocytic leukemia stereotyped subset #8. Blood 2015; 125: 3580–3587.

  69. 69

    Ntoufa S, Papakonstantinou N, Apollonio B, Gounari M, Galigalidou C, Fonte E et al. B Cell Anergy Modulated by TLR1/2 and the miR-17 approximately 92 Cluster Underlies the Indolent Clinical Course of Chronic Lymphocytic Leukemia Stereotyped Subset #4. J Immunol 2016; 196: 4410–4417.

  70. 70

    Del Giudice I, Chiaretti S, Santangelo S, Tavolaro S, Peragine N, Marinelli M et al. Stereotyped subset #1 chronic lymphocytic leukemia: a direct link between B-cell receptor structure, function, and patients’ prognosis. Am J Hematol 2014; 89: 74–82.

  71. 71

    Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 2008; 322: 1695–1699.

  72. 72

    Beguelin W, Popovic R, Teater M, Jiang Y, Bunting KL, Rosen M et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer cell 2013; 23: 677–692.

  73. 73

    Kanduri M, Sander B, Ntoufa S, Papakonstantinou N, Sutton LA, Stamatopoulos K et al. A key role for EZH2 in epigenetic silencing of HOX genes in mantle cell lymphoma. Epigenetics 2013; 8: 1280–1288.

  74. 74

    Chang CJ, Hung MC . The role of EZH2 in tumour progression. Br J Cancer 2012; 106: 243–247.

  75. 75

    Sutton LA, Young E, Baliakas P, Hadzidimitriou A, Moysiadis T, Plevova K et al. Different spectra of recurrent gene mutations in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors. Haematologica 2016; 101: 959–967.

  76. 76

    Mansouri L, Sutton LA, Ljungstrom V, Bondza S, Arngarden L, Bhoi S et al. Functional loss of IkappaBepsilon leads to NF-kappaB deregulation in aggressive chronic lymphocytic leukemia. J Exp Med 2015; 212: 833–843.

  77. 77

    Baliakas P, Agathangelidis A, Hadzidimitriou A, Sutton LA, Minga E, Tsanousa A et al. Not all IGHV3-21 chronic lymphocytic leukemias are equal: prognostic considerations. Blood 2015; 125: 856–859.

  78. 78

    Hadzidimitriou A, Darzentas N, Murray F, Smilevska T, Arvaniti E, Tresoldi C et al. Evidence for the significant role of immunoglobulin light chains in antigen recognition and selection in chronic lymphocytic leukemia. Blood 2009; 113: 403–411.

  79. 79

    Belessi CJ, Davi FB, Stamatopoulos KE, Degano M, Andreou TM, Moreno C et al. IGHV gene insertions and deletions in chronic lymphocytic leukemia: ‘CLL-biased’ deletions in a subset of cases with stereotyped receptors. Eur J Immunol 2006; 36: 1963–1974.

  80. 80

    Malcikova J, Stalika E, Davis Z, Plevova K, Trbusek M, Mansouri L et al. The frequency of TP53 gene defects differs between chronic lymphocytic leukaemia subgroups harbouring distinct antigen receptors. Br J Haematol 2014; 166: 621–625.

  81. 81

    Baliakas P, Hadzidimitriou A, Sutton LA, Minga E, Agathangelidis A, Nichelatti M et al. Clinical effect of stereotyped B-cell receptor immunoglobulins in chronic lymphocytic leukaemia: a retrospective multicentre study. Lancet Haematol 2014; 1: e74–e84.

  82. 82

    Rossi D, Spina V, Bomben R, Rasi S, Dal-Bo M, Bruscaggin A et al. Association between molecular lesions and specific B-cell receptor subsets in chronic lymphocytic leukemia. Blood 2013; 121: 4902–4905.

  83. 83

    Strefford JC, Sutton LA, Baliakas P, Agathangelidis A, Malcikova J, Plevova K et al. Distinct patterns of novel gene mutations in poor-prognostic stereotyped subsets of chronic lymphocytic leukemia: the case of SF3B1 and subset #2. Leukemia 2013; 27: 2196–2199.

  84. 84

    Ajuh P, Kuster B, Panov K, Zomerdijk JC, Mann M, Lamond AI . Functional analysis of the human CDC5L complex and identification of its components by mass spectrometry. EMBO J 2000; 19: 6569–6581.

  85. 85

    Rossi D, Bruscaggin A, Spina V, Rasi S, Khiabanian H, Messina M et al. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness. Blood 2011; 118: 6904–6908.

  86. 86

    Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1910–1916.

  87. 87

    Vardi A, Agathangelidis A, Sutton LA, Chatzouli M, Scarfo L, Mansouri L et al. IgG-switched CLL has a distinct immunogenetic signature from the common MD variant: ontogenetic implications. Clin Cancer Res 2014; 20: 323–330.

  88. 88

    Jang YJ, Stollar BD . Anti-DNA antibodies: aspects of structure and pathogenicity. Cell Mol Life Sci 2003; 60: 309–320.

