Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem cell transplantation

Tracking T-cell immune reconstitution after TCRαβ/CD19-depleted hematopoietic cells transplantation in children

Subjects

Abstract

αβT-cell-depleted allogeneic hematopoietic cell transplantation holds promise for the safe and accessible therapy of both malignant and non-malignant blood disorders. Here we employed molecular barcoding normalized T-cell receptor (TCR) profiling to quantitatively track T-cell immune reconstitution after TCRαβ-/CD19-depleted transplantation in children. We demonstrate that seemingly early reconstitution of αβT-cell counts 2 months after transplantation is based on only several hundred rapidly expanded clones originating from non-depleted graft cells. In further months, frequency of these hyperexpanded clones declines, and after 1 year the observed T-cell counts and TCRβ diversity are mostly provided by the newly produced T cells. We also demonstrate that high TCRβ diversity at day 60 observed for some of the patients is determined by recipient T cells and intrathymic progenitors that survived conditioning regimen. Our results indicate that further efforts on optimization of TCRαβ-/CD19-depleted transplantation protocols should be directed toward providing more efficient T-cell defense in the first months after transplantation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Copelan EA . Hematopoietic stem-cell transplantation. N Engl J Med 2006; 354: 1813–1826.

    Article  CAS  Google Scholar 

  2. Szydlo R, Goldman JM, Klein JP, Gale RP, Ash RC, Bach FH et al. Results of allogeneic bone marrow transplants for leukemia using donors other than HLA-identical siblings. J Clin Oncol 1997; 15: 1767–1777.

    Article  CAS  Google Scholar 

  3. Ho VT, Soiffer RJ . The history and future of T-cell depletion as graft-versus-host disease prophylaxis for allogeneic hematopoietic stem cell transplantation. Blood 2001; 98: 3192–3204.

    Article  CAS  Google Scholar 

  4. Aversa F, Tabilio A, Velardi A, Cunningham I, Terenzi A, Falzetti F et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med 1998; 339: 1186–1193.

    Article  CAS  Google Scholar 

  5. Papadopoulos EB, Carabasi MH, Castro-Malaspina H, Childs BH, Mackinnon S, Boulad F et al. T-cell-depleted allogeneic bone marrow transplantation as postremission therapy for acute myelogenous leukemia: freedom from relapse in the absence of graft-versus-host disease. Blood 1998; 91: 1083–1090.

    CAS  PubMed  Google Scholar 

  6. Small TN, Papadopoulos EB, Boulad F, Black P, Castro-Malaspina H, Childs BH et al. Comparison of immune reconstitution after unrelated and related T-cell-depleted bone marrow transplantation: effect of patient age and donor leukocyte infusions. Blood 1999; 93: 467–480.

    CAS  PubMed  Google Scholar 

  7. Champlin RE, Passweg JR, Zhang MJ, Rowlings PA, Pelz CJ, Atkinson KA et al. T-cell depletion of bone marrow transplants for leukemia from donors other than HLA-identical siblings: advantage of T-cell antibodies with narrow specificities. Blood 2000; 95: 3996–4003.

    CAS  PubMed  Google Scholar 

  8. Ciurea SO, Mulanovich V, Saliba RM, Bayraktar UD, Jiang Y, Bassett R et al. Improved early outcomes using a T cell replete graft compared with T cell depleted haploidentical hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2012; 18: 1835–1844.

    Article  Google Scholar 

  9. Bashey A, Solomon SR . T-cell replete haploidentical donor transplantation using post-transplant CY: an emerging standard-of-care option for patients who lack an HLA-identical sibling donor. Bone Marrow Transplant 2014; 49: 999–1008.

    Article  CAS  Google Scholar 

  10. Schumm M, Lang P, Bethge W, Faul C, Feuchtinger T, Pfeiffer M et al. Depletion of T-cell receptor alpha/beta and CD19 positive cells from apheresis products with the CliniMACS device. Cytotherapy 2013; 15: 1253–1258.

    Article  CAS  Google Scholar 

  11. Locatelli F, Bauquet A, Palumbo G, Moretta F, Bertaina A . Negative depletion of alpha/beta+ T cells and of CD19+ B lymphocytes: a novel frontier to optimize the effect of innate immunity in HLA-mismatched hematopoietic stem cell transplantation. Immunol Lett 2013; 155: 21–23.

    Article  CAS  Google Scholar 

  12. Radestad E, Wikell H, Engstrom M, Watz E, Sundberg B, Thunberg S et al. Alpha/beta T-cell depleted grafts as an immunological booster to treat graft failure after hematopoietic stem cell transplantation with HLA-matched related and unrelated donors. J Immunol Res 2014; 2014: 578741.

    Article  CAS  Google Scholar 

  13. Tumino M, Mainardi C, Pillon M, Calore E, Gazzola MV, Destro R et al. Haploidentical TCR A/B and B-cell depleted hematopoietic SCT in pediatric SAA and aspergillosis. Bone Marrow Transplant 2014; 49: 847–849.

    Article  CAS  Google Scholar 

  14. Bertaina A, Merli P, Rutella S, Pagliara D, Bernardo ME, Masetti R et al. HLA-haploidentical stem cell transplantation after removal of alphabeta+ T and B cells in children with nonmalignant disorders. Blood 2014; 124: 822–826.

    Article  CAS  Google Scholar 

  15. Balashov D, Shcherbina A, Maschan M, Trakhtman P, Skvortsova Y, Shelikhova L et al. Single-center experience of unrelated and haploidentical stem cell transplantation with TCRalphabeta and CD19 depletion in children with primary immunodeficiency syndromes. Biol Blood Marrow Transplant 2015; 21: 1955–1962.

    Article  Google Scholar 

  16. Krenger W, Blazar BR, Hollander GA . Thymic T-cell development in allogeneic stem cell transplantation. Blood 2011; 117: 6768–6776.

    Article  CAS  Google Scholar 

  17. Britanova OV, Putintseva EV, Shugay M, Merzlyak EM, Turchaninova MA, Staroverov DB et al. Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling. J Immunol 2014; 192: 2689–2698.

    Article  CAS  Google Scholar 

  18. Britanova OV, Shugay M, Merzlyak EM, Staroverov DB, Putintseva EV, Turchaninova MA et al. Dynamics of Individual T cell repertoires: from cord blood to centenarians. J Immunol 2016; 196: 5005–5013.

    Article  CAS  Google Scholar 

  19. Gendzekhadze K, Gaidulis L, Senitzer D . Chimerism testing by quantitative PCR using Indel markers. Methods Mol Biol 2013; 1034: 221–237.

    Article  CAS  Google Scholar 

  20. Zvyagin IV, Pogorelyy MV, Ivanova ME, Komech EA, Shugay M, Bolotin DA et al. Distinctive properties of identical twins' TCR repertoires revealed by high-throughput sequencing. Proc Natl Acad Sci USA 2014; 111: 5980–5985.

    Article  CAS  Google Scholar 

  21. Shugay M, Britanova OV, Merzlyak EM, Turchaninova MA, Mamedov IZ, Tuganbaev TR et al. Towards error-free profiling of immune repertoires. Nat Methods 2014; 11: 653–655.

    Article  CAS  Google Scholar 

  22. Bolotin DA, Poslavsky S, Mitrophanov I, Shugay M, Mamedov IZ, Putintseva EV et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat Methods 2015; 12: 380–381.

    Article  CAS  Google Scholar 

  23. Nazarov VI, Pogorelyy MV, Komech EA, Zvyagin IV, Bolotin DA, Shugay M et al. tcR: an R package for T cell receptor repertoire advanced data analysis. BMC Bioinformatics 2015; 16: 175.

    Article  Google Scholar 

  24. Shugay M, Bagaev DV, Turchaninova MA, Bolotin DA, Britanova OV, Putintseva EV et al. VDJtools: unifying post-analysis of T cell receptor repertoires. PLoS Comput Biol 2015; 11: e1004503.

    Article  Google Scholar 

  25. Team RC . R: A Language and Environment for Statistical Computing. R Foundation for statistical computing: Vienna, Austria, 2012.

    Google Scholar 

  26. Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJ . Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 2001; 67: 4399–4406.

    Article  CAS  Google Scholar 

  27. Woodsworth DJ, Castellarin M, Holt RA . Sequence analysis of T-cell repertoires in health and disease. Genome Med 2013; 5: 98.

    Article  Google Scholar 

  28. van Heijst JW, Ceberio I, Lipuma LB, Samilo DW, Wasilewski GD, Gonzales AM et al. Quantitative assessment of T cell repertoire recovery after hematopoietic stem cell transplantation. Nat Med 2013; 19: 372–377.

    Article  CAS  Google Scholar 

  29. Ritter J, Seitz V, Balzer H, Gary R, Lenze D, Moi S et al. Donor CD4 T cell diversity determines virus reactivation in patients after HLA-matched allogeneic stem cell transplantation. Am J Transplant 2015; 15: 2170–2179.

    Article  CAS  Google Scholar 

  30. Suessmuth Y, Mukherjee R, Watkins B, Koura DT, Finstermeier K, Desmarais C et al. CMV reactivation drives posttransplant T-cell reconstitution and results in defects in the underlying TCRbeta repertoire. Blood 2015; 125: 3835–3850.

    Article  CAS  Google Scholar 

  31. Yew PY, Alachkar H, Yamaguchi R, Kiyotani K, Fang H, Yap KL et al. Quantitative characterization of T-cell repertoire in allogeneic hematopoietic stem cell transplant recipients. Bone Marrow Transplant 2015; 50: 1227–1234.

    Article  CAS  Google Scholar 

  32. Mamedov IZ, Britanova OV, Bolotin DA, Chkalina AV, Staroverov DB, Zvyagin IV et al. Quantitative tracking of T cell clones after haematopoietic stem cell transplantation. EMBO Mol Med 2011; 3: 201–207.

    Article  CAS  Google Scholar 

  33. Muraro PA, Robins H, Malhotra S, Howell M, Phippard D, Desmarais C et al. T cell repertoire following autologous stem cell transplantation for multiple sclerosis. J Clin Invest 2014; 124: 1168–1172.

    Article  CAS  Google Scholar 

  34. Delemarre EM, van den Broek T, Mijnheer G, Meerding J, Wehrens EJ, Olek S et al. Autologous stem cell transplantation aids autoimmune patients by functional renewal and TCR diversification of regulatory T cells. Blood 2015; 127: 91–101.

    Article  Google Scholar 

  35. Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B . Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci USA 2011; 108: 9530–9535.

    Article  Google Scholar 

  36. Kivioja T, Vaharautio A, Karlsson K, Bonke M, Enge M, Linnarsson S et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods 2012; 9: 72–74.

    Article  CAS  Google Scholar 

  37. Egorov ES, Merzlyak EM, Shelenkov AA, Britanova OV, Sharonov GV, Staroverov DB et al. Quantitative profiling of immune repertoires for minor lymphocyte counts using unique molecular identifiers. J Immunol 2015; 194: 6155–6163.

    Article  CAS  Google Scholar 

  38. Feng Y, van der Veeken J, Shugay M, Putintseva EV, Osmanbeyoglu HU, Dikiy S et al. A mechanism for expansion of regulatory T-cell repertoire and its role in self-tolerance. Nature 2015; 528: 132–136.

    Article  CAS  Google Scholar 

  39. Efron B, Thisted R . Estimating the number of unseen species: How many words did Shakespeare know? Biometrika 1976; 63: 435–447.

    Google Scholar 

  40. Shannon CE . A mathematical theory of communication. Bell Syst Tech J 1948; 27: 379–423.

    Article  Google Scholar 

  41. Simpson EH . Measurement of diversity. Nature 1949; 163: 688.

    Article  Google Scholar 

  42. Colwell RK, Chao A, Gotelli NJ, Lin S, Mao CX, Chazdon RL et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J Plant Ecol 2012; 5: 3–21.

    Article  Google Scholar 

  43. Best K, Oakes T, Heather JM, Shawe-Taylor J, Chain B . Computational analysis of stochastic heterogeneity in PCR amplification efficiency revealed by single molecule barcoding. Sci Rep 2015; 5: 14629.

    Article  CAS  Google Scholar 

  44. Lang P, Teltschik HM, Feuchtinger T, Muller I, Pfeiffer M, Schumm M et al. Transplantation of CD3/CD19 depleted allografts from haploidentical family donors in paediatric leukaemia. Br J Haematol 2014; 165: 688–698.

    Article  CAS  Google Scholar 

  45. Ziegler H, Welker C, Sterk M, Haarer J, Rammensee HG, Handgretinger R et al. Human peripheral CD4(+) Vdelta1(+) gammadelta T cells can develop into alphabetaT cells. Front Immunol 2014; 5: 645.

    Article  Google Scholar 

  46. Williams KM, Hakim FT, Gress RE . T cell immune reconstitution following lymphodepletion. Semin Immunol 2007; 19: 318–330.

    Article  CAS  Google Scholar 

  47. Lawrence CW, Braciale TJ . Activation, differentiation, and migration of naive virus-specific CD8+ T cells during pulmonary influenza virus infection. J Immunol 2004; 173: 1209–1218.

    Article  CAS  Google Scholar 

  48. Yoon H, Kim TS, Braciale TJ . The cell cycle time of CD8+ T cells responding in vivo is controlled by the type of antigenic stimulus. PLoS One 2010; 5: e15423.

    Article  Google Scholar 

  49. Ljungman P, Hakki M, Boeckh M . Cytomegalovirus in hematopoietic stem cell transplant recipients. Hematol Oncol Clin North Am 2011; 25: 151–169.

    Article  Google Scholar 

  50. Inagaki J, Noguchi M, Kurauchi K, Tanioka S, Fukano R, Okamura J . Effect of cytomegalovirus reactivation on relapse after allogeneic hematopoietic stem cell transplantation in pediatric acute leukemia. Biol Blood Marrow Transplant 2016; 22: 300–306.

    Article  Google Scholar 

  51. Lugthart G, van Ostaijen-Ten Dam MM, Jol-van der Zijde CM, van Holten TC, Kester MG, Heemskerk MH et al. Early cytomegalovirus reactivation leaves a specific and dynamic imprint on the reconstituting T cell compartment long-term after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2014; 20: 655–661.

    Article  CAS  Google Scholar 

  52. Muraro PA, Douek DC . Renewing the T cell repertoire to arrest autoimmune aggression. Trends Immunol 2006; 27: 61–67.

    Article  CAS  Google Scholar 

  53. Britanova OV, Bochkova AG, Staroverov DB, Fedorenko DA, Bolotin DA, Mamedov IZ et al. First autologous hematopoietic SCT for ankylosing spondylitis: a case report and clues to understanding the therapy. Bone Marrow Transplant 2012; 47: 1479–1481.

    Article  CAS  Google Scholar 

  54. Khan F, Agarwal A, Agrawal S . Significance of chimerism in hematopoietic stem cell transplantation: new variations on an old theme. Bone Marrow Transplant 2004; 34: 1–12.

    Article  CAS  Google Scholar 

  55. Fallen PR, McGreavey L, Madrigal JA, Potter M, Ethell M, Prentice HG et al. Factors affecting reconstitution of the T cell compartment in allogeneic haematopoietic cell transplant recipients. Bone Marrow Transplant 2003; 32: 1001–1014.

    Article  CAS  Google Scholar 

  56. Seggewiss R, Einsele H . Immune reconstitution after allogeneic transplantation and expanding options for immunomodulation: an update. Blood 2010; 115: 3861–3868.

    Article  CAS  Google Scholar 

  57. van de Berg PJ, Griffiths SJ, Yong SL, Macaulay R, Bemelman FJ, Jackson S et al. Cytomegalovirus infection reduces telomere length of the circulating T cell pool. J Immunol 2010; 184: 3417–3423.

    Article  CAS  Google Scholar 

  58. Plunkett FJ, Soares MV, Annels N, Hislop A, Ivory K, Lowdell M et al. The flow cytometric analysis of telomere length in antigen-specific CD8+ T cells during acute Epstein-Barr virus infection. Blood 2001; 97: 700–707.

    Article  CAS  Google Scholar 

  59. Uhlin M, Gertow J, Uzunel M, Okas M, Berglund S, Watz E et al. Rapid salvage treatment with virus-specific T cells for therapy-resistant disease. Clin Infect Dis 2012; 55: 1064–1073.

    Article  CAS  Google Scholar 

  60. Geyeregger R, Freimuller C, Stevanovic S, Stemberger J, Mester G, Dmytrus J et al. Short-term in vitro expansion improves monitoring and allows affordable generation of virus-specific T-cells against several viruses for a broad clinical application. PLoS One 2013; 8: e59592.

    Article  CAS  Google Scholar 

  61. Leen AM, Heslop HE, Brenner MK . Antiviral T-cell therapy. Immunol Rev 2014; 258: 12–29.

    Article  CAS  Google Scholar 

  62. Hanley PJ, Melenhorst JJ, Nikiforow S, Scheinberg P, Blaney JW, Demmler-Harrison G et al. CMV-specific T cells generated from naive T cells recognize atypical epitopes and may be protective in vivo. Sci Transl Med 2015; 7: 285ra263.

    Article  Google Scholar 

  63. Bleakley M, Heimfeld S, Loeb KR, Jones LA, Chaney C, Seropian S et al. Outcomes of acute leukemia patients transplanted with naive T cell-depleted stem cell grafts. J Clin Invest 2015; 125: 2677–2689.

    Article  Google Scholar 

  64. Triplett BM, Shook DR, Eldridge P, Li Y, Kang G, Dallas M et al. Rapid memory T-cell reconstitution recapitulating CD45RA-depleted haploidentical transplant graft content in patients with hematologic malignancies. Bone Marrow Transplant 2015; 50: 968–977.

    Article  CAS  Google Scholar 

  65. Shook DR, Triplett BM, Eldridge PW, Kang G, Srinivasan A, Leung W . Haploidentical stem cell transplantation augmented by CD45RA negative lymphocytes provides rapid engraftment and excellent tolerability. Pediatr Blood Cancer 2015; 62: 666–673.

    Article  CAS  Google Scholar 

  66. Touzot F, Neven B, Dal-Cortivo L, Gabrion A, Moshous D, Cros G et al. CD45RA depletion in HLA-mismatched allogeneic hematopoietic stem cell transplantation for primary combined immunodeficiency: a preliminary study. J Allergy Clin Immunol 2015; 135: 1303–1309, e1301-1303.

    Article  CAS  Google Scholar 

  67. Muller SM, Ege M, Pottharst A, Schulz AS, Schwarz K, Friedrich W . Transplacentally acquired maternal T lymphocytes in severe combined immunodeficiency: a study of 121 patients. Blood 2001; 98: 1847–1851.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The collection and clinical analysis of samples was supported by Russian Science Foundation grant no 14-35-00105. TCR library preparation and sequencing was supported by Russian Science Foundation grant no 15-15-00178. Zvyagin I is supported by grant MK-4583.2015.4. The work was carried out in part using equipment provided by the Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Core Facility (CKP IBCH). Hematopoietic stem cell transplant program at Dmitriy Rogachev Federal center of pediatric hematology, oncology and immunology is kindly supported by charitable fund ‘Podari Zhizn’. We thank our donors, physicians and nursing staff of the hematopoietic stem cell transplantation department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D M Chudakov.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zvyagin, I., Mamedov, I., Tatarinova, O. et al. Tracking T-cell immune reconstitution after TCRαβ/CD19-depleted hematopoietic cells transplantation in children. Leukemia 31, 1145–1153 (2017). https://doi.org/10.1038/leu.2016.321

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.321

This article is cited by

Search

Quick links