  89. 89

    Sutton LA, Kostareli E, Hadzidimitriou A, Darzentas N, Tsaftaris A, Anagnostopoulos A et al. Extensive intraclonal diversification in a subgroup of chronic lymphocytic leukemia patients with stereotyped IGHV4-34 receptors: implications for ongoing interactions with antigen. Blood 2009; 114: 4460–4468.

  90. 90

    Kostareli E, Sutton LA, Hadzidimitriou A, Darzentas N, Kouvatsi A, Tsaftaris A et al. Intraclonal diversification of immunoglobulin light chains in a subset of chronic lymphocytic leukemia alludes to antigen-driven clonal evolution. Leukemia 2010; 24: 1317–1324.

  91. 91

    Sutton LA, Kostareli E, Stalika E, Tsaftaris A, Anagnostopoulos A, Darzentas N et al. Temporal dynamics of clonal evolution in chronic lymphocytic leukemia with stereotyped IGHV4-34/IGKV2-30 antigen receptors: longitudinal immunogenetic evidence. Mol Med 2013; 19: 230–236.

  92. 92

    Sutton LA, Papadopoulos G, Hadzidimitriou A, Papadopoulos S, Kostareli E, Rosenquist R et al. An entity evolving into a community: defining the common ancestor and evolutionary trajectory of chronic lymphocytic leukemia stereotyped subset #4. Mol Med 2014; 20: 720–728.

  93. 93

    Muzio M, Apollonio B, Scielzo C, Frenquelli M, Vandoni I, Boussiotis V et al. Constitutive activation of distinct BCR-signaling pathways in a subset of CLL patients: a molecular signature of anergy. Blood 2008; 112: 188–195.

  94. 94

    Rossi D, Spina V, Cerri M, Rasi S, Deambrogi C, De Paoli L et al. Stereotyped B-cell receptor is an independent risk factor of chronic lymphocytic leukemia transformation to Richter syndrome. Clin Cancer Res 2009; 15: 4415–4422.

  95. 95

    Baliakas P, Mattsson M, Stamatopoulos K, Rosenquist R . Prognostic indices in chronic lymphocytic leukaemia: where do we stand how do we proceed? J Int Med 2016; 279: 347–357.

  96. 96

    Rosenquist R, Cortese D, Bhoi S, Mansouri L, Gunnarsson R . Prognostic markers and their clinical applicability in chronic lymphocytic leukemia: where do we stand? Leuk Lymphoma 2013; 54: 2351–2364.

  97. 97

    Thorselius M, Krober A, Murray F, Thunberg U, Tobin G, Buhler A et al. Strikingly homologous immunoglobulin gene rearrangements and poor outcome in VH3-21-using chronic lymphocytic leukemia patients independent of geographic origin and mutational status. Blood 2006; 107: 2889–2894.

  98. 98

    Maura F, Cutrona G, Fabris S, Colombo M, Tuana G, Agnelli L et al. Relevance of stereotyped B-cell receptors in the context of the molecular, cytogenetic and clinical features of chronic lymphocytic leukemia. PLoS One 2011; 6: e24313.

  99. 99

    Ghia EM, Jain S, Widhopf GF 2nd, Rassenti LZ, Keating MJ, Wierda WG et al. Use of IGHV3-21 in chronic lymphocytic leukemia is associated with high-risk disease and reflects antigen-driven, post-germinal center leukemogenic selection. Blood 2008; 111: 5101–5108.

  100. 100

    Baliakas P, Iskas M, Gardiner A, Davis Z, Plevova K, Nguyen-Khac F et al. Chromosomal translocations and karyotype complexity in chronic lymphocytic leukemia: a systematic reappraisal of classic cytogenetic data. Am J Hematol 2014; 89: 249–255.

Download references


We thank present and past members of our groups for their commitment and enthusiasm. We would also like to acknowledge the trustful collaboration of all the members of the IMGT/CLL-DB initiative and, in particular, Professor Marie-Paule Lefranc and Dr Veronique Giudicelli, Laboratoire d’Immunogenetique Moleculaire, LIGM, Universite Montpellier II, Montpellier, France, and IMGT, the international ImMunoGeneTics information system, for their enormous support and help with IG gene sequence analysis. Finally, a special thanks to our friends and fellow members of the IgCLL Group (, Drs Belessi, Darzentas and Davi, for many years of stimulating and fruitful collaboration. This work was supported in part by H2020 ‘AEGLE, An analytics framework for integrated and personalized healthcare services in Europe’ by the EU; ‘MEDGENET, Medical Genomics and Epigenomics Network’ (No.692298) by the EU; Associazione Italiana per la Ricerca sul Cancro AIRC (Investigator Grant #15189 and Special Program Molecular Clinical Oncology—5 per mille #9965), Milano, Italy and Ricerca Finalizzata 2010—Ministero della Salute, Roma (#2318823); The Swedish Cancer Society, the Swedish Research Council, Uppsala University, Uppsala University Hospital and the Lion’s Cancer Research Foundation, Uppsala.

Author information

Correspondence to K Stamatopoulos.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